A finiteness theorem for holomorphic Banach bundles
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 15-37.

Let E be a holomorphic Banach bundle over a compact complex manifold, which can be defined by a cocycle of holomorphic transition functions with values of the form id +K where K is compact. Assume that the characteristic fiber of E has the compact approximation property. Let n be the complex dimension of X and 0qn. Then: If VX is a holomorphic vector bundle (of finite rank) with H q (X,V)=0, then dimH q (X,VE)<. In particular, if dimH q (X,𝒪)=0, then dimH q (X,E)<.

Classification : 32F10, 32C37
@article{ASNSP_2007_5_6_1_15_0,
     author = {Leiterer, J\"urgen},
     title = {A finiteness theorem for holomorphic {Banach} bundles},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {15--37},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 6},
     number = {1},
     year = {2007},
     mrnumber = {2341512},
     zbl = {1178.32016},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2007_5_6_1_15_0/}
}
TY  - JOUR
AU  - Leiterer, Jürgen
TI  - A finiteness theorem for holomorphic Banach bundles
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2007
SP  - 15
EP  - 37
VL  - 6
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2007_5_6_1_15_0/
LA  - en
ID  - ASNSP_2007_5_6_1_15_0
ER  - 
%0 Journal Article
%A Leiterer, Jürgen
%T A finiteness theorem for holomorphic Banach bundles
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2007
%P 15-37
%V 6
%N 1
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2007_5_6_1_15_0/
%G en
%F ASNSP_2007_5_6_1_15_0
Leiterer, Jürgen. A finiteness theorem for holomorphic Banach bundles. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 15-37. http://www.numdam.org/item/ASNSP_2007_5_6_1_15_0/

[1] L. Bungart, On analytic fiber bundles - I. Holomorphic fiber bundles with infinite dimensional fibers, Topology 7 (1968), 55-68. | MR | Zbl

[2] K. Clancey and I. Gohberg, “Factorization of Matrix Functions and Singular Integral Operators", OT 3, Birkhäuser, 1981. | MR | Zbl

[3] M. Erat, The cohomology of Banach space bundles over 1-convex manifolds is not always Hausdorff, Math. Nachr. 248-249 (2003), 97-101. | MR | Zbl

[4] I. Gohberg, The factorization problem for operator functions (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1055-1082. | MR | Zbl

[5] I. Gohberg and J. Leiterer, The local principle for the factorization problem of continuous operator functions (Russian), Rev. Roumaine Math. Pures. Appl. 18 (1973), 1585-1600. | MR | Zbl

[6] G. Henkin and J. Leiterer, “Theory of Functions on Complex Manifolds", Akademie-Verlag Berlin, 1984, and Birkhäuser, 1984. | MR | Zbl

[7] G. Henkin and J. Leiterer, “Andreotti-Grauert Theory by Integral Formulas", Progress in Mathematics, Vol. 74, Birkhäuser, 1988. | MR | Zbl

[8] J. Leiterer, From local to global homotopy formulas for ¯ and ¯ b , In: “Geometric Complex Analysis", J. Noguchi et al. (eds.), World Scientific Publishing Co., 1996, 385-391. | MR | Zbl

[9] J. Lindenstrauss and L. Tzafriri, “Classical Banach Spaces" I and II, Springer, 1996. | MR | Zbl