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Hartogs theorem for forms:
solvability of Cauchy-Riemann operator at critical degree

CHIN-HUEI CHANG AND HSUAN-PEI LEE

Abstract. The Hartogs Theorem for holomorphic functions is generalized in two
settings: a CR version (Theorem 1.2) and a corresponding theorem based on it
for Ck ∂̄-closed forms at the critical degree, 0 ≤ k ≤ ∞ (Theorem 1.1). Part of
Frenkel’s lemma in Ck category is also proved.

Mathematics Subject Classification (2000): 32A26 (primary); 32W10 (sec-
ondary).

1. Introduction

Let PN denote the unit polydisc in CN , N ≥ 1. In Cm+1, m ≥ 1, set

ω = Pm ×
{

zm+1 ∈ C
∣∣∣ 1

2
< |zm+1| < 1

}
, m ≥ 1.

The classical Hartogs theorem (see [9, p. 55]) states: suppose, for a given holo-
morphic function f on ω, there is an open set U ⊂ Pm such that f has a holo-
morphic extension to U× {zm+1 ∈ C| |zm+1| < 1|}, then f can be extended holo-
morphically to Pm+1. This phenomenon in higher fiber dimension is suggested by
Frenkel’s lemma (see [13, p. 15]).

Let n always be an integer bigger than 1. For z ∈ Cm+n we write z = (z′, z′′)
with z′ = (z1, . . . , zm) and z′′ = (zm+1, . . . , zm+n). Set

� = Pm ×
(

Pn \ 1

2
Pn

)
where 1

2 Pn = {z′′ ∈ Cn| 2z′′ ∈ Pn}. The first part of Frenkel’s lemma says: the
Cauchy-Riemann equation

∂̄u = f, f ∈ C∞
(0,q)(�), 1 ≤ q ≤ m + n, ∂̄ f = 0
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always has a solution u ∈ C∞
(0,q−1)(�) except q = n − 1. From now on a (0, n − 1)

form will be called of the “critical degree”.
Note that in Hartogs theorem the open set U can be replaced by a subset A of

Pm such that A is not contained in a subvariety of codimension one in Pm (see [12,
p. 16]). The following is our first theorem.

Theorem 1.1. With �, A as above. Let f be a Ck ∂̄-closed (0, n − 1) form on �,
0 ≤ k ≤ ∞. For z′ ∈ Pm, let γz′ = � ∩ ({z′} × Cn) be the fiber over z′ in �. For
every z′ ∈ A, suppose the Cauchy-Riemann equation on γz′ ,

∂̄γz′ v = f,

is solvable. Then the Cauchy-Riemann equation on �

∂̄v = f

is solvable with v ∈ Ck(�).

We explain the notation for the (tangential) Cauchy-Riemann operator used in
this paper. In general, if there is no ambiguity, it is denoted by ∂̄; if the ground space
X is specified, we use ∂̄X to denote the Cauchy-Riemann (or tangential Cauchy-
Riemann) operator on X . Also in integral representations, we usually use ζ for
the dummy variable and z for the resulting variable. In this case, the notation ∂̄ζ

(respectively, ∂̄z) denotes the (tangential) Cauchy-Riemann operator with respect to
ζ (respectively, z) variable.

The proof of Theorem 1.1 depends on Theorem 1.2 which is the CR version of
Theorem 1.1. Let ρ be a Ck (k ≥ 3) real valued function in Cm+n which is strictly
plurisubharmonic in a neighborhood of {ρ ≤ 0}. Let σ be a Ck real valued function
in Cm , strictly plurisubharmonic in a neighborhood of {σ ≤ 0}. We also assume
that {σ < 0} is connected and relatively compact in Cm . Set

M = {ρ = 0} ∩ ({σ < 0} × Cn).

Assume that dρ (respectively, dσ ) does not vanish on {ρ = 0} (respectively, {σ =
0}) and dρ ∧ dσ 	= 0 on ∂ M . Let f be a (0, q) form on M such that ∂̄M f = 0 in
distribution sense. It is proved in [1] that if f ∈ L p

(0,q)(M) (i.e. f is a (0, q) form
with coefficients in L p), 1 ≤ p ≤ ∞, then

∂̄M u = f (∗)

is solvable on M with u ∈ L p
(0,q−1)(M) whenever 1 ≤ q < n − 1. In the case

q = n − 1, the above equation is solvable with f ∈ C0
(0,q)(M̄) (i.e. coefficients of

f are continuous on M̄ ,) if and only if f satisfies the moment condition. Our main
result is the following:
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Theorem 1.2. Let M be as above and A be a subset of {σ < 0} not contained in
any subvariety of codimension one in {σ < 0}. Let f be a ∂̄-closed (0, n − 1) form
with f ∈ C0

(0,n−1)(M̄)∩ Ck′
(M), 0 ≤ k′ ≤ k − 3. The equation (∗) is solvable with

u ∈ Ck′
(0,n−2)(M) if and only if all the holomorphic moments of f on �z′ , z′ ∈ A

vanish, in other words, for every z′ ∈ A∫
�z′

h(z′, ζ ′′) f (z′, ζ ′′)dζ ′′ = 0

for every function h holomorphic near �z′ , where �z′ = M ∩ ({z′}×Cn) is the fiber
over z′ in M.

Remark 1.3.

(a) When �z′ is strictly pseudoconvex in {z′} × Cn , it is well-known that the solv-
ability of the tangential Cauchy-Riemann equation ∂̄�z′ u = f with f of top
degree is equivalent to the vanishing of all holomorphic moments of f on �z′ .
So if �z′ is strictly pseudoconvex in {z′} × Cn for every z′ ∈ A, the statement
of Theorem 1.2 can be phrased as:

The equation (∗) is solvable with u ∈ C0(M) if and only if ∂̄�z′ v = f is solvable
for every z′ ∈ A.

