Addendum to: On volumes of arithmetic quotients of SO(1,n)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 2, pp. 263-268.

There are errors in the proof of uniqueness of arithmetic subgroups of the smallest covolume. In this note we correct the proof, obtain certain results which were stated as a conjecture, and we give several remarks on further developments.

Classification : 11E57, 22E40
@article{ASNSP_2007_5_6_2_263_0,
     author = {Belolipetsky, Mikhail},
     title = {Addendum to: {On} volumes of arithmetic quotients of $SO(1,n)$},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {263--268},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 6},
     number = {2},
     year = {2007},
     zbl = {1278.11044},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2007_5_6_2_263_0/}
}
TY  - JOUR
AU  - Belolipetsky, Mikhail
TI  - Addendum to: On volumes of arithmetic quotients of $SO(1,n)$
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2007
SP  - 263
EP  - 268
VL  - 6
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2007_5_6_2_263_0/
LA  - en
ID  - ASNSP_2007_5_6_2_263_0
ER  - 
%0 Journal Article
%A Belolipetsky, Mikhail
%T Addendum to: On volumes of arithmetic quotients of $SO(1,n)$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2007
%P 263-268
%V 6
%N 2
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2007_5_6_2_263_0/
%G en
%F ASNSP_2007_5_6_2_263_0
Belolipetsky, Mikhail. Addendum to: On volumes of arithmetic quotients of $SO(1,n)$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 2, pp. 263-268. http://www.numdam.org/item/ASNSP_2007_5_6_2_263_0/

[1] M. Belolipetsky, On volumes of arithmetic quotients of SO (1,n), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2004), 749-770. | Numdam | MR | Zbl

[2] A. Borel and G. Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119-171; Addendum, ibid. 71 (1990), 173-177. | Numdam | MR | Zbl

[3] M. Conder and C. Maclachlan, Compact hyperbolic 4-manifolds of small volume, Proc. Amer. Math. Soc. 133 (2005), 2469-2476. | MR | Zbl

[4] S. Lang, “Algebraic Number Theory”, Graduate Texts in Mathematics, Vol. 110. Springer-Verlag, New York, 1994. | MR | Zbl

[5] V. P. Platonov and A. S. Rapinchuk, “Algebraic Groups and Number Theory”, Pure and Applied Mathematics, Vol. 139. Academic Press, Inc., Boston, MA, 1994. | MR | Zbl

[6] A. Salehi Golsefidy, Lattices of minimum covolume in Chevalley groups over positive characteristic local fields, preprint. | MR | Zbl