On any real semisimple Lie group we consider a one-parameter family of left-invariant naturally reductive metrics. Their geodesic flow in terms of Killing curves, the Levi Civita connection and the main curvature properties are explicitly computed. Furthermore we present a group theoretical revisitation of a classical realization of all simply connected 3-dimensional manifolds with a transitive group of isometries due to L. Bianchi and É. Cartan. As a consequence one obtains a characterization of all naturally reductive left-invariant riemannian metrics of .
@article{ASNSP_2006_5_5_2_171_0, author = {Halverscheid, Stefan and Iannuzzi, Andrea}, title = {On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {171--187}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {2}, year = {2006}, mrnumber = {2244697}, zbl = {1150.53015}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2006_5_5_2_171_0/} }
TY - JOUR AU - Halverscheid, Stefan AU - Iannuzzi, Andrea TI - On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 171 EP - 187 VL - 5 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2006_5_5_2_171_0/ LA - en ID - ASNSP_2006_5_5_2_171_0 ER -
%0 Journal Article %A Halverscheid, Stefan %A Iannuzzi, Andrea %T On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 171-187 %V 5 %N 2 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2006_5_5_2_171_0/ %G en %F ASNSP_2006_5_5_2_171_0
Halverscheid, Stefan; Iannuzzi, Andrea. On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 2, pp. 171-187. http://www.numdam.org/item/ASNSP_2006_5_5_2_171_0/
[A] “Iteration Theory of Holomorphic Mapping on Taut Manifolds”, Mediterranean Press, Commenda di Rende, Italy. | Zbl
,[B] Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti, Mem. Soc. It. delle Sc. (dei XL), (3) 11 (1898), 267-252 (also in Luigi Bianchi, Opere, Vol. IX, Edizioni Cremonese, Roma, 1958). | JFM
,[BTV] “Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces”, LNM 1598, Springer-Verlag, 1995. | MR | Zbl
, , ,[C] “Leçons sur la Géométrie des Espaces de Riemann”, Gauthier-Villars, Paris, 1951. | MR | Zbl
,[DZ] Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Amer. Math. Soc. 215 (1979). | MR | Zbl
, ,[G] Naturally reductive homogeneous Riemannian manifolds, Canad. J. Math. 37 (1985), 467-487. | MR | Zbl
,[H] “Differential Geometry, Lie Groups and Symmetric Spaces”, GSM 34, AMS, Providence, 2001. | MR | Zbl
,[HI] A family of adapted complexifications for noncompact semisimple Lie groups, ArXiv: math.CV/0503377. | Numdam | Zbl
, ,[KN] “Foundations of Differential Geometry”, Vol. II., Interscience, New York, 1969. | MR | Zbl
, ,[M1] “Morse Theory”, Annals of Math. Studies 51, Princeton University Press, Princeton, N.J. 1963. | MR | Zbl
[M2] Curvature of left invariant metrics on Lie groups, Adv. Math. 21 (1976), 293-329. | MR | Zbl
,[O'N] “Semi-Riemannian Geometry”, Academic Press, 1983. | MR | Zbl
,[V] “Leçons de Géométrie Différentielle”, Vol. I, Ed. Acad. Rp. Pop. Roumaine, 1957. | MR | Zbl
,[W] “Spaces of Constant Curvature”, New York: McGraw-Hill, 1967. | MR | Zbl
,