(b) The CR function version of Hartogs theorem was proved in [2] where the con-
dition for A is stronger but no convexity condition or boundary regularity is
required for M .

We recall the representaion formula for ∂̄b-closed form f on M (cf. [1]):

(−1)q f (z) = ∂̄

{∫
M

f (ζ )∧�q−1(r, r
∗)(ζ, z)+ (−1)q

∫
∂ M

f (ζ )∧�(r, r∗, s)(ζ, z)

}
+

∫
∂ M

f (ζ ) ∧ �q(r∗, s)(ζ, z), z ∈ M (2.7)

where �(r, r∗), �(r, r∗, s), �(r∗, s) are defined in Section 2. It is clear from this
representation that the obstruction to the solvability of (∗) is the last integral which
is null when q < n − 1 by type consideration. We therefore in Section 2 define for
f ∈ C0

(0,n−1)(M̄), ∂̄M f = 0 in distribution sense, the following transform:

T f (z) = (−1)n−1
∫

∂ M
f (ζ ) ∧ �(r∗, s)(ζ, z), (2.8)

which may be taken as the global moment of f (cf. ((3.1′))). Section 3 consists
of the properties of the operator T needed in this paper. For f in the domain of T
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we show that T f is defined in a set containing M and is ∂̄-closed there, so (2.7)
becomes a “jump formula” for f (see Remark 3.3(a) for more details). Next, we
show that T can be defined locally over the base set {σ < 0}. Finally, the operator T
is proved to be just defined fiberwise over every point z′ ∈ {σ < 0}. This enables us
to define T on M with arbitrary base set B in Cm . In section 4 we define the moment
operator Mh for T f (or f ) with respect to a holomorphic function h. It turns out
that Mh( f ) is a holomorphic function in the base set. Using this property we prove
a more general Theorem 4.4 which implies Theorem 1.2 immediately. Section 5
contains the proof of Theorem 1.1. The interesting thing here is a procedure which
improves the method in [11] to produce a Ck solution for 0 ≤ k ≤ ∞. The results
of this paper hold for (p, n − 1) forms, 0 ≤ p ≤ n. For simplicity, we only deal
with the case p = 0.

Finally, closely related to the topics in this paper, there is another Hartogs
theorem (see [9, p. 56, 63]) whose higher dimensional analogue is written in a
forthcoming paper.

ACKNOWLEDGEMENTS. We thank the referee for comments that helped to im-
prove the presentation of this paper.

2. Preliminaries

We write ζ ∈ Cm+n as (ζ ′, ζ ′′) where ζ ′ ∈ Cm and ζ ′′ ∈ Cn . Similarly, for
differential forms we write d f = (d ′ f, d ′′ f ), and ∂ f = (∂ ′ f, ∂ ′′ f ), where d ′·, d ′′·
denote respectively the differentials with repect to the first 2m variables and those
with respect to the last 2n variables; likewise for ∂ ′· (∂̄ ′·) and ∂ ′′· (∂̄ ′′·). Also we use
dζ = dζ1 ∧ . . . ∧ dζm+n , dζ ′ = dζ1 ∧ . . . ∧ dζm and dζ ′′ = dζm+1 ∧ . . . ∧ dζm+n;
similarly for d ζ̄ , d ζ̄ ′, d ζ̄ ′′, etc..

The following notations and exterior calculus developed by Harvey and Polk-
ing [5] will be used in construting kernels needed in this paper:

Let E1, . . . , Eα (which are called sections) be a collection of N -tuples of C2

functions in (ζ, z) ∈ CN × CN . Following Harvey-Polking [5] we use

�(E1, . . . , Eα) = 〈E1, �dζ 〉
〈E1, ζ − z〉∧ · · · ∧ 〈Eα, �dζ 〉

〈Eα, ζ − z〉 (2.1)

∧
∑

λ1+...+λα=N−α

(
〈∂̄ζ,z E1, �dζ 〉
〈E1, ζ − z〉

)λ1

∧ · · · ∧
(

〈∂̄ζ,z Eα, �dζ 〉
〈Eα, ζ − z〉

)λα

where 〈x, y〉 = ∑
xi yi for vectors x, y in CN and �dζ here is understood to

be the N -vector (dζ1, . . . , dζN ). Then � is C1 away from the singular set
Z = ⋃α

1 {(ζ, z)| 〈E j , ζ − z〉 = 0}. We can rewrite � as �(E1, . . . , Eα) =∑N−1
0 �q(E1, . . . , Eα), where �q is the sum of components of � which are of
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degree q in dz̄ j , j = 1, . . . , N . Outside the singular set Z we have the following
identity:

∂̄ζ,z�(E1, . . . , Eα) =
α∑

j=1

(−1) j�(E1, . . . , Ê j , . . . , Eα). (2.2)

To construct the sections we use the results of Fornæss [3] which we briefly outline
in the following and refer to [3] for details:

We first observe that for any strongly convex domain G ⊂ CN with Ck , k ≥ 2
boundary, there exist a Ck function µ with positive real Hessian, a constant c > 0
such that G ={µ < 0}, and dµ 	= 0 in a neighborhood of ∂G. Furthermore, if we
define

H(ξ, η) =
N∑
1

∂µ

∂ξ j
(ξ)(ξ j − η j ),

then it satisfies
H(ξ, η) ≥ µ(ξ) − µ(η) + c|ξ − η|2

for all ξ ,η in a small neighborhood of Ḡ. The section (
∂µ
∂ξ1

(ξ), · · · ,
∂µ
∂ξN

(ξ)) will
serve the purpose of this paper in case the given domain is strongly convex.

