Hartogs theorem for forms: solvability of Cauchy-Riemann operator at critical degree

CHIN-HUEI CHANG AND HSUAN-PEI LEE

Abstract. The Hartogs Theorem for holomorphic functions is generalized in two settings: a CR version (Theorem 1.2) and a corresponding theorem based on it for $C^k \bar{\partial}$ -closed forms at the critical degree, $0 \le k \le \infty$ (Theorem 1.1). Part of Frenkel's lemma in C^k category is also proved.

Mathematics Subject Classification (2000): 32A26 (primary); 32W10 (secondary).

1. Introduction

Let P_N denote the unit polydisc in \mathbb{C}^N , $N \ge 1$. In \mathbb{C}^{m+1} , $m \ge 1$, set

$$\omega = P_m \times \left\{ z_{m+1} \in \mathbb{C} \mid \frac{1}{2} < |z_{m+1}| < 1 \right\}, \quad m \ge 1.$$

The classical Hartogs theorem (see [9, p. 55]) states: suppose, for a given holomorphic function f on ω , there is an open set $U \subset P_m$ such that f has a holomorphic extension to $U \times \{z_{m+1} \in \mathbb{C} | |z_{m+1}| < 1|\}$, then f can be extended holomorphically to P_{m+1} . This phenomenon in higher fiber dimension is suggested by Frenkel's lemma (see [13, p. 15]).

Let *n* always be an integer bigger than 1. For $z \in \mathbb{C}^{m+n}$ we write z = (z', z'') with $z' = (z_1, \ldots, z_m)$ and $z'' = (z_{m+1}, \ldots, z_{m+n})$. Set

$$\Omega = P_m \times \left(P_n \setminus \frac{1}{2} P_n \right)$$

where $\frac{1}{2}P_n = \{z'' \in \mathbb{C}^n | 2z'' \in P_n\}$. The first part of Frenkel's lemma says: the Cauchy-Riemann equation

$$\bar{\partial}u = f, \quad f \in C^{\infty}_{(0,q)}(\Omega), \quad 1 \le q \le m+n, \quad \bar{\partial}f = 0$$

Received July 29, 2005; accepted in revised form January 5, 2006.

always has a solution $u \in C^{\infty}_{(0,q-1)}(\Omega)$ except q = n - 1. From now on a (0, n - 1) form will be called of the "critical degree".

Note that in Hartogs theorem the open set U can be replaced by a subset A of P_m such that A is not contained in a subvariety of codimension one in P_m (see [12, p. 16]). The following is our first theorem.

Theorem 1.1. With Ω , A as above. Let f be a $C^k \bar{\partial}$ -closed (0, n - 1) form on Ω , $0 \le k \le \infty$. For $z' \in P_m$, let $\gamma_{z'} = \Omega \cap (\{z'\} \times \mathbb{C}^n)$ be the fiber over z' in Ω . For every $z' \in A$, suppose the Cauchy-Riemann equation on $\gamma_{z'}$,

$$\bar{\partial}_{\gamma_{\tau'}} v = f,$$

is solvable. Then the Cauchy-Riemann equation on Ω

$$\bar{\partial}v = f$$

is solvable with $v \in C^k(\Omega)$.

We explain the notation for the (tangential) Cauchy-Riemann operator used in this paper. In general, if there is no ambiguity, it is denoted by $\bar{\partial}$; if the ground space X is specified, we use $\bar{\partial}_X$ to denote the Cauchy-Riemann (or tangential Cauchy-Riemann) operator on X. Also in integral representations, we usually use ζ for the dummy variable and z for the resulting variable. In this case, the notation $\bar{\partial}_{\zeta}$ (respectively, $\bar{\partial}_z$) denotes the (tangential) Cauchy-Riemann operator with respect to ζ (respectively, z) variable.

The proof of Theorem 1.1 depends on Theorem 1.2 which is the CR version of Theorem 1.1. Let ρ be a C^k ($k \ge 3$) real valued function in \mathbb{C}^{m+n} which is strictly plurisubharmonic in a neighborhood of { $\rho \le 0$ }. Let σ be a C^k real valued function in \mathbb{C}^m , strictly plurisubharmonic in a neighborhood of { $\sigma \le 0$ }. We also assume that { $\sigma < 0$ } is connected and relatively compact in \mathbb{C}^m . Set

$$M = \{\rho = 0\} \cap (\{\sigma < 0\} \times \mathbb{C}^n).$$

Assume that $d\rho$ (respectively, $d\sigma$) does not vanish on { $\rho = 0$ } (respectively, { $\sigma = 0$ }) and $d\rho \wedge d\sigma \neq 0$ on ∂M . Let f be a (0, q) form on M such that $\bar{\partial}_M f = 0$ in distribution sense. It is proved in [1] that if $f \in L^p_{(0,q)}(M)$ (*i.e.* f is a (0, q) form with coefficients in L^p), $1 \leq p \leq \infty$, then

$$\bar{\partial}_M u = f \tag{(*)}$$

is solvable on M with $u \in L^p_{(0,q-1)}(M)$ whenever $1 \le q < n-1$. In the case q = n-1, the above equation is solvable with $f \in C^0_{(0,q)}(\bar{M})$ (*i.e.* coefficients of f are continuous on \bar{M} ,) if and only if f satisfies the moment condition. Our main result is the following:

Theorem 1.2. Let M be as above and A be a subset of $\{\sigma < 0\}$ not contained in any subvariety of codimension one in $\{\sigma < 0\}$. Let f be a $\bar{\partial}$ -closed (0, n - 1) form with $f \in C^0_{(0,n-1)}(\bar{M}) \cap C^{k'}(M), 0 \le k' \le k - 3$. The equation (*) is solvable with $u \in C^{k'}_{(0,n-2)}(M)$ if and only if all the holomorphic moments of f on $\Gamma_{z'}, z' \in A$ vanish, in other words, for every $z' \in A$

$$\int_{\Gamma_{z'}} h(z',\zeta'') f(z',\zeta'') d\zeta'' = 0$$

for every function h holomorphic near $\Gamma_{z'}$, where $\Gamma_{z'} = M \cap (\{z'\} \times \mathbb{C}^n)$ is the fiber over z' in M.

Remark 1.3.

(a) When Γ_{z'} is strictly pseudoconvex in {z'} × Cⁿ, it is well-known that the solvability of the tangential Cauchy-Riemann equation ∂_{Γz'}u = f with f of top degree is equivalent to the vanishing of all holomorphic moments of f on Γ_{z'}. So if Γ_{z'} is strictly pseudoconvex in {z'} × Cⁿ for every z' ∈ A, the statement of Theorem 1.2 can be phrased as:

The equation (*) is solvable with $u \in C^0(M)$ if and only if $\bar{\partial}_{\Gamma_{z'}}v = f$ is solvable for every $z' \in A$.

(b) The CR function version of Hartogs theorem was proved in [2] where the condition for A is stronger but no convexity condition or boundary regularity is required for M.

