We study the optimal solution of the Monge-Kantorovich mass transport problem between measures whose density functions are convolution with a gaussian measure and a log-concave perturbation of a different gaussian measure. Under certain conditions we prove bounds for the Hessian of the optimal transport potential. This extends and generalises a result of Caffarelli. We also show how this result fits into the scheme of Barthe to prove Brascamp-Lieb inequalities and thus prove a new generalised Reverse Brascamp-Lieb inequality.
@article{ASNSP_2007_5_6_3_441_0, author = {Valdimarsson, Stef\'an Ingi}, title = {On the hessian of the optimal transport potential}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {441--456}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {3}, year = {2007}, mrnumber = {2370268}, zbl = {1170.49038}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2007_5_6_3_441_0/} }
TY - JOUR AU - Valdimarsson, Stefán Ingi TI - On the hessian of the optimal transport potential JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 441 EP - 456 VL - 6 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2007_5_6_3_441_0/ LA - en ID - ASNSP_2007_5_6_3_441_0 ER -
%0 Journal Article %A Valdimarsson, Stefán Ingi %T On the hessian of the optimal transport potential %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 441-456 %V 6 %N 3 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2007_5_6_3_441_0/ %G en %F ASNSP_2007_5_6_3_441_0
Valdimarsson, Stefán Ingi. On the hessian of the optimal transport potential. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 3, pp. 441-456. http://www.numdam.org/item/ASNSP_2007_5_6_3_441_0/
[1] A remarkable measure preserving diffeomorphism between two convex bodies in , Geom. Dedicata 74 (1999), 201-212. | MR | Zbl
, , and ,[2] On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 335-361. | MR | Zbl
,[3] The Brascamp-Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal., to appear. | MR | Zbl
, , and ,[4] Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 805-808. | MR | Zbl
,[5] Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), 375-417. | MR | Zbl
,[6] Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys. 214 (2000), 547-563. | MR | Zbl
,[7] Erratum: Monotonicity of optimal transportation and the FKG and related inequalities, Comm. Math. Phys. 214 (2000), 547-563; Comm. Math. Phys. 225 (2002), 449-450. | Zbl
,[8] The geometry of optimal transportation, Acta Math. 177 (1996), 113-161. | MR | Zbl
and ,[9] “Matrix Analysis”, Cambridge University Press, Cambridge, 1985. | MR | Zbl
and ,[10] Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), 179-208. | MR | Zbl
,[11] “Topics in Optimal Transportation”, Graduate Studies in Mathematics, Vol. 58, American Mathematical Society, Providence, RI, 2003. | MR | Zbl
,[12] “Optimal Transport, Old and New”, 2007, July 18, preprint. | MR | Zbl
,