On the other hand, Fornæss proved in [3] that any strongly pseudoconvex do-
main X ⊂ CN with Ck , k ≥ 2 boundary, admits an embedding into a bounded
strongly convex domain Y ⊂CN ′

with Ck boundary for some N ′, such that the
boundary of X is mapped into the boundary of Y , and the map is 1-1 holomophic
in a neighborhood of X̄ (cf. [3, Theorem 9] for explicit statements).

Now for any strongly pseudoconvex domain X ⊂ CN with Ck , k ≥ 2 bound-
ary, the above oberservation and Fornæss’ embedding theroem together imply the
existence of H and the section for Y ⊂ CN ′

. Their pull-backs to CN then give the
following resuts (cf. [3, Theorem 16]):

There exist a Ck function ν which is strictly plurisubharmonic in a neigh-
borhood of X̄ with X = {ν < 0}, a constant ε > 0 and a function H(ξ, η) ∈
Ck−1(Xε × Xε), where Xε = {η ∈ CN , ν(η) < ε} satisfying

H(ξ, ·) is holomorphic in Xε, (2.3)

∃ n j (ξ, η) ∈ Ck−1(Xε × Xε), j = 1, . . . , N , holomorphic in η, such that (2.4)

H(ξ, η) =
N∑
1

n j (ξ, η)(ξ j − η j ),

∃ c > 0, such that ∀ η ∈ X̄ , ξ ∈ X̄ (2.5)

2Re H(ξ, η) ≥ ν(ξ) − ν(η) + c|ξ − η|2,

dξ H(ξ, η)|ξ=η = ∂ν(ξ). (2.6)
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Let ρ, σ be as in Section 1. In view of the above discussion, for the strongly
pseudoconvex domain {ρ < 0} ⊂ Cm+n there exist r j ’s which correspond to the
n j ’s in (2.4), and we define the section r(ζ, z) as (r1, . . . , rm+n). Similarly for
the domain {σ < 0} ⊂ Cm we define the section s′(ζ ′, z′) = (s1, . . . , sm). We
then use s(ζ, z) for the section (s1(ζ

′, z′), . . . , sm(ζ ′, z′), 0, · · · , 0︸ ︷︷ ︸
n

). Let r∗(ζ, z) =

(r∗1(ζ, z), . . . , r∗m+n(ζ, z)), where r∗j (ζ, z) = −r j (z, ζ ). Thus r, r∗ and s are Ck−1

in a neighborhood of M̄ × M̄ .
The kernels �(r, r∗), �(r, r∗, s), �(r∗, s) etc., are defined according to for-

mula (2.1).
For f ∈ C0

(0,q)(M̄), satisfying ∂̄M f = 0 in distribution sense on M with
1 ≤ q ≤ n + m − 1, we recall the following basic representation formula from [1,
p. 543]: for z ∈ M

(−1)q f (z) = ∂̄

{∫
M

f (ζ )∧�q−1(r, r
∗)(ζ, z)+(−1)q

∫
∂ M

f (ζ )∧�(r, r∗, s)(ζ, z)

}

+
∫

∂ M
f (ζ ) ∧ �q(r∗, s)(ζ, z). (2.7)

The last integral in (2.7) is null when q < n − 1 by type consideration. For f ∈
C0

(0,n−1)(M̄), ∂̄M f = 0 in distribution sense, we define the following transform:

T f (z) = (−1)n−1
∫

∂ M
f (ζ ) ∧ �(r∗, s)(ζ, z). (2.8)

Remark 2.1. A (0, n − 1) form f defined in a subset of Cm+n can be decomposed
as follows:

f =
s∑

j=1

f j where f j =
∑

|α|+|β|=n−1
|α|= j−1

f jαdz̄ ′αdz̄ ′′β and s =min(m + 1, n). (2.9)

Moreover, when f is ∂̄-closed we have:

∂̄z′′ f1 = 0, ∂̄z′ f j = −∂̄z′′ f j+1, j = 1, . . . , s − 1, and ∂̄z′ fs = 0. (2.10)

The definition of T immediately gives

T f = T f1 = (T f )1. (2.11)

3. Properties of Tf

In this section we always assume that f ∈ C0
(0,n−1)(M̄) and ∂̄M f = 0 in distribution

sense.
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Lemma 3.1. T f = 0 if there exists u ∈ C0
(0,n−2)(M̄) such that ∂̄M u = f on M.

Proof. Suppose there exists u ∈ C0
(0,n−2)(M̄) satisfying ∂̄M u = f . By the defini-

tion of T f , we have

T f = (−1)n−1
∫

∂ M
∂̄ζ u(ζ ) ∧ �(r∗, s)(ζ, z) =

∫
∂ M

u ∧ ∂̄ζ�(r∗, s)(ζ, z)

by Stokes’ theorem. Invoking (2.2) the last integral becomes∫
∂ M

u ∧ (�(r∗) − �(s) − ∂̄z�(r∗, s)) = 0

by type considerations. This proves the lemma.

Lemma 3.2. There is an open neighborhood N of M in {σ < 0} ×Cn, depending
on ρ only, such that T f ∈ C1(N ). On the set U = N ∩ {ρ ≥ 0} we have
∂̄(T f ) = 0.

Proof. Observe that in the definition of T the integration is just over ∂ M . By (2.3)-
(2.6), we see that T f is well-defined for z in an open set N , depending on ρ only,
containing M in {σ < 0} × Cn and is Ck−2 there.