We recall the representation formula for $\bar{\partial}_b$ -closed form f on M (cf. [1]):

$$(-1)^{q} f(z) = \bar{\partial} \left\{ \int_{M} f(\zeta) \wedge \Omega_{q-1}(\mathfrak{r}, \mathfrak{r}^{*})(\zeta, z) + (-1)^{q} \int_{\partial M} f(\zeta) \wedge \Omega(\mathfrak{r}, \mathfrak{r}^{*}, \mathfrak{s})(\zeta, z) \right\}$$
$$+ \int_{\partial M} f(\zeta) \wedge \Omega_{q}(\mathfrak{r}^{*}, \mathfrak{s})(\zeta, z), \quad z \in M$$
(2.7)

where $\Omega(\mathfrak{r}, \mathfrak{r}^*)$, $\Omega(\mathfrak{r}, \mathfrak{r}^*, \mathfrak{s})$, $\Omega(\mathfrak{r}^*, \mathfrak{s})$ are defined in Section 2. It is clear from this representation that the obstruction to the solvability of (*) is the last integral which is null when q < n - 1 by type consideration. We therefore in Section 2 define for $f \in C^0_{(0,n-1)}(\bar{M}), \bar{\partial}_M f = 0$ in distribution sense, the following transform:

$$Tf(z) = (-1)^{n-1} \int_{\partial M} f(\zeta) \wedge \Omega(\mathfrak{r}^*, \mathfrak{s})(\zeta, z), \qquad (2.8)$$

which may be taken as the global moment of f (cf. ((3.1'))). Section 3 consists of the properties of the operator T needed in this paper. For f in the domain of T

we show that Tf is defined in a set containing M and is $\bar{\partial}$ -closed there, so (2.7) becomes a "jump formula" for f (see Remark 3.3(a) for more details). Next, we show that T can be defined locally over the base set { $\sigma < 0$ }. Finally, the operator T is proved to be just defined fiberwise over every point $z' \in {\sigma < 0}$. This enables us to define T on M with arbitrary base set B in \mathbb{C}^m . In section 4 we define the moment operator \mathcal{M}_h for Tf (or f) with respect to a holomorphic function h. It turns out that $\mathcal{M}_h(f)$ is a holomorphic function in the base set. Using this property we prove a more general Theorem 1.1. The interesting thing here is a procedure which improves the method in [11] to produce a C^k solution for $0 \le k \le \infty$. The results of this paper hold for (p, n - 1) forms, $0 \le p \le n$. For simplicity, we only deal with the case p = 0.

Finally, closely related to the topics in this paper, there is another Hartogs theorem (see [9, p. 56, 63]) whose higher dimensional analogue is written in a forthcoming paper.

ACKNOWLEDGEMENTS. We thank the referee for comments that helped to improve the presentation of this paper.

2. Preliminaries

We write $\zeta \in \mathbb{C}^{m+n}$ as (ζ', ζ'') where $\zeta' \in \mathbb{C}^m$ and $\zeta'' \in \mathbb{C}^n$. Similarly, for differential forms we write df = (d'f, d''f), and $\partial f = (\partial'f, \partial''f)$, where $d' \cdot d'' \cdot$ denote respectively the differentials with repect to the first 2m variables and those with respect to the last 2n variables; likewise for $\partial' \cdot (\bar{\partial}' \cdot)$ and $\partial'' \cdot (\bar{\partial}'')$. Also we use $d\zeta = d\zeta_1 \wedge \ldots \wedge d\zeta_{m+n}, d\zeta' = d\zeta_1 \wedge \ldots \wedge d\zeta_m$ and $d\zeta'' = d\zeta_{m+1} \wedge \ldots \wedge d\zeta_{m+n}$; similarly for $d\overline{\zeta}, d\overline{\zeta}', d\overline{\zeta}''$, etc..

The following notations and exterior calculus developed by Harvey and Polking [5] will be used in construting kernels needed in this paper:

Let E^1, \ldots, E^{α} (which are called sections) be a collection of *N*-tuples of C^2 functions in $(\zeta, z) \in \mathbb{C}^N \times \mathbb{C}^N$. Following Harvey-Polking [5] we use

$$\Omega(E^{1},\ldots,E^{\alpha}) = \frac{\langle E^{1},\vec{d\zeta}\rangle}{\langle E^{1},\zeta-z\rangle}\wedge\cdots\wedge\frac{\langle E^{\alpha},\vec{d\zeta}\rangle}{\langle E^{\alpha},\zeta-z\rangle}$$

$$\wedge\sum_{\lambda_{1}+\ldots+\lambda_{\alpha}=N-\alpha} \left(\frac{\langle\bar{\partial}_{\zeta,z}E^{1},\vec{d\zeta}\rangle}{\langle E^{1},\zeta-z\rangle}\right)^{\lambda_{1}}\wedge\cdots\wedge\left(\frac{\langle\bar{\partial}_{\zeta,z}E^{\alpha},\vec{d\zeta}\rangle}{\langle E^{\alpha},\zeta-z\rangle}\right)^{\lambda_{\alpha}}$$

$$(2.1)$$

where $\langle x, y \rangle = \sum x_i y_i$ for vectors x, y in \mathbb{C}^N and $d\zeta$ here is understood to be the *N*-vector $(d\zeta_1, \ldots, d\zeta_N)$. Then Ω is C^1 away from the singular set $Z = \bigcup_1^{\alpha} \{(\zeta, z) \mid \langle E^j, \zeta - z \rangle = 0\}$. We can rewrite Ω as $\Omega(E^1, \ldots, E^{\alpha}) = \sum_0^{N-1} \Omega_q(E^1, \ldots, E^{\alpha})$, where Ω_q is the sum of components of Ω which are of degree q in $d\bar{z}_j$, j = 1, ..., N. Outside the singular set Z we have the following identity:

$$\bar{\partial}_{\zeta,z}\Omega(E^1,\ldots,E^{\alpha}) = \sum_{j=1}^{\alpha} (-1)^j \Omega(E^1,\ldots,\widehat{E^j},\ldots,E^{\alpha}).$$
(2.2)

To construct the sections we use the results of Fornæss [3] which we briefly outline in the following and refer to [3] for details:

We first observe that for any strongly convex domain $G \subset \mathbb{C}^N$ with C^k , $k \ge 2$ boundary, there exist a C^k function μ with positive real Hessian, a constant c > 0 such that $G = \{\mu < 0\}$, and $d\mu \neq 0$ in a neighborhood of ∂G . Furthermore, if we define

$$\mathcal{H}(\xi,\eta) = \sum_{1}^{N} \frac{\partial \mu}{\partial \xi_j}(\xi)(\xi_j - \eta_j),$$

then it satisfies

$$\mathcal{H}(\xi,\eta) \ge \mu(\xi) - \mu(\eta) + c|\xi - \eta|^2$$

for all ξ, η in a small neighborhood of \overline{G} . The section $(\frac{\partial \mu}{\partial \xi_1}(\xi), \dots, \frac{\partial \mu}{\partial \xi_N}(\xi))$ will serve the purpose of this paper in case the given domain is strongly convex.

On the other hand, Fornæss proved in [3] that any strongly pseudoconvex domain $X \subset \mathbb{C}^N$ with C^k , $k \ge 2$ boundary, admits an embedding into a bounded strongly convex domain $Y \subset \mathbb{C}^{N'}$ with C^k boundary for some N', such that the boundary of X is mapped into the boundary of Y, and the map is 1-1 holomophic in a neighborhood of \overline{X} (cf. [3, Theorem 9] for explicit statements).

