We consider on a two-dimensional flat torus defined by a rectangular periodic cell the following equation
@article{ASNSP_2007_5_6_2_269_0, author = {Lin, Chang-Shou and Lucia, Marcello}, title = {One-dimensional symmetry of periodic minimizers for a mean field equation}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {269--290}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {2}, year = {2007}, mrnumber = {2352519}, zbl = {1150.35036}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2007_5_6_2_269_0/} }
TY - JOUR AU - Lin, Chang-Shou AU - Lucia, Marcello TI - One-dimensional symmetry of periodic minimizers for a mean field equation JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 269 EP - 290 VL - 6 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2007_5_6_2_269_0/ LA - en ID - ASNSP_2007_5_6_2_269_0 ER -
%0 Journal Article %A Lin, Chang-Shou %A Lucia, Marcello %T One-dimensional symmetry of periodic minimizers for a mean field equation %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 269-290 %V 6 %N 2 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2007_5_6_2_269_0/ %G en %F ASNSP_2007_5_6_2_269_0
Lin, Chang-Shou; Lucia, Marcello. One-dimensional symmetry of periodic minimizers for a mean field equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 2, pp. 269-290. http://www.numdam.org/item/ASNSP_2007_5_6_2_269_0/
[1] “Isoperimetric Inequalities and Applications”, Pitman, London, 1980. | MR | Zbl
,[2] Isoperimetrische Ungleichungen fur Bereiche auf Flächen, Jahresber. Deutschen Math. Vereinigung 51 (1941), 219-257. | JFM | MR | Zbl
,[3] A mean field equation on a torus: one-dimensional symmetry of solutions, Comm. Partial Differential Equations 30 (2005), 1315-1330. | MR | Zbl
, and ,[4] Extremal functions for a mean field equation in two dimension, In: “Lecture on Partial Differential Equations”, New Stud. Adv. Math., 2, Int. Press, Somerville, MA, 2003, 61-93. | MR | Zbl
, and ,[5] Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys. 160 (1994), 217-238. | MR | Zbl
and ,[6] Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math. 55 (2002), 728-771. | MR | Zbl
and ,[7] Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (2003), 1667-1727. | MR | Zbl
and ,[8] Concentration phenomena of two-vortex solutions in a Chern-Simons model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (2004), 367-397. | Numdam | MR | Zbl
, and ,[9] Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), 43-55. | MR | Zbl
,[10] The differential equation on a compact Riemann surface, Asian J. Math. 1 (1997), 230-248. | MR | Zbl
, , and ,[11] Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv. 68 (1993), 415-454. | MR | Zbl
,[12] On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math. 46 (1988), 301-317. | MR | Zbl
and ,[13] A best constant and the Gaussian curvature, Proc. Amer. Math. Soc. 97 (1986), 737-747. | MR | Zbl
,[14] “Rearrangements and Convexity of Level Sets in PDE”, Lecture Notes in Mathematics, Vol. 1150, Springer-Verlag, 1985. | MR | Zbl
,[15] Uniqueness of solutions to the mean field equations for the spherical Onsager vortex, Arch. Ration. Mech. Anal. 153 (2000), 153-176. | MR | Zbl
,[16] Topological degree for mean field equations on , Duke Math. J. 104 (2000), 501-536. | MR | Zbl
,[17] Uniqueness of solutions for a mean field equation on the torus, J. Differential Equations 229 (2006), 172-185. | MR | Zbl
and ,[18] “Elements of the Topology of Plane Sets of Points”, 2nd ed., University Press, Cambridge, 1951. | MR | Zbl
,[19] On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal. 145 (1998), 161-195. | MR | Zbl
and ,[20] On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys. 86 (1982), 321-326. | MR | Zbl
,[21] On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys. 24 (1973), 721-729. | MR | Zbl
,[22] “Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies”, Vol. 27, Princeton University Press, Princeton, N. J., 1951. | MR | Zbl
and ,[23] On a periodic boundary value problem with exponential nonlinearities, Differential Integral Equations 11 (1998), 745-753. | MR | Zbl
and ,[24] On multivortex solutions in Chern-Simons Gauge theory, Boll. Unione Mat. Ital, Sez. B, Artic. Mat. B (8) 1 (1998), 109-121. | MR | Zbl
and ,[25] Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 367-397. | Numdam | MR | Zbl
,[26] “Topological Analysis”, Princeton Mathematical Series, Vol. 23, Princeton University Press, Princeton, N. J., 1958. | MR | Zbl
,[27] “Dynamic Topology”, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1979. | MR | Zbl
and ,