We show that ∂̄(T f ) = 0 in the interior of U . Consider m > 1 first. The
identity (2.2) and type considerations imply ∂̄z�(r∗, s) = −∂̄ζ�(r∗, s) in this case.
Thus

∂̄(T f ) = (−1)n−1
∫

∂ M
f ∧ ∂̄z�(r∗, s) = (−1)n

∫
∂ M

f ∧ ∂̄ζ�(r∗, s)

= −
∫

∂ M
∂̄ζ ( f ∧ �(r∗, s)) = −

∫
∂ M

dζ ( f ∧ �(r∗, s)) = 0

by Stokes’ theorem. For m = 1, the section s is the Cauchy kernel which is holo-
morphic in both ζ and z. Hence (2.2) and type consideration give

∂̄z(T f ) = (−1)n−1
∫

∂ M
f ∧ �(r∗).

For z ∈ U \M we can apply Stokes’ theorem to the above integral and get ∂̄z(T f ) =
0 as ∂̄ f = ∂̄ζ r∗ = 0.

Since T f ∈ Ck−2(N ), we conclude that ∂̄(T f ) = 0 on U by continuity. The
lemma is proved.

Remark 3.3.

(a) In (2.7) the form inside the parenthesis after ∂̄M is in C1(M) provided that f is
in C1(M), and so it can be extended to a C1 form in {σ < 0}×Cn . By Lemma
3.2 the last form in (2.7) is actually in Ck−2(U ) and is ∂̄-closed. Therefore, in
this case, (2.7) becomes a “jump formula” for f . A more general jump formula
can be found in [2], but we don’t need it here.
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(b) In view of (2.10),(2.11) and Lemma 3.2, we see that all the coefficients of T f
are holomorphic in z′.

Let σ̃ be a C1 function defined in a neighborhood of {σ ≤ 0} such that {σ̃ < 0} ⊂
{σ < 0}. Set M̃ = {ρ = 0} ∩ ({σ̃ < 0} × Cn). Suppose dρ ∧ dσ̃ 	= 0 on ∂ M̃ .
Denote by b′ = (b̃′, 0, · · · , 0︸ ︷︷ ︸

n

), where b̃′ is the section for the Bochner-Martinelli

kernel in Cm . For f in the domain of T , define

T ′ f (z) = (−1)n−1
∫

∂ M̃
f ∧ �(r∗, b′)(ζ, z).

Lemma 3.1 and the proof of Lemma 3.2 still hold for T ′ and consequently T ′ f is a
∂̄-closed form in Ũ = N ∩ {ρ ≥ 0} ∩ ({σ̃ < 0} ×Cn). The next lemma shows that
T is “locally” defined over Cm .

Lemma 3.4. Let f be in the domain of T . Then T f = T ′ f on Ũ .

Proof. For z ∈ Ũ , apply (2.2) to get

T f = (−1)n−1
∫

∂ M
f ∧ �(r∗, s)(ζ, z)

= (−1)n−1
∫

∂ M
f ∧ (�(r∗, b′) − �(s, b′) − ∂̄ζ,z�(r∗, s, b′))

= (−1)n−1
∫

∂ M
f ∧ �(r∗, b′) by Stokes’ theorem and type considerations,

= (−1)n−1
∫

∂ M̃
f ∧ �(r∗, b′)

+(−1)n−1
∫

M\M̃
dζ ( f ∧ �(r∗, b′)) by Stokes’ theorem.

In the last integral we use (2.2) again to get

dζ�(r∗, b′) = ∂̄ζ�(r∗, b′) = −∂̄z�(r∗, b′) + �(r∗) − �(b′)

and the integral vanishes by type considerations. So

T f = (−1)n−1
∫

∂ M̃
f ∧ �(r∗, b′) = T ′ f.

This completes the proof.
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Lemma 3.4 has two implications. First, in Lemma 3.1 the assumption on u can
be weakened by u ∈ C0

(0,n−2)(M). Next, it suggests that the strong pseudoconvexity
of the base set can be relaxed when one defines T f . This is seen more precisely in
Lemma 3.5.

For t ≥ 0, set

Mt = {ρ = t} ∩ ({σ < 0} × Cn)

M̃t = {ρ = t} ∩ ({σ̃ < 0} × Cn) and

�z′,t = {ρ = t} ∩ ({z′} × Cn) for z′ ∈ {σ < 0}.
When t = 0 we have �z′ = �z′,0, M̃ = M̃0, and M = M0.

Now fix z′
0 ∈ {σ < 0}. As in Lemma 3.4, let σ̃ = |z′ − z′

0|2 − ε2, where ε > 0
is chosen so that {σ̃ < 0} ⊂ {σ < 0} and dρ ∧ dσ̃ 	= 0 on ∂ M̃ . For ε small enough
there exist t > 0 small such that �z′

0,t
is strongly pseudoconvex in {z′

0} × Cn and

{z′| |z′ − z′
0| < ε} × {z′′| (z′

0, z′′) ∈ �z′
0,t

} ⊂ Ũ \ M.

Fix such ε and t . By Lemma 3.4 we have for z0 ∈ Ũ satisfying ρ(z0) > t

T f (z0) = (−1)n−1
∫

∂ M̃
f (ζ ) ∧ �(r∗, b′)(ζ, z0)

= (−1)n−1
∫

∂ M̃
(T f )(ζ ) ∧ �(r∗, b′)(ζ, z0)

where the last equality follows from (2.7) and Lemma 3.1 for T ′.
Since in the last integral

�(r∗, b′) = R(ζ, z) ∧ �0(b
′)

where R(ζ, z) is a form holomorphic in ζ . Applying Stokes’ theorem to the last
integral in the above formula, we have

T f (z0) = (−1)n−1
∫

Sε

(T f )(ζ ) ∧ �(r∗, b′)(ζ, z0)

by type consideration and the fact that ∂̄ζ�0(b′) = 0, where Sε = {ζ ′| |ζ ′ − z′
0| =

ε} × {ζ ′′| (z′
0, ζ

′′) ∈ �z′
0,t

}.
Let ε tend to zero. It follows from Lemma 1.14 of [Ky] that

T f (z0) = (−1)n−1cm

∫
ζ ′′∈�z′0,t

(T f )(z′
0, ζ

′′) ∧ �(r̃∗z′
0,t

)(ζ ′′, z′′
0)

where cm = (2π i)m

(m−1)! and r̃∗z′
0,t

is the section constructed from ρ̃(z′′) = ρ(z′
0, z′′) − t .