Now for any strongly pseudoconvex domain $X \subset \mathbb{C}^N$ with C^k , $k \ge 2$ boundary, the above oberservation and Fornæss' embedding theroem together imply the existence of \mathcal{H} and the section for $Y \subset \mathbb{C}^{N'}$. Their pull-backs to \mathbb{C}^N then give the following resuts (cf. [3, Theorem 16]):

There exist a C^k function ν which is strictly plurisubharmonic in a neighborhood of \bar{X} with $X = \{\nu < 0\}$, a constant $\epsilon > 0$ and a function $H(\xi, \eta) \in C^{k-1}(X_{\epsilon} \times X_{\epsilon})$, where $X_{\epsilon} = \{\eta \in \mathbb{C}^N, \nu(\eta) < \epsilon\}$ satisfying

$$H(\xi, \cdot)$$
 is holomorphic in X_{ϵ} , (2.3)

$$\exists n_j(\xi,\eta) \in C^{k-1}(X_{\epsilon} \times X_{\epsilon}), \ j = 1, \dots, N, \text{ holomorphic in } \eta, \text{ such that} \quad (2.4)$$

$$H(\xi, \eta) = \sum_{1}^{N} n_{j}(\xi, \eta)(\xi_{j} - \eta_{j}),$$

$$\exists c > 0, \text{ such that } \forall \eta \in \bar{X}, \xi \in \bar{X}$$
(2.5)

$$2Re \ H(\xi, \eta) \ge v(\xi) - v(\eta) + c|\xi - \eta|^2,$$

$$d_{\xi}H(\xi,\eta)|_{\xi=\eta} = \partial \nu(\xi). \tag{2.6}$$

Let ρ , σ be as in Section 1. In view of the above discussion, for the strongly pseudoconvex domain { $\rho < 0$ } $\subset \mathbb{C}^{m+n}$ there exist \mathfrak{r}_j 's which correspond to the n_j 's in (2.4), and we define the section $\mathfrak{r}(\zeta, z)$ as $(\mathfrak{r}_1, \ldots, \mathfrak{r}_{m+n})$. Similarly for the domain { $\sigma < 0$ } $\subset \mathbb{C}^m$ we define the section $\mathfrak{s}'(\zeta', z') = (\mathfrak{s}_1, \ldots, \mathfrak{s}_m)$. We then use $\mathfrak{s}(\zeta, z)$ for the section $(\mathfrak{s}_1(\zeta', z'), \ldots, \mathfrak{s}_m(\zeta', z'), 0, \cdots, 0)$. Let $\mathfrak{r}^*(\zeta, z) =$

 $(\mathfrak{r}_1^*(\zeta, z), \ldots, \mathfrak{r}_{m+n}^*(\zeta, z))$, where $\mathfrak{r}_j^*(\zeta, z) = -\mathfrak{r}_j(z, \zeta)$. Thus $\mathfrak{r}, \mathfrak{r}^*$ and \mathfrak{s} are C^{k-1} in a neighborhood of $\overline{M} \times \overline{M}$.

The kernels $\Omega(\mathfrak{r}, \mathfrak{r}^*)$, $\Omega(\mathfrak{r}, \mathfrak{r}^*, \mathfrak{s})$, $\Omega(\mathfrak{r}^*, \mathfrak{s})$ etc., are defined according to formula (2.1).

For $f \in C^0_{(0,q)}(\bar{M})$, satisfying $\bar{\partial}_M f = 0$ in distribution sense on M with $1 \le q \le n + m - 1$, we recall the following basic representation formula from [1, p. 543]: for $z \in M$

$$(-1)^{q} f(z) = \bar{\partial} \left\{ \int_{M} f(\zeta) \wedge \Omega_{q-1}(\mathfrak{r}, \mathfrak{r}^{*})(\zeta, z) + (-1)^{q} \int_{\partial M} f(\zeta) \wedge \Omega(\mathfrak{r}, \mathfrak{r}^{*}, \mathfrak{s})(\zeta, z) \right\}$$
$$+ \int_{\partial M} f(\zeta) \wedge \Omega_{q}(\mathfrak{r}^{*}, \mathfrak{s})(\zeta, z).$$
(2.7)

The last integral in (2.7) is null when q < n - 1 by type consideration. For $f \in C^0_{(0,n-1)}(\bar{M})$, $\bar{\partial}_M f = 0$ in distribution sense, we define the following transform:

$$Tf(z) = (-1)^{n-1} \int_{\partial M} f(\zeta) \wedge \Omega(\mathfrak{r}^*, \mathfrak{s})(\zeta, z).$$
(2.8)

Remark 2.1. A (0, n - 1) form f defined in a subset of \mathbb{C}^{m+n} can be decomposed as follows:

$$f = \sum_{j=1}^{s} f_j \text{ where } f_j = \sum_{\substack{|\alpha|+|\beta|=n-1\\|\alpha|=j-1}} f_{j\alpha} d\bar{z}'^{\alpha} d\bar{z}''^{\beta} \text{ and } s = \min(m+1, n).$$
(2.9)

Moreover, when f is $\bar{\partial}$ -closed we have:

$$\bar{\partial}_{z''}f_1 = 0, \ \bar{\partial}_{z'}f_j = -\bar{\partial}_{z''}f_{j+1}, \ j = 1, \dots, s-1, \text{ and } \bar{\partial}_{z'}f_s = 0.$$
 (2.10)

The definition of T immediately gives

$$Tf = Tf_1 = (Tf)_1. (2.11)$$

3. Properties of Tf

In this section we always assume that $f \in C^0_{(0,n-1)}(\overline{M})$ and $\overline{\partial}_M f = 0$ in distribution sense.

Proof. Suppose there exists $u \in C^0_{(0,n-2)}(\overline{M})$ satisfying $\overline{\partial}_M u = f$. By the definition of Tf, we have

$$Tf = (-1)^{n-1} \int_{\partial M} \bar{\partial}_{\zeta} u(\zeta) \wedge \Omega(\mathfrak{r}^*, \mathfrak{s})(\zeta, z) = \int_{\partial M} u \wedge \bar{\partial}_{\zeta} \Omega(\mathfrak{r}^*, \mathfrak{s})(\zeta, z)$$

by Stokes' theorem. Invoking (2.2) the last integral becomes

$$\int_{\partial M} u \wedge (\Omega(\mathfrak{r}^*) - \Omega(\mathfrak{s}) - \bar{\partial}_z \Omega(\mathfrak{r}^*, \mathfrak{s})) = 0$$

by type considerations. This proves the lemma.

Lemma 3.2. There is an open neighborhood \mathcal{N} of M in $\{\sigma < 0\} \times \mathbb{C}^n$, depending on ρ only, such that $Tf \in C^1(\mathcal{N})$. On the set $U = \mathcal{N} \cap \{\rho \ge 0\}$ we have $\overline{\partial}(Tf) = 0$.

Proof. Observe that in the definition of *T* the integration is just over ∂M . By (2.3)-(2.6), we see that Tf is well-defined for *z* in an open set \mathcal{N} , depending on ρ only, containing M in $\{\sigma < 0\} \times \mathbb{C}^n$ and is C^{k-2} there.

We show that $\bar{\partial}(Tf) = 0$ in the interior of U. Consider m > 1 first. The identity (2.2) and type considerations imply $\bar{\partial}_z \Omega(\mathfrak{r}^*, \mathfrak{s}) = -\bar{\partial}_\zeta \Omega(\mathfrak{r}^*, \mathfrak{s})$ in this case. Thus

$$\bar{\partial}(Tf) = (-1)^{n-1} \int_{\partial M} f \wedge \bar{\partial}_{z} \Omega(\mathfrak{r}^{*}, \mathfrak{s}) = (-1)^{n} \int_{\partial M} f \wedge \bar{\partial}_{\zeta} \Omega(\mathfrak{r}^{*}, \mathfrak{s})$$
$$= -\int_{\partial M} \bar{\partial}_{\zeta} (f \wedge \Omega(\mathfrak{r}^{*}, \mathfrak{s})) = -\int_{\partial M} d_{\zeta} (f \wedge \Omega(\mathfrak{r}^{*}, \mathfrak{s})) = 0$$

by Stokes' theorem. For m = 1, the section \mathfrak{s} is the Cauchy kernel which is holomorphic in both ζ and z. Hence (2.2) and type consideration give

$$\bar{\partial}_{z}(Tf) = (-1)^{n-1} \int_{\partial M} f \wedge \Omega(\mathfrak{r}^{*}).$$

For $z \in U \setminus M$ we can apply Stokes' theorem to the above integral and get $\bar{\partial}_z(Tf) = 0$ as $\bar{\partial} f = \bar{\partial}_{\zeta} \mathfrak{r}^* = 0$.

