We consider a conducting body which presents some (unknown) perfectly insulating defects, such as cracks or cavities, for instance. We perform measurements of current and voltage type on a (known) part of the boundary of the conductor. We prove that, even if the defects are unknown, the current and voltage measurements at the boundary uniquely determine the corresponding electrostatic potential inside the conductor. A corresponding stability result, related to the stability of Neumann problems with respect to domain variations, is also proved. Some applications of these results to inverse problems are presented.
@article{ASNSP_2006_5_5_2_189_0, author = {Rondi, Luca}, title = {Unique continuation from {Cauchy} data in unknown non-smooth domains}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {189--218}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {2}, year = {2006}, mrnumber = {2244698}, zbl = {1150.35015}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2006_5_5_2_189_0/} }
TY - JOUR AU - Rondi, Luca TI - Unique continuation from Cauchy data in unknown non-smooth domains JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 189 EP - 218 VL - 5 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2006_5_5_2_189_0/ LA - en ID - ASNSP_2006_5_5_2_189_0 ER -
%0 Journal Article %A Rondi, Luca %T Unique continuation from Cauchy data in unknown non-smooth domains %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 189-218 %V 5 %N 2 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2006_5_5_2_189_0/ %G en %F ASNSP_2006_5_5_2_189_0
Rondi, Luca. Unique continuation from Cauchy data in unknown non-smooth domains. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 2, pp. 189-218. http://www.numdam.org/item/ASNSP_2006_5_5_2_189_0/
[1] Optimal stability for inverse elliptic boundary-value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000), 755-806. | Numdam | MR | Zbl
, , and ,[2] Unique determination of multiple cracks by two measurements, SIAM J. Control Optim. 34 (1996), 913-921. | MR | Zbl
and ,[3] Determining 2-dimensional cracks in 3-dimensional bodies: uniqueness and stability, Indiana Univ. Math. J. 46 (1997), 1-82. | MR | Zbl
and ,[4] “Functions of Bounded Variation and Free Discontinuity Problems”, Clarendon Press, Oxford, 2000. | MR | Zbl
, and ,[5] A review of selected works on crack identification, In: “Geometric Methods in Inverse Problems and PDE Control”, C. B. Croke, I. Lasiecka, G. Uhlmann and M. S. Vogelius (eds.), Springer-Verlag, New York, 2004, 25-46. | MR | Zbl
and ,[6] A stability result for nonlinear Neumann problems under boundary variations, J. Math. Pures Appl. 82 (2003), 503-532. | MR | Zbl
, and ,[7] Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble) 5 (1953-54), 305-370. | Numdam | MR | Zbl
and ,[8] Examples of exponential instability for inverse inclusion and scattering problems, Inverse Problems 19 (2003), 685-701. | MR | Zbl
and ,[9] “Measure Theory and Fine Properties of Functions”, CRC Press, Boca Raton Ann Arbor London, 1992. | MR | Zbl
and ,[10] “Geometric Measure Theory”, Springer-Verlag, Berlin Heidelberg New York, 1969. | MR | Zbl
,[11] Determining cracks by boundary measurements, Indiana Univ. Math. J. 38 (1989), 527-556. | MR | Zbl
and ,[12] A stability result for Neumann problems in dimension , J. Convex Anal. 11 (2004), 41-58. | MR | Zbl
,[13] “Minimal Surfaces and Functions of Bounded Variation”, Birkhäuser, Boston Basel Stuttgart, 1984. | MR | Zbl
,[14] “Nonlinear Potential Theory of Degenerate Elliptic Equations”, Clarendon Press, Oxford New York Tokyo, 1993. | MR | Zbl
, and ,[15] The Neumann problem on Lipschitz domains, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 203-207. | MR | Zbl
and ,[16] “Sobolev Spaces”, Springer-Verlag, Berlin Heidelberg New York, 1985. | MR
,[17] An -estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1963), 189-206. | Numdam | MR | Zbl
,[18] Boundary detection by minimizing functionals, I, In: “Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition”, IEEE Computer Society Press/North-Holland, Silver Spring Md./Amsterdam, 1985, 22-26.
and ,[19] Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 42 (1989), 577-685. | MR | Zbl
and ,[20] A variational inequality with mixed boundary conditions, Israel J. Math. 13 (1972), 188-224. | MR | Zbl
and ,[21] Uniqueness and Optimal Stability for the Determination of Multiple Defects by Electrostatic Measurements, Ph.D. thesis, S.I.S.S.A.-I.S.A.S., Trieste, 1999 (downloadable from http://www.sissa.it/library/).
,[22] Optimal stability of reconstruction of plane Lipschitz cracks, SIAM J. Math. Anal. 36 (2005), 1282-1292. | MR | Zbl
,[23] Enhanced Electrical Impedance Tomography via the Mumford-Shah Functional, ESAIM: COCV 6 (2001), 517-538. | Numdam | MR | Zbl
and ,