We thus have the following lemma:
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Lemma 3.5. For any z′
0 ∈ {σ < 0}, for any z0 = (z′

0, z′′
0) ∈ Ũ and for any t > 0

such that ρ(z0) > t and {z′′| ρ(z′
0, z′′) < t} is strictly pseudoconvex in Ũ ∩ ({z′

0}×
Cn), we have

T f (z0) = (−1)n−1cm

∫
ζ ′′∈�z′0,t

(T f )(z′
0, ζ

′′) ∧ �(r̃∗z′
0,t

)(ζ ′′, z′′
0). (3.1)

In particular, if {z′′| ρ(z′
0, z′′) < 0} is strictly pseudoconvex which holds for z′

0 in a
dense open set in {σ < 0}, we have

T f (z0) = (−1)n−1cm

∫
ζ ′′∈�z′0

f (z′
0, ζ

′′) ∧ �(r̃∗z′
0
)(ζ ′′, z′′

0). (3.1′)

Proof. It remains to prove (3.1′). The denseness of such z′
0 follows from Sard’s the-

orem. In view of the fact that (3.1) holds for any 0< t <ρ(z0) with {z′′| ρ(z′
0, z′′)<

t} strictly pseudoconvex in Ũ ∩ ({z′
0}× Cn), (3.1′) is obtained by taking limit as

such t goes to 0 in (3.1) and by (2.7) and Stokes’theorem.

Remark 3.6. Formula (3.1) (or ((3.1′))) is of fundamental importance. It shows
that T f can be defined by ρ only: the connectivity and the strong pseudoconvexity
of the base set {σ < 0} can be relaxed. Moreover, it shows that T f has a continuous
extension to the set U1 = N ∩ {ρ ≥ 0} ∩ ({σ ≤ 0} × Cn).

Now instead of {σ < 0} we take the base set to be an arbitrary open set B in
Cm . It is easy to see that all the preceding results about T f still holds. Indeed,
through (3.1) and ((3.1′)) the properties of T f become even more transparent.

4. The moment operator Mh(g) and the proof of Theorem 1.2

Let ρ be the same as before and B be an arbitrary relatively compact open subset in
Cm . Set

M̃ = {ρ = 0} ∩ (B × Cn).

For an open neighborhood O of M̃ , we set

Ũ = O ∩ {ρ ≥ 0} ∩ (B × Cn).

Let g be a C1 ∂̄-closed (0, n − 1) form in Ũ . Let V be an open set in B and h
be a function holomorphic in a neighborhood of {ρ = 0} ∩ (V × Cn). Define the
moment operator of g with respect to h on V by

Mh(g)(z′)=
∫

ζ ′′∈�z′
h(z′, ζ ′′)g(z′, ζ ′′)dζ ′′, where dζ ′′ =dζm+1 ∧ · · · ∧ dζm+n. (4.1)

Lemma 4.1. Mh(g)(z′) is a holomorphic function in V .
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Proof. First observe that

Mh(g)(z′) =
∫

ζ ′′∈�z′
h(z′, ζ ′′)g1(z

′, ζ ′′)dζ ′′

where g1 is defined by (2.9). Fix z′
0 ∈ V . Choose a domain D in Cn with C1

boundary and a neighborhood W of z′
0 in V such that

�z′
0

⊂ {z′
0} × D, {ρ ≤ 0} ∩ (W × Cn) ⊂ W × D and W × ∂ D ⊂ Ũ .

For any function h holomorphic in W × D it follows from Stokes’ theorem and
(2.9), (2.10) that

Mh(g)(z′) =
∫

�z′
h(z′, ζ ′′)g1(z

′, ζ ′′)dζ ′′ =
∫

∂ D
h(z′, ζ ′′)g1(z

′, ζ ′′)dζ ′′

whenever z′ ∈ W . Now by (2.10)

∂̄z′Mh(g)(z′) =
∫

∂ D
h(z′, ζ ′′)∂̄z′ g1(z

′, ζ ′′)dζ ′′ = −
∫

∂ D
h(z′, ζ ′′)∂̄ζ ′′ g2(z

′, ζ ′′)dζ ′′

whenever z′ ∈ W and so

∂̄Mh(g)(z′) = −
∫

∂ D
dζ ′′(h(z′, ζ ′′)g2(z

′, ζ ′′))dζ ′′ = 0.

This completes the proof.

Remark 4.2. Suppose f is a ∂̄-closed (0, n−1) form in C0(
¯̃M). In view of Remark

3.6, T f is well-defined in Ũ = N ∩ {ρ ≥ 0} ∩ (B × Cn) where N is given by
Lemma 3.2. Locally, for each z′ ∈ B there is a small open neighborhood W of z′
contained in B such that for z ∈ Ũ ∩ (W × Cn) f can be represented as in (2.7),
we see immediately that Mh( f ) = Mh(T f ) for any holomorphic function h. In
other words, the moment of f is well-defined and is holomorphic in z′.