Since $Tf \in C^{k-2}(\mathcal{N})$, we conclude that $\bar{\partial}(Tf) = 0$ on U by continuity. The lemma is proved.

Remark 3.3.

(a) In (2.7) the form inside the parenthesis after $\bar{\partial}_M$ is in $C^1(M)$ provided that f is in $C^1(M)$, and so it can be extended to a C^1 form in $\{\sigma < 0\} \times \mathbb{C}^n$. By Lemma 3.2 the last form in (2.7) is actually in $C^{k-2}(U)$ and is $\bar{\partial}$ -closed. Therefore, in this case, (2.7) becomes a "jump formula" for f. A more general jump formula can be found in [2], but we don't need it here.

(b) In view of (2.10),(2.11) and Lemma 3.2, we see that all the coefficients of Tf are holomorphic in z'.

Let $\tilde{\sigma}$ be a C^1 function defined in a neighborhood of $\{\sigma \leq 0\}$ such that $\{\tilde{\sigma} < 0\} \subset \{\sigma < 0\}$. Set $\tilde{M} = \{\rho = 0\} \cap (\{\tilde{\sigma} < 0\} \times \mathbb{C}^n)$. Suppose $d\rho \wedge d\tilde{\sigma} \neq 0$ on $\partial \tilde{M}$. Denote by $b' = (\tilde{b}', \underbrace{0, \cdots, 0}_{n})$, where \tilde{b}' is the section for the Bochner-Martinelli

kernel in \mathbb{C}^m . For f in the domain of T, define

$$T'f(z) = (-1)^{n-1} \int_{\partial \tilde{M}} f \wedge \Omega(\mathfrak{r}^*, b')(\zeta, z).$$

Lemma 3.1 and the proof of Lemma 3.2 still hold for T' and consequently T'f is a $\bar{\partial}$ -closed form in $\tilde{U} = \mathcal{N} \cap \{\rho \ge 0\} \cap (\{\tilde{\sigma} < 0\} \times \mathbb{C}^n)$. The next lemma shows that T is "locally" defined over \mathbb{C}^m .

Lemma 3.4. Let f be in the domain of T. Then Tf = T'f on \tilde{U} .

Proof. For $z \in \tilde{U}$, apply (2.2) to get

$$Tf = (-1)^{n-1} \int_{\partial M} f \wedge \Omega(\mathfrak{r}^*, \mathfrak{s})(\zeta, z)$$

= $(-1)^{n-1} \int_{\partial M} f \wedge (\Omega(\mathfrak{r}^*, b') - \Omega(\mathfrak{s}, b') - \bar{\partial}_{\zeta, z} \Omega(\mathfrak{r}^*, \mathfrak{s}, b'))$
= $(-1)^{n-1} \int_{\partial M} f \wedge \Omega(\mathfrak{r}^*, b')$ by Stokes' theorem and type considerations,
= $(-1)^{n-1} \int_{\partial \tilde{M}} f \wedge \Omega(\mathfrak{r}^*, b')$
+ $(-1)^{n-1} \int_{M \setminus \tilde{M}} d_{\zeta} (f \wedge \Omega(\mathfrak{r}^*, b'))$ by Stokes' theorem.

In the last integral we use (2.2) again to get

$$d_{\zeta}\Omega(\mathfrak{r}^*,b') = \bar{\partial}_{\zeta}\Omega(\mathfrak{r}^*,b') = -\bar{\partial}_{z}\Omega(\mathfrak{r}^*,b') + \Omega(\mathfrak{r}^*) - \Omega(b')$$

and the integral vanishes by type considerations. So

$$Tf = (-1)^{n-1} \int_{\partial \tilde{M}} f \wedge \Omega(\mathfrak{r}^*, b') = T'f.$$

This completes the proof.

Lemma 3.4 has two implications. First, in Lemma 3.1 the assumption on u can be weakened by $u \in C^0_{(0,n-2)}(M)$. Next, it suggests that the strong pseudoconvexity of the base set can be relaxed when one defines Tf. This is seen more precisely in Lemma 3.5.

For $t \ge 0$, set

$$M_t = \{\rho = t\} \cap (\{\sigma < 0\} \times \mathbb{C}^n)$$

$$\tilde{M}_t = \{\rho = t\} \cap (\{\tilde{\sigma} < 0\} \times \mathbb{C}^n) \text{ and }$$

$$\Gamma_{z',t} = \{\rho = t\} \cap (\{z'\} \times \mathbb{C}^n) \text{ for } z' \in \{\sigma < 0\}.$$

When t = 0 we have $\Gamma_{z'} = \Gamma_{z',0}$, $\tilde{M} = \tilde{M}_0$, and $M = M_0$.

Now fix $z'_0 \in \{\sigma < 0\}$. As in Lemma 3.4, let $\tilde{\sigma} = |z' - z'_0|^2 - \epsilon^2$, where $\epsilon > 0$ is chosen so that $\{\tilde{\sigma} < 0\} \subset \{\sigma < 0\}$ and $d\rho \wedge d\tilde{\sigma} \neq 0$ on $\partial \tilde{M}$. For ϵ small enough there exist t > 0 small such that $\Gamma_{z'_0,t}$ is strongly pseudoconvex in $\{z'_0\} \times \mathbb{C}^n$ and

$$\{z'| |z' - z'_0| < \epsilon\} \times \{z''| (z'_0, z'') \in \Gamma_{z'_0, t}\} \subset \tilde{U} \setminus M.$$

Fix such ϵ and t. By Lemma 3.4 we have for $z_0 \in \tilde{U}$ satisfying $\rho(z_0) > t$

$$Tf(z_0) = (-1)^{n-1} \int_{\partial \tilde{M}} f(\zeta) \wedge \Omega(\mathfrak{r}^*, b')(\zeta, z_0)$$
$$= (-1)^{n-1} \int_{\partial \tilde{M}} (Tf)(\zeta) \wedge \Omega(\mathfrak{r}^*, b')(\zeta, z_0)$$

where the last equality follows from (2.7) and Lemma 3.1 for T'.

