We discuss the local existence and uniqueness of solutions of certain nonstrictly hyperbolic systems, with Hölder continuous coefficients with respect to time variable. We reduce the nonstrictly hyperbolic systems to the parabolic ones and by use of the Tanabe-Sobolevski's method and the Banach scale method we construct a semi-group which gives a representation of the solution to the Cauchy problem.
@article{ASNSP_2006_5_5_4_465_0, author = {Kajitani, Kunihiko and Yuzawa, Yasuo}, title = {The {Cauchy} problem for hyperbolic systems with {H\"older} continuous coefficients with respect to the time variable}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {465--482}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {4}, year = {2006}, mrnumber = {2297720}, zbl = {1170.35474}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2006_5_5_4_465_0/} }
TY - JOUR AU - Kajitani, Kunihiko AU - Yuzawa, Yasuo TI - The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to the time variable JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 465 EP - 482 VL - 5 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2006_5_5_4_465_0/ LA - en ID - ASNSP_2006_5_5_4_465_0 ER -
%0 Journal Article %A Kajitani, Kunihiko %A Yuzawa, Yasuo %T The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to the time variable %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 465-482 %V 5 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2006_5_5_4_465_0/ %G en %F ASNSP_2006_5_5_4_465_0
Kajitani, Kunihiko; Yuzawa, Yasuo. The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to the time variable. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 4, pp. 465-482. http://www.numdam.org/item/ASNSP_2006_5_5_4_465_0/
[1] Cauchy problem for hyperbolic operators with variable multiple characteristics (Russian), Trudy Moscow Math. 41 (1980), 83-99. | MR | Zbl
,[2] Wellposedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 291-312. | EuDML | Numdam | MR | Zbl
, and ,[3] Weakly hyperbolic systems with Hölder continuous coefficients, J. Differential Equations 203 (2004), 64-81. | MR | Zbl
, and ,[4] Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Hokkaido Math. J. 23-3 (1983), 599-616. | MR | Zbl
,[5] Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes, J. Math. Kyoto. Univ. 12 (1983), 434-460. | Zbl
, and ,[6] The Cauchy Problem for Nonlinear Hyperbolic Systems, Bull. Sci. Math. 110 (1986), 3-48. | Zbl
, and ,[7] Wellposedness in Gevrey class of the Cauchy problem for hyperbolic operators, Bull. Sc. Math. 111 (1987), 415-438. | Zbl
, and ,[8] Sur les équations hyperboliques à coefficients hölderients en et de classes de Gevrey en , Bull. Sci. Math. 107 (1983), 113-138. | MR | Zbl
,[9] Le Problème de Cauchy à caractéristiques multiples dans la classe de Gevrey - coefficients hölderiens en t -, In: “Hyperbolic Equations and Related Topics”, Proc. Taniguchi Internat. Symp. (1984), 273-302. | Zbl
and ,[10] “Equations of Evolution”, translated from the Japanese by N. Mugibayashi and H. Haneda. Monographs and Studies in Mathematics, Vol. 6, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. | MR | Zbl
,[11] The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to time, J. Differential Equations 219 (2005), 363-374. | MR | Zbl
,