With Remark 4.2 we have:

Corollary 4.3. Fix z′ ∈ B. All the holomorphic moments of f on �z′ vanish is
equivalent to T f (z) = 0 on Ũ∩ ({z′} × Cn). Moreover, suppose �z′ is strictly
pseudoconvex, equation ∂̄�z′ u = f is solvable on �z′ if and only if T f (z) = 0 for

all z ∈ Ũ ∩ ({z′} × Cn).

Proof. To prove the first statement, we need only show that Mh( f )(z′) = 0 for all h
holomorphic near �z′ implies T f (z) = 0 on Ũ ∩ ({z′} ×Cn). The proof of Lemma
4.1 and Remark 4.2 give

0 = Mh( f )(z′) =
∫

�z′
h(z′, ζ ′′)(T f )1(z

′, ζ ′′)dζ ′′

=
∫

�z′,t
h(z′, ζ ′′)T f (z′, ζ ′′)dζ ′′, t > 0,
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whenever �z′,t ⊂ Ũ and h is holomorphic near �z′,t . The last equality follows from
(2.10), (2.11) and Stokes’ theorem. Now suppose �z′,t is strictly pseudoconvex.
Let h(z′, ζ ′′)dζ ′′ = �(r̃∗z′). By Lemma 3.5 we have T f (z) = 0 for z ∈ Ũ ∩
({z′} × Cn), ρ(z) ≥ t . By Sard’s theorem 0 is a limit point of such t so the first
statement is proved. The second statement follows from the first statement and
Remark 1.3(a).

Theorem 4.4. Let ρ be as in Theorem 1.2. Let B be a connected relatively compact
open subset in Cm. Set

M̃ = {ρ = 0} ∩ (B × Cn).

Let f be a (0, n − 1) form in C0(
¯̃M) with ∂̄ f = 0 on M̃ in distribution sense. Let

A be a subset of B not contained in any subvariety of codimension one in B. If for
every z′ ∈ A all the holomorphic moments of f on �z′ vanish, then T f vanishes
identically on Ũ = N ∩ {ρ ≥ 0} ∩ (B × Cn) where N is defined in Lemma 3.2.

Proof. Step 1. The assumption on the set A implies that there is a point p ∈ B̄
such that the intersection of A with any neighborhood of p is not contained in a
subvariety of codimension one in B. Let V be any connected neighborhood of p
in B̄. Let h be any function holomorphic near M̃ ∩ (V × Cn). By Lemma 4.1
Mh( f )(z′) is a holomorphic function in V ∩ B. Remark 4.2 and the assumption
give that Mh( f )(z′) = Mh(T f )(z′) = 0 for all z′ ∈ V ∩ A. By the choice of p,
we must have Mh( f )(z′) identically equal to zero on V .

Step 2. Claim: There is a neighborhood W of p in B̄ such that T f vanishes identi-
cally on Ũ ∩ (W × Cn).

Proof of the Claim. By Corollary 4.3 it suffices to show that for every z′ ∈ W ,
Mh( f )(z′) = 0 for all h holomorphic near �z′ . If there is no such neighborhood,
then there exists a sequence {z′

j }∞1 ⊂ B such that z′
j → p as j → ∞ and T f (z′

j , ·)
does not vanish identically for all j = 1, 2, . . . .

Choose t > 0 so that �p,t is a Ck strictly pseudoconvex real hypersuface in
Ũ ∩ ({p} × Cn). Let W be a connected open neighborhood of p in B such that W
× {z′′| (p, z′′) ∈ �p,t } ⊂ Ũ \ M̃ .

For every j = 1, 2, . . . there is a function h j holomorphic near �z′
j

such that

Mh j ( f )(z′
j ) 	= 0. For simplicity we may assume that �z′

j
is strictly pseudoconvex

in {z′
j } × Cn (or we do as in the proof of Corollary 4.3).
Fix j so that z′

j ∈ W . Set D1 = {z′′| ρ(p, z′′) < t} and D2 = {z′′| ρ(z′
j , z′′) <

0}. By our choice both D1, D2 are strictly pseudoconvex domains in Cn and
D2 � D1 for every j = 1, 2, . . . . Since ρ(z′

j , ·) is plurisubharmonic in D1 if

ρ is plurisubharmonic in Ũ and which can be assumed, it follows from Corollary
5.4.3 of [8] that D1, D2 form a Runge pair.

Thus h j (z′
j , ·) can be uniformly approximated on D̄2 by functions holomorphic

on D1. Let {gk}∞k=1 be such a sequence of holomorphic functions on D1. By Step 1,
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for all k ≥ 1 Mgk ( f )(z′) = Mgk (T f )(z′) = 0 for all z′ ∈ W . Therefore we must
have Mh j ( f )(z′

j ) = 0, contradicting our assumption on z′
j and h j . This completes

the proof of the claim.

Step 3. Set S ≡ {z′| z′ ∈ B, T f (z′, ·) ≡ 0 on Ũ ∩ ({z′} × Cn)}. By Step 2 S
has non-empty interior. In fact, the argument in Step 2 shows that the interior of
S is both open and closed in B. Since B is connected, we conclude that S = B.
Theorem 4.4 is proved.

From the proof of Theorem 4.4 we have the following:

Corollary 4.5. Under the assumptions of Theorem 4.4, the following statements
are equivalent:

(a) For all z′ ∈ A, every holomorphic moment of f on �z′ vanishes.

(b) T f (z) ≡ 0 on Ũ .

(c) T f (z) ≡ 0 for all z ∈ �z′ , z′ ∈ A.

(d) ∂̄�z′,t u = T f (z′, ·) is solvable on �z′,t ⊂ Ũ for every z′ ∈ A and for every
t ≥ 0, provided that �z′,t is strictly pseudoconvex in {z′} × Cn.