Since in the last integral

$$\Omega(\mathfrak{r}^*, b') = R(\zeta, z) \wedge \Omega_0(b')$$

where $R(\zeta, z)$ is a form holomorphic in ζ . Applying Stokes' theorem to the last integral in the above formula, we have

$$Tf(z_0) = (-1)^{n-1} \int_{S_{\epsilon}} (Tf)(\zeta) \wedge \Omega(\mathfrak{r}^*, b')(\zeta, z_0)$$

by type consideration and the fact that $\bar{\partial}_{\zeta} \Omega_0(b') = 0$, where $S_{\epsilon} = \{\zeta' | |\zeta' - z'_0| = \epsilon\} \times \{\zeta'' | (z'_0, \zeta'') \in \Gamma_{z'_0, t}\}.$

Let ϵ tend to zero. It follows from Lemma 1.14 of [Ky] that

$$Tf(z_0) = (-1)^{n-1} c_m \int_{\zeta'' \in \Gamma_{z'_0,t}} (Tf)(z'_0, \zeta'') \wedge \Omega(\tilde{\mathfrak{r}}^*_{z'_0,t})(\zeta'', z''_0)$$

where $c_m = \frac{(2\pi i)^m}{(m-1)!}$ and $\tilde{\mathfrak{r}}_{z'_0,t}^*$ is the section constructed from $\tilde{\rho}(z'') = \rho(z'_0, z'') - t$. We thus have the following lemma: **Lemma 3.5.** For any $z'_0 \in \{\sigma < 0\}$, for any $z_0 = (z'_0, z''_0) \in \tilde{U}$ and for any t > 0 such that $\rho(z_0) > t$ and $\{z'' | \rho(z'_0, z'') < t\}$ is strictly pseudoconvex in $\tilde{U} \cap (\{z'_0\} \times \mathbb{C}^n)$, we have

$$Tf(z_0) = (-1)^{n-1} c_m \int_{\zeta'' \in \Gamma_{z'_0,t}} (Tf)(z'_0, \zeta'') \wedge \Omega(\tilde{\mathfrak{r}}^*_{z'_0,t})(\zeta'', z''_0).$$
(3.1)

In particular, if $\{z'' | \rho(z'_0, z'') < 0\}$ is strictly pseudoconvex which holds for z'_0 in a dense open set in $\{\sigma < 0\}$, we have

$$Tf(z_0) = (-1)^{n-1} c_m \int_{\zeta'' \in \Gamma_{z'_0}} f(z'_0, \zeta'') \wedge \Omega(\tilde{\mathfrak{r}}^*_{z'_0})(\zeta'', z''_0).$$
(3.1')

Proof. It remains to prove (3.1'). The denseness of such z'_0 follows from Sard's theorem. In view of the fact that (3.1) holds for any $0 < t < \rho(z_0)$ with $\{z'' \mid \rho(z'_0, z'') < t\}$ strictly pseudoconvex in $\tilde{U} \cap (\{z'_0\} \times \mathbb{C}^n)$, (3.1') is obtained by taking limit as such t goes to 0 in (3.1) and by (2.7) and Stokes'theorem.

Remark 3.6. Formula (3.1) (or ((3.1'))) is of fundamental importance. It shows that Tf can be defined by ρ only: the connectivity and the strong pseudoconvexity of the base set { $\sigma < 0$ } can be relaxed. Moreover, it shows that Tf has a continuous extension to the set $U_1 = \mathcal{N} \cap \{\rho \ge 0\} \cap (\{\sigma \le 0\} \times \mathbb{C}^n)$.

Now instead of $\{\sigma < 0\}$ we take the base set to be an arbitrary open set *B* in \mathbb{C}^m . It is easy to see that all the preceding results about Tf still holds. Indeed, through (3.1) and ((3.1')) the properties of Tf become even more transparent.

4. The moment operator $\mathcal{M}_h(g)$ and the proof of Theorem 1.2

Let ρ be the same as before and *B* be an arbitrary relatively compact open subset in \mathbb{C}^m . Set

$$\tilde{M} = \{\rho = 0\} \cap (B \times \mathbb{C}^n).$$

For an open neighborhood O of \tilde{M} , we set

$$\tilde{U} = O \cap \{\rho \ge 0\} \cap (B \times \mathbb{C}^n).$$

Let g be a $C^1 \bar{\partial}$ -closed (0, n - 1) form in \tilde{U} . Let V be an open set in B and h be a function holomorphic in a neighborhood of $\{\rho = 0\} \cap (V \times \mathbb{C}^n)$. Define the moment operator of g with respect to h on V by

$$\mathcal{M}_{h}(g)(z') = \int_{\zeta'' \in \Gamma_{z'}} h(z', \zeta'') g(z', \zeta'') d\zeta'', \text{ where } d\zeta'' = d\zeta_{m+1} \wedge \dots \wedge d\zeta_{m+n}.$$
(4.1)

Lemma 4.1. $\mathcal{M}_h(g)(z')$ is a holomorphic function in V.

Proof. First observe that

$$\mathcal{M}_h(g)(z') = \int_{\zeta'' \in \Gamma_{z'}} h(z', \zeta'') g_1(z', \zeta'') d\zeta''$$

where g_1 is defined by (2.9). Fix $z'_0 \in V$. Choose a domain D in \mathbb{C}^n with C^1 boundary and a neighborhood W of z'_0 in V such that

 $\Gamma_{z'_0} \subset \{z'_0\} \times D, \quad \{\rho \le 0\} \cap (W \times \mathbb{C}^n) \subset W \times D \quad \text{ and } W \times \partial D \subset \tilde{U}.$

For any function h holomorphic in $\overline{W \times D}$ it follows from Stokes' theorem and (2.9), (2.10) that

$$\mathcal{M}_{h}(g)(z') = \int_{\Gamma_{z'}} h(z', \zeta'') g_{1}(z', \zeta'') d\zeta'' = \int_{\partial D} h(z', \zeta'') g_{1}(z', \zeta'') d\zeta''$$

whenever $z' \in W$. Now by (2.10)

$$\bar{\partial}_{z'}\mathcal{M}_h(g)(z') = \int_{\partial D} h(z',\zeta'')\bar{\partial}_{z'}g_1(z',\zeta'')d\zeta'' = -\int_{\partial D} h(z',\zeta'')\bar{\partial}_{\zeta''}g_2(z',\zeta'')d\zeta''$$

whenever $z' \in W$ and so

$$\bar{\partial}\mathcal{M}_h(g)(z') = -\int_{\partial D} d_{\zeta''}(h(z',\zeta'')g_2(z',\zeta''))d\zeta'' = 0.$$

This completes the proof.

Remark 4.2. Suppose f is a $\bar{\partial}$ -closed (0, n-1) form in $C^0(\tilde{M})$. In view of Remark 3.6, Tf is well-defined in $\tilde{U} = \mathcal{N} \cap \{\rho \ge 0\} \cap (B \times \mathbb{C}^n)$ where \mathcal{N} is given by Lemma 3.2. Locally, for each $z' \in B$ there is a small open neighborhood W of z' contained in B such that for $z \in \tilde{U} \cap (W \times \mathbb{C}^n)$ f can be represented as in (2.7), we see immediately that $\mathcal{M}_h(f) = \mathcal{M}_h(Tf)$ for any holomorphic function h. In other words, the moment of f is well-defined and is holomorphic in z'.

With Remark 4.2 we have:

Corollary 4.3. Fix $z' \in B$. All the holomorphic moments of f on $\Gamma_{z'}$ vanish is equivalent to Tf(z) = 0 on $\tilde{U} \cap (\{z'\} \times \mathbb{C}^n)$. Moreover, suppose $\Gamma_{z'}$ is strictly pseudoconvex, equation $\bar{\partial}_{\Gamma_{z'}} u = f$ is solvable on $\Gamma_{z'}$ if and only if Tf(z) = 0 for all $z \in \tilde{U} \cap (\{z'\} \times \mathbb{C}^n)$.

Proof. To prove the first statement, we need only show that $M_h(f)(z') = 0$ for all h holomorphic near $\Gamma_{z'}$ implies Tf(z) = 0 on $\tilde{U} \cap (\{z'\} \times \mathbb{C}^n)$. The proof of Lemma 4.1 and Remark 4.2 give

$$0 = \mathcal{M}_{h}(f)(z') = \int_{\Gamma_{z'}} h(z', \zeta'')(Tf)_{1}(z', \zeta'')d\zeta''$$
$$= \int_{\Gamma_{z',t}} h(z', \zeta'')Tf(z', \zeta'')d\zeta'', \ t > 0,$$

whenever $\Gamma_{z',t} \subset \tilde{U}$ and *h* is holomorphic near $\Gamma_{z',t}$. The last equality follows from (2.10), (2.11) and Stokes' theorem. Now suppose $\Gamma_{z',t}$ is strictly pseudoconvex. Let $h(z', \zeta'')d\zeta'' = \Omega(\tilde{\mathfrak{r}}_{z'})$. By Lemma 3.5 we have Tf(z) = 0 for $z \in \tilde{U} \cap (\{z'\} \times \mathbb{C}^n), \rho(z) \ge t$. By Sard's theorem 0 is a limit point of such *t* so the first statement is proved. The second statement follows from the first statement and Remark 1.3(a).