Corollary 4.6. Under the assumptions of Theorem 4.4, if the set {z′| �z′ = ∅, z′ ∈
B} is not contained in a subvariety of codimension one in B, then T f ≡ 0 on M̃.
In particular, if B = {σ < 0}, then ∂̄M is solvable at q = n − 1.

On the other hand, we have

Remark 4.7. Let M = {ρ = 0} ∩ ({σ̃ < 0} ×Cn) where ρ is as in the assumption
of Theorem 4.4 and σ̃ is any C1 function satisfying dρ ∧ dσ̃ 	= 0 on ∂ M . Suppose
M and {σ̃ < 0} are connected and m < n, then for f ∈ C0

(0,q)(M̄) satisfying

∂̄M f = 0 in distribution sense on M with m ≤ q ≤ n + m − 1, considering type,
the following representation formula holds for z ∈ M

(−1)q f (z)= ∂̄

{∫
M

f (ζ )∧�q−1(r, r
∗)(ζ, z)+(−1)q

∫
∂ M

f (ζ )∧�(r, r∗, b′)(ζ, z)

}
+

∫
∂ M

f (ζ ) ∧ �q(r∗, b′)(ζ, z).

Note that the last integral vanishes for m ≤ q ≤ n−2 by type consideration. In other
words, ∂̄M is always solvable for m ≤ q ≤ n − 2 in this case. Thus the tangential
Cauchy-Riemann equation (∗) is solvable at q = n − 1 iff T ′ f (z) = T f (z) = 0.
In view of Corollary 4.6, if {σ̃ < 0} is not contained in π({ρ = 0}), the projection
of {ρ = 0} to the Cm plane, then (∗) is solvable at q = n − 1.

Proof of Theorem 1.2. The solution u is obtained from Corollary 4.5 and formula
(2.7). The regularity of u can be proved by routine procedure, see e.g. [14], and we
omit the details here.
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5. Proof of Theorem 1.1

Let PN denote the unit polydisc in CN as before. We are going to define a sequence
of subdomains exhausting �. First choose a sequence of C∞ real-valued strictly
convex functions {ρ1, j }∞j=1 in Cm+n satisfying:

(p1) {ρ1, j < 0} � {ρ1, j+1 < 0} � Pm+n for each j ≥ 1;

(p2) ∪∞
1 {ρ1, j < 0} = Pm+n;

(p3) for each j = 1, 2, . . . , ρ1, j (z) = ρ1, j (|z1|, . . . , |zm+n|) and is symmetric in
|zk |, k = 1, . . . , m + n.

Next, for j = 1, 2, . . . , set C j = {z ∈ Cm+n| |zk | < 1 + 1
3 j , k = 1, . . . , m, |zk | <

1
2 + 1

3 j , k = m + 1, . . . , m + n}. Choose a sequence of C∞ real-valued strictly
convex functions {ρ2, j }∞j=1 satisfying:

(p4) {ρ2, j < 0} � C j for j = 1, 2, . . . ;

(p5) {ρ2, j = 0} ⊂ C j \ C̄ j+1;

(p6) for each j = 1, 2, . . . , ρ2, j (z) = ρ2, j (|z1|, · · · , |zm+n|) and is symmetric in
|zk |, k = 1, . . . , m and is also symmetric in |zk |, k = m + 1, . . . , m + n
respectively.

Define
D j = {ρ1, j < 0} ∩ {ρ2, j > 0}, for j = 1, 2, . . . .

Clearly we have

D j � D j+1, for j = 1, 2, . . . and ∪∞
1 D j = �.

Remark 5.1. Let π be the orthogonal projection from Cm+n into Cm . Set

E j = {z ∈ Cm+n| z′ ∈ π(D j ), ρ1, j (z) < 0}, j = 1, 2, . . . .

In addition to (p1) − (p6), we choose ρ1, j , ρ2, j so that E j is a relatively compact
convex set in Cm+n for each j = 1, 2, . . . . Such functions ρ1, j , ρ2, j are easy to
construct.

For each j ≥ 1, the boundary of D j can be written as

∂ D j = ∂ D j1 ∪ ∂ D j2,

where ∂ D j1 = {ρ1, j = 0} ∩ {ρ2, j ≥ 0} and ∂ D j2 = {ρ2, j = 0} ∩ {ρ1, j ≤ 0}.
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Remark 5.2.

(a) For each j = 1, 2, . . . , we can choose strictly plurisubharmonic function σ j ∈
C∞(Cm) such that {σ j < 0} � Pm and ∂ D j2 � {σ j < 0} × Cn . Set

M j = {ρ2, j = 0} ∩ ({σ j < 0} × Cn), j = 1, 2, . . . .

It follows from [1] that ∂̄M j u = g is solvable on M j for any L p, 1 ≤ p ≤ ∞,
∂̄-closed (0, q) form g on M j , 1 ≤ q < n − 1. Furthermore, if g ∈ Ck(M̄ j )

then u ∈ Ck(M j ) for j = 1, 2, . . . .

(b) If the assumption of Theorem 1.1 is satisfied, then Corollary 4.5 implies that
T f ≡ 0 on M̃ j = {ρ2, j = 0}∩(Pm×Cn) with B = Pm . Hence by Theorem 1.2
the conclusions in (a) for the solvability and regularity of ∂̄M j u = g on M j also
hold for q = n − 1, j = 1, 2, . . . , provided that ∂̄M j g = 0 and g ∈ Ck(M̄ j ),
k ≥ 0.

Lemma 5.3. Let g be a ∂̄-closed Ck (0, q) form on � with k any nonnegative inte-
ger and 1 ≤ q < n − 1. For j = 1, 2, . . . , the equation ∂̄v j = g is solvable with
v j ∈ Ck(D j ). In fact,

v j = −
∫

D j

g ∧ �(b) +
∫

∂ D j1

g ∧ �(b, r1, j ) +
∫

∂ D j2

g ∧ �(b, r∗2, j )

+ (−1)q+1
∫

∂ D j1∩∂ D j2

g ∧ �(b, r1, j , r
∗
2, j ) −

∫
∂ D j1∩∂ D j2

u j ∧ �(r1, j , r
∗
2, j )

where b is the Bochner-Martinelli section in Cm+n; r1, j ,r2, j are sections corre-
sponding to ρ1, j , ρ2, j ; and u j is the Ck solution to ∂̄M j u j = g on M j in view of
Remark 5.2(a).

Proof. Since ρ2, j is a smooth strictly convex function in Cm+n , the section r∗2, j (ζ, z)
is well-defined for all z ∈ {ρ2, j > 0} as long as ζ ∈ {ρ2, j ≤ 0}. As usual, one starts
from the formula:

g(z) = −∂̄

(∫
D j

g ∧ �(b)(ζ, z)

)
+

∫
∂ D j

g ∧ �(b)(ζ, z).

The lemma is proved by repeated use of (2.2), Stokes’ theorem and type consid-
erations when interploating the integrals with �(r1, j ), �(r∗2, j ), etc.. We omit the
routine computations.

By part (b) of Remark 5.2 we have:

Corollary 5.4. Let g be a Ck, k ≥ 0, ∂̄-closed (0, n − 1) form on � satisfying
the assumption of Theorem 1.1 Then ∂̄D j v j = g is solvable for every j ≥ 1 with

v j ∈ Ck
(0,n−2)(D j ).
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Proof of Theorem 1.1. By Corollary 5.4 it remains to construct a Ck solution v on
� out of v j , j = 1, 2, . . . . The process below is a modification of [11, Lemma 3]
which deals with k = ∞.

Consider the case n > 2 first. Let v j be given by Corollary 5.4. Set ṽ0 = v3.
Obviously v3 − v4 is a ∂̄-closed form in Ck

(0,n−2)(D3). By Lemma 5.3 there exists

w1 ∈ Ck
(0,n−3)(D2) so that ∂̄w1 = v3 − v4 in D2. Let χ1 ∈ C∞

0 (D2) such that

χ1 ≡ 1 on D̄1. Set

ṽ1 = v4 + ∂̄(χ1w1) ∈ Ck
(0,n−2)(D4).

Then ṽ1 = v3 = ṽ0 on D1 and ∂̄ ṽ1 = f on D4. We use induction to construct ṽ j for
j > 1. Suppose we already have ṽ j ∈ Ck

(0,n−2)(D j+3) with ∂̄ ṽ j = f on D j+3 and

ṽ j = ṽ j−1 on D j . Now ṽ j −v j+4 ∈ Ck
(0,n−2)(D j+3) and ∂̄(ṽ j −v j+4) = 0 on D j+3.

By Lemma 5.3 there exists w j+1 ∈ Ck
(0,n−3)(D j+2) so that ∂̄w j+1 = ṽ j − v j+4 on

D j+2. Choose χ j+1 ∈ C∞
0 (D j+2) such that χ j+1 ≡ 1 on D̄ j+1. Set

ṽ j+1 = v j+4 + ∂̄(χ j+1w j+1) ∈ Ck
(0,n−2)(D j+4).

We have ṽ j+1 = ṽ j on D j+1 and ∂̄ ṽ j+1 = f on D j+4. In this way we get v =
lim j→∞ ṽ j in Ck

(0,n−2)(D) and ∂̄v = f on D. This proves Theorem 1.1 when
n > 2.

When n = 2, let E j be as in Remark 5.1. As n = 2 > 1, every function
holomorphic in D j extends holomorphically to E j by Hartogs theorem. Since E j

is a bounded convex set in Cm+2; it is a Runge domain in Cm+2 (see [7, Theorem
4.7.8]). So the assumption of [11, Lemm 3] is satisfied and the case n = 2 is proved.
This completes the proof of Theorem 1.1.

With Corollary 5.4 replaced by Lemma 5.3 in the proof of Theorem 1.1 we
immediately have:

Corollary 5.5. Let g be a Ck ∂̄-closed (0, q) form, 1 ≤ q ≤ n − 2, on �, where k
is any non-negative integer. Then there exists a Ck (0, q − 1) form u on � such that
∂̄u = g.

Note that Corollary 5.5 is part of Frenkel’s lemma if k = ∞. The case n ≤ q ≤
m + n will be proved elsewhere.

There are many applications of the proof of Theorem 1.1, for example we have:

Corollary 5.6. Let D be any bounded pseudoconvex domain in CN . Let k be any
non-negative integer. For any ∂̄-closed Ck (0, q) form g on D, 1 ≤ q ≤ N, there
exists a Ck (0, q − 1) form u on D such that ∂̄u = g.
Moreover, if g ∈ L p(D), 1 ≤ p ≤ ∞, then there exists u ∈ L p

loc(D) such that
∂̄u = g.
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Corollary 5.7. Let ρ be a Ck real-valued function on Cm+n which is strictly
plurisubharmonic near {ρ ≤ 0}, 3 ≤ k ≤ ∞. Let B be a relatively compact
pseudoconvex domain in Cm. Set M = {ρ = 0} ∩ (B × Cn). Let f be a Ck′

∂̄-closed (0, q) form on M, 0 ≤ k′ ≤ k −3. Then there exists u ∈ Ck′
(0,q−1)(M) such

that ∂̄u = f on M if 1 < q < n − 1.
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