Theorem 4.4. Let ρ be as in Theorem 1.2. Let B be a connected relatively compact open subset in \mathbb{C}^m . Set

$$\tilde{M} = \{\rho = 0\} \cap (B \times \mathbb{C}^n).$$

Let f be a (0, n - 1) form in $C^0(\tilde{M})$ with $\bar{\partial} f = 0$ on \tilde{M} in distribution sense. Let A be a subset of B not contained in any subvariety of codimension one in B. If for every $z' \in A$ all the holomorphic moments of f on $\Gamma_{z'}$ vanish, then Tf vanishes identically on $\tilde{U} = \mathcal{N} \cap \{\rho \ge 0\} \cap (B \times \mathbb{C}^n)$ where \mathcal{N} is defined in Lemma 3.2.

Proof. Step 1. The assumption on the set A implies that there is a point $p \in B$ such that the intersection of A with any neighborhood of p is not contained in a subvariety of codimension one in B. Let V be any connected neighborhood of p in \overline{B} . Let h be any function holomorphic near $\tilde{M} \cap (V \times \mathbb{C}^n)$. By Lemma 4.1 $\mathcal{M}_h(f)(z')$ is a holomorphic function in $V \cap B$. Remark 4.2 and the assumption give that $\mathcal{M}_h(f)(z') = \mathcal{M}_h(Tf)(z') = 0$ for all $z' \in V \cap A$. By the choice of p, we must have $\mathcal{M}_h(f)(z')$ identically equal to zero on V.

Step 2. *Claim*: There is a neighborhood W of p in \overline{B} such that Tf vanishes identically on $\tilde{U} \cap (W \times \mathbb{C}^n)$.

Proof of the Claim. By Corollary 4.3 it suffices to show that for every $z' \in W$, $\mathcal{M}_h(f)(z') = 0$ for all *h* holomorphic near $\Gamma_{z'}$. If there is no such neighborhood, then there exists a sequence $\{z'_j\}_1^\infty \subset B$ such that $z'_j \to p$ as $j \to \infty$ and $Tf(z'_j, \cdot)$ does not vanish identically for all $j = 1, 2, \ldots$. Choose t > 0 so that $\Gamma_{p,t}$ is a C^k strictly pseudoconvex real hypersuface in

Choose t > 0 so that $\Gamma_{p,t}$ is a C^k strictly pseudoconvex real hypersuface in $\tilde{U} \cap (\{p\} \times \mathbb{C}^n)$. Let W be a connected open neighborhood of p in B such that $W \times \{z'' \mid (p, z'') \in \Gamma_{p,t}\} \subset \tilde{U} \setminus \tilde{M}$.

For every j = 1, 2, ... there is a function h_j holomorphic near $\Gamma_{z'_j}$ such that $\mathcal{M}_{h_j}(f)(z'_j) \neq 0$. For simplicity we may assume that $\Gamma_{z'_j}$ is strictly pseudoconvex in $\{z'_i\} \times \mathbb{C}^n$ (or we do as in the proof of Corollary 4.3).

Fix j so that $z'_j \in W$. Set $D_1 = \{z'' | \rho(p, z'') < t\}$ and $D_2 = \{z'' | \rho(z'_j, z'') < 0\}$. By our choice both D_1 , D_2 are strictly pseudoconvex domains in \mathbb{C}^n and $D_2 \subseteq D_1$ for every j = 1, 2, ... Since $\rho(z'_j, \cdot)$ is plurisubharmonic in D_1 if ρ is plurisubharmonic in \tilde{U} and which can be assumed, it follows from Corollary 5.4.3 of [8] that D_1 , D_2 form a Runge pair.

Thus $h_j(z'_j, \cdot)$ can be uniformly approximated on \overline{D}_2 by functions holomorphic on D_1 . Let $\{g_k\}_{k=1}^{\infty}$ be such a sequence of holomorphic functions on D_1 . By Step 1, for all $k \ge 1$ $\mathcal{M}_{g_k}(f)(z') = \mathcal{M}_{g_k}(Tf)(z') = 0$ for all $z' \in W$. Therefore we must have $\mathcal{M}_{h_j}(f)(z'_j) = 0$, contradicting our assumption on z'_j and h_j . This completes the proof of the claim.

Step 3. Set $S \equiv \{z' \mid z' \in B, Tf(z', \cdot) \equiv 0 \text{ on } \tilde{U} \cap (\{z'\} \times \mathbb{C}^n)\}$. By Step 2 S has non-empty interior. In fact, the argument in Step 2 shows that the interior of S is both open and closed in B. Since B is connected, we conclude that S = B. Theorem 4.4 is proved.

From the proof of Theorem 4.4 we have the following:

Corollary 4.5. Under the assumptions of Theorem 4.4, the following statements are equivalent:

(a) For all $z' \in A$, every holomorphic moment of f on $\Gamma_{z'}$ vanishes.

(b)
$$Tf(z) \equiv 0$$
 on U .

- (c) $Tf(z) \equiv 0$ for all $z \in \Gamma_{z'}, z' \in A$.
- (d) $\bar{\partial}_{\Gamma_{z',t}} u = Tf(z', \cdot)$ is solvable on $\Gamma_{z',t} \subset \tilde{U}$ for every $z' \in A$ and for every $t \geq 0$, provided that $\Gamma_{z',t}$ is strictly pseudoconvex in $\{z'\} \times \mathbb{C}^n$.

Corollary 4.6. Under the assumptions of Theorem 4.4, if the set $\{z' | \Gamma_{z'} = \emptyset, z' \in B\}$ is not contained in a subvariety of codimension one in B, then $Tf \equiv 0$ on \tilde{M} . In particular, if $B = \{\sigma < 0\}$, then $\bar{\partial}_M$ is solvable at q = n - 1.

On the other hand, we have

Remark 4.7. Let $M = \{\rho = 0\} \cap (\{\tilde{\sigma} < 0\} \times \mathbb{C}^n)$ where ρ is as in the assumption of Theorem 4.4 and $\tilde{\sigma}$ is any C^1 function satisfying $d\rho \wedge d\tilde{\sigma} \neq 0$ on ∂M . Suppose M and $\{\tilde{\sigma} < 0\}$ are connected and m < n, then for $f \in C^0_{(0,q)}(\bar{M})$ satisfying $\bar{\partial}_M f = 0$ in distribution sense on M with $m \le q \le n + m - 1$, considering type, the following representation formula holds for $z \in M$

$$(-1)^{q} f(z) = \bar{\partial} \left\{ \int_{M} f(\zeta) \wedge \Omega_{q-1}(\mathfrak{r}, \mathfrak{r}^{*})(\zeta, z) + (-1)^{q} \int_{\partial M} f(\zeta) \wedge \Omega(\mathfrak{r}, \mathfrak{r}^{*}, b')(\zeta, z) \right\}$$
$$+ \int_{\partial M} f(\zeta) \wedge \Omega_{q}(\mathfrak{r}^{*}, b')(\zeta, z).$$

Note that the last integral vanishes for $m \le q \le n-2$ by type consideration. In other words, $\bar{\partial}_M$ is always solvable for $m \le q \le n-2$ in this case. Thus the tangential Cauchy-Riemann equation (*) is solvable at q = n - 1 iff T'f(z) = Tf(z) = 0. In view of Corollary 4.6, if $\{\tilde{\sigma} < 0\}$ is not contained in $\pi(\{\rho = 0\})$, the projection of $\{\rho = 0\}$ to the \mathbb{C}^m plane, then (*) is solvable at q = n - 1.

Proof of Theorem 1.2. The solution u is obtained from Corollary 4.5 and formula (2.7). The regularity of u can be proved by routine procedure, see e.g. [14], and we omit the details here.

5. Proof of Theorem 1.1

Let P_N denote the unit polydisc in \mathbb{C}^N as before. We are going to define a sequence of subdomains exhausting Ω . First choose a sequence of C^{∞} real-valued strictly convex functions $\{\rho_{1,j}\}_{i=1}^{\infty}$ in \mathbb{C}^{m+n} satisfying:

- $(p_1) \{\rho_{1,j} < 0\} \subseteq \{\rho_{1,j+1} < 0\} \subseteq P_{m+n} \text{ for each } j \ge 1;$
- $(p_2) \cup_{1}^{\infty} \{ \rho_{1,j} < 0 \} = P_{m+n};$
- (*p*₃) for each $j = 1, 2, ..., \rho_{1,j}(z) = \rho_{1,j}(|z_1|, ..., |z_{m+n}|)$ and is symmetric in $|z_k|, k = 1, ..., m + n$.

Next, for $j = 1, 2, ..., \text{ set } C_j = \{z \in \mathbb{C}^{m+n} | |z_k| < 1 + \frac{1}{3j}, k = 1, ..., m, |z_k| < \frac{1}{2} + \frac{1}{3j}, k = m + 1, ..., m + n\}$. Choose a sequence of C^{∞} real-valued strictly convex functions $\{\rho_{2,j}\}_{i=1}^{\infty}$ satisfying:

 $(p_4) \{ \rho_{2,j} < 0 \} \Subset C_j \text{ for } j = 1, 2, \ldots;$

$$(p_5) \ \{\rho_{2,j} = 0\} \subset C_j \setminus C_{j+1};$$

(*p*₆) for each $j = 1, 2, ..., \rho_{2,j}(z) = \rho_{2,j}(|z_1|, \cdots, |z_{m+n}|)$ and is symmetric in $|z_k|, k = 1, ..., m$ and is also symmetric in $|z_k|, k = m + 1, ..., m + n$ respectively.

Define

$$D_j = \{\rho_{1,j} < 0\} \cap \{\rho_{2,j} > 0\}, \text{ for } j = 1, 2, \dots$$

Clearly we have

$$D_j \subseteq D_{j+1}$$
, for $j = 1, 2, \dots$ and $\bigcup_{i=1}^{\infty} D_i = \Omega$

Remark 5.1. Let π be the orthogonal projection from \mathbb{C}^{m+n} into \mathbb{C}^m . Set

$$E_i = \{z \in \mathbb{C}^{m+n} | z' \in \pi(D_i), \rho_{1,i}(z) < 0\}, j = 1, 2, \dots$$

In addition to $(p_1) - (p_6)$, we choose $\rho_{1,j}$, $\rho_{2,j}$ so that E_j is a relatively compact convex set in \mathbb{C}^{m+n} for each $j = 1, 2, \ldots$ Such functions $\rho_{1,j}$, $\rho_{2,j}$ are easy to construct.

For each $j \ge 1$, the boundary of D_j can be written as

$$\partial D_i = \partial D_{i1} \cup \partial D_{i2},$$

where $\partial D_{j1} = \{\rho_{1,j} = 0\} \cap \{\rho_{2,j} \ge 0\}$ and $\partial D_{j2} = \{\rho_{2,j} = 0\} \cap \{\rho_{1,j} \le 0\}$.

Remark 5.2.

(a) For each j = 1, 2, ..., we can choose strictly plurisubharmonic function $\sigma_j \in C^{\infty}(\mathbb{C}^m)$ such that $\{\sigma_j < 0\} \Subset P_m$ and $\partial D_{j2} \Subset \{\sigma_j < 0\} \times \mathbb{C}^n$. Set

$$M_j = \{\rho_{2,j} = 0\} \cap (\{\sigma_j < 0\} \times \mathbb{C}^n), \ j = 1, 2, \dots$$

It follows from [1] that $\bar{\partial}_{M_j} u = g$ is solvable on M_j for any L^p , $1 \le p \le \infty$, $\bar{\partial}$ -closed (0, q) form g on M_j , $1 \le q < n - 1$. Furthermore, if $g \in C^k(\bar{M}_j)$ then $u \in C^k(M_j)$ for j = 1, 2, ...

(b) If the assumption of Theorem 1.1 is satisfied, then Corollary 4.5 implies that $Tf \equiv 0$ on $\tilde{M}_j = \{\rho_{2,j} = 0\} \cap (P_m \times \mathbb{C}^n)$ with $B = P_m$. Hence by Theorem 1.2 the conclusions in (a) for the solvability and regularity of $\bar{\partial}_{M_j}u = g$ on M_j also hold for q = n - 1, j = 1, 2, ..., provided that $\bar{\partial}_{M_j}g = 0$ and $g \in C^k(\bar{M}_j), k \ge 0$.

Lemma 5.3. Let g be a $\bar{\partial}$ -closed $C^k(0,q)$ form on Ω with k any nonnegative integer and $1 \leq q < n - 1$. For j = 1, 2, ..., the equation $\bar{\partial}v_j = g$ is solvable with $v_j \in C^k(D_j)$. In fact,

$$\begin{aligned} v_j &= -\int_{D_j} g \wedge \Omega(b) + \int_{\partial D_{j1}} g \wedge \Omega(b, \mathfrak{r}_{1,j}) + \int_{\partial D_{j2}} g \wedge \Omega(b, \mathfrak{r}_{2,j}^*) \\ &+ (-1)^{q+1} \int_{\partial D_{j1} \cap \partial D_{j2}} g \wedge \Omega(b, \mathfrak{r}_{1,j}, \mathfrak{r}_{2,j}^*) - \int_{\partial D_{j1} \cap \partial D_{j2}} u_j \wedge \Omega(\mathfrak{r}_{1,j}, \mathfrak{r}_{2,j}^*) \end{aligned}$$

where b is the Bochner-Martinelli section in \mathbb{C}^{m+n} ; $\mathfrak{r}_{1,j},\mathfrak{r}_{2,j}$ are sections corresponding to $\rho_{1,j}$, $\rho_{2,j}$; and u_j is the C^k solution to $\bar{\partial}_{M_j}u_j = g$ on M_j in view of Remark 5.2(a).

Proof. Since $\rho_{2,j}$ is a smooth strictly convex function in \mathbb{C}^{m+n} , the section $\mathfrak{r}_{2,j}^*(\zeta, z)$ is well-defined for all $z \in \{\rho_{2,j} > 0\}$ as long as $\zeta \in \{\rho_{2,j} \le 0\}$. As usual, one starts from the formula:

$$g(z) = -\bar{\partial}\left(\int_{D_j} g \wedge \Omega(b)(\zeta, z)\right) + \int_{\partial D_j} g \wedge \Omega(b)(\zeta, z)$$

The lemma is proved by repeated use of (2.2), Stokes' theorem and type considerations when interploating the integrals with $\Omega(\mathfrak{r}_{1,j})$, $\Omega(\mathfrak{r}_{2,j}^*)$, etc.. We omit the routine computations.

By part (b) of Remark 5.2 we have:

Corollary 5.4. Let g be a C^k , $k \ge 0$, $\bar{\partial}$ -closed (0, n - 1) form on Ω satisfying the assumption of Theorem 1.1 Then $\bar{\partial}_{D_j} v_j = g$ is solvable for every $j \ge 1$ with $v_j \in C^k_{(0,n-2)}(D_j)$.

Proof of Theorem 1.1. By Corollary 5.4 it remains to construct a C^k solution v on Ω out of v_j , j = 1, 2, ... The process below is a modification of [11, Lemma 3] which deals with $k = \infty$.

Consider the case n > 2 first. Let v_j be given by Corollary 5.4. Set $\tilde{v}_0 = v_3$. Obviously $v_3 - v_4$ is a $\bar{\partial}$ -closed form in $C^k_{(0,n-2)}(D_3)$. By Lemma 5.3 there exists $w_1 \in C^k_{(0,n-3)}(D_2)$ so that $\bar{\partial}w_1 = v_3 - v_4$ in D_2 . Let $\chi_1 \in C^{\infty}_0(D_2)$ such that $\chi_1 \equiv 1$ on \bar{D}_1 . Set

$$\tilde{v}_1 = v_4 + \bar{\partial}(\chi_1 w_1) \in C^k_{(0,n-2)}(D_4).$$

Then $\tilde{v}_1 = v_3 = \tilde{v}_0$ on D_1 and $\bar{\partial}\tilde{v}_1 = f$ on D_4 . We use induction to construct \tilde{v}_j for j > 1. Suppose we already have $\tilde{v}_j \in C^k_{(0,n-2)}(D_{j+3})$ with $\bar{\partial}\tilde{v}_j = f$ on D_{j+3} and $\tilde{v}_j = \tilde{v}_{j-1}$ on D_j . Now $\tilde{v}_j - v_{j+4} \in C^k_{(0,n-2)}(D_{j+3})$ and $\bar{\partial}(\tilde{v}_j - v_{j+4}) = 0$ on D_{j+3} . By Lemma 5.3 there exists $w_{j+1} \in C^k_{(0,n-3)}(D_{j+2})$ so that $\bar{\partial}w_{j+1} = \tilde{v}_j - v_{j+4}$ on D_{j+2} . Choose $\chi_{j+1} \in C^\infty_0(D_{j+2})$ such that $\chi_{j+1} \equiv 1$ on \bar{D}_{j+1} . Set

$$\tilde{v}_{j+1} = v_{j+4} + \bar{\partial}(\chi_{j+1}w_{j+1}) \in C^k_{(0,n-2)}(D_{j+4}).$$

We have $\tilde{v}_{j+1} = \tilde{v}_j$ on D_{j+1} and $\bar{\partial}\tilde{v}_{j+1} = f$ on D_{j+4} . In this way we get $v = \lim_{j\to\infty} \tilde{v}_j$ in $C^k_{(0,n-2)}(D)$ and $\bar{\partial}v = f$ on D. This proves Theorem 1.1 when n > 2.

When n = 2, let E_j be as in Remark 5.1. As n = 2 > 1, every function holomorphic in D_j extends holomorphically to E_j by Hartogs theorem. Since E_j is a bounded convex set in \mathbb{C}^{m+2} ; it is a Runge domain in \mathbb{C}^{m+2} (see [7, Theorem 4.7.8]). So the assumption of [11, Lemm 3] is satisfied and the case n = 2 is proved. This completes the proof of Theorem 1.1.

With Corollary 5.4 replaced by Lemma 5.3 in the proof of Theorem 1.1 we immediately have:

Corollary 5.5. Let g be a $C^k \bar{\partial}$ -closed (0, q) form, $1 \le q \le n - 2$, on Ω , where k is any non-negative integer. Then there exists a $C^k (0, q - 1)$ form u on Ω such that $\bar{\partial}u = g$.

Note that Corollary 5.5 is part of Frenkel's lemma if $k = \infty$. The case $n \le q \le m + n$ will be proved elsewhere.

There are many applications of the proof of Theorem 1.1, for example we have:

Corollary 5.6. Let D be any bounded pseudoconvex domain in \mathbb{C}^N . Let k be any non-negative integer. For any $\bar{\partial}$ -closed $C^k(0,q)$ form g on D, $1 \le q \le N$, there exists a $C^k(0,q-1)$ form u on D such that $\bar{\partial}u = g$.

Moreover, if $g \in L^p(D)$, $1 \le p \le \infty$, then there exists $u \in L^p_{loc}(D)$ such that $\bar{\partial} u = g$.

Corollary 5.7. Let ρ be a C^k real-valued function on \mathbb{C}^{m+n} which is strictly plurisubharmonic near $\{\rho \leq 0\}, 3 \leq k \leq \infty$. Let B be a relatively compact pseudoconvex domain in \mathbb{C}^m . Set $M = \{\rho = 0\} \cap (B \times \mathbb{C}^n)$. Let f be a $C^{k'}$ $\overline{\partial}$ -closed (0, q) form on $M, 0 \leq k' \leq k-3$. Then there exists $u \in C_{(0,q-1)}^{k'}(M)$ such that $\overline{\partial}u = f$ on M if 1 < q < n - 1.

References

- [1] C. H. CHANG and H. P. LEE, Semi-global solution of $\hat{\partial}_b$ with L^p $(1 \le p \le \infty)$ bounds on strongly pseudoconvex real hypersurfaces in \mathbb{C}^n $(n \ge 3)$, Publ. Mat. **43** (1999), 535–570.
- [2] C. H. CHANG and H. P. LEE, *Hartogs theorem for CR functions*, Bull. Inst. Math. Acad. Sinica 32 (2004), 221–227.
- [3] J. E. FORNÆSS, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529–569.
- [4] F. HARTOGS, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), 1–88.
- [5] R. HARVEY and J. POLKING, Fundamental solutions in complex analysis, I, II, Duke Math. J. 46 (1979), 253–340.
- [6] G. M. HENKIN, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Surveys 32 (1977), 59–130.
- [7] L. HÖRMANDER, "Notions of Convexity", Progress in Math., Vol. 127, Birkhäuser, 1994.
- [8] S. G. KRANTZ, "Function Theory of Several Complex Variables", 2ed. Wadsworth Books/Cole Mathematics Series, 1992.
- [9] R. NARASIMHAN, "Several Complex Variables", Chicago Lecture Notes in Math., The University of Chicago Press, 1971.
- [10] M. R. RANGE, "Holomorphic Functions and Integral Representations in Several Complex Variables", Springer-Verlag, New York, 1986.
- [11] J. P. ROSAY, Some application of Cauchy-Fantappié forms to (local) problems in $\bar{\partial}_b$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), **13** (1986), 225–243.
- [12] Y. T. SIU, "Techniques of Extension of Analytic Objects", Lecture Notes in Pure and Applied Math., Vol. 8, Marcel Dekker, 1974.
- [13] Y. T. SIU and G. TRAUTMANN, "Gap-sheaves and Extension of Coherent Analytic Subsheaves", Lecture Notes in Mathematics, Vol. 172, Springer-Verlag, 1971.
- [14] S. M. WEBSTER, On the local solution of the tangential Cauchy-Riemann equations, Nonlinear Anal. 6 (1989), 167–182.

Institute of Mathematics Academia Sinica Taipei, Taiwan, R.O.C. pino@math.sinica.edu.tw hplee@math.sinica.edu.tw