We consider a class of stationary viscous Hamilton-Jacobi equations aswhere , is a bounded and uniformly elliptic matrix and is convex in and grows at most like , with and . Under such growth conditions solutions are in general unbounded, and there is not uniqueness of usual weak solutions. We prove that uniqueness holds in the restricted class of solutions satisfying a suitable energy-type estimate, i.e. , for a certain (optimal) exponent . This completes the recent results in [15], where the existence of at least one solution in this class has been proved.
@article{ASNSP_2006_5_5_1_107_0, author = {Barles, Guy and Porretta, Alessio}, title = {Uniqueness for unbounded solutions to stationary viscous {Hamilton-Jacobi} equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {107--136}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {1}, year = {2006}, mrnumber = {2240185}, zbl = {1150.35030}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2006_5_5_1_107_0/} }
TY - JOUR AU - Barles, Guy AU - Porretta, Alessio TI - Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 107 EP - 136 VL - 5 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2006_5_5_1_107_0/ LA - en ID - ASNSP_2006_5_5_1_107_0 ER -
%0 Journal Article %A Barles, Guy %A Porretta, Alessio %T Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 107-136 %V 5 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2006_5_5_1_107_0/ %G en %F ASNSP_2006_5_5_1_107_0
Barles, Guy; Porretta, Alessio. Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 1, pp. 107-136. http://www.numdam.org/item/ASNSP_2006_5_5_1_107_0/
[1] Weak solutions of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal. 24 (1993), 23-35. | MR | Zbl
and ,[2] Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions, Arch. Ration. Mech. Anal. 133 (1995), 77-101. | MR | Zbl
and ,[3] Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 381-404. | Numdam | MR | Zbl
, , and ,[4] Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in . A tribute to J. L. Lions, ESAIM Control Optim. Calc. Var. 8 (2002), 239-272. | Numdam | MR | Zbl
, , , ,[5] Uniqueness results for nonlinear elliptic equations with a lower order term, Nonlinear Anal. 63 (2005), 153-170. | MR | Zbl
, , and ,[6] Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Differential Equations 106 (1993), 215-237. | MR | Zbl
, , and ,[7] Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations 17 (1992), 641-655. | MR | Zbl
and ,[8] estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal. 23 (1992), 326-333. | MR | Zbl
, and ,[9] Existence de solutions faibles pour des équations elliptiques quasi-linèaires à croissance quadratique, In: “Nonlinear Partial Differential Equations and their Applications”. College de France Seminar, Vol. IV (Paris, 1981/1982), Res. Notes in Math. 84, Pitman, Boston, Mass. - London, 1983, 19-73. | MR | Zbl
, and ,[10] Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl. (4) 181 (2002), 407-426. | MR | Zbl
, and ,[11] Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 741-808. | Numdam | MR | Zbl
, , and ,[12] On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2) 130 (1989), 321-366. | MR | Zbl
and ,[13] Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, In: “Equations aux Dérivées Partielles et Applications”, Gauthier-Villars, Ed. Sci. Méd. Elsevier, Paris, 1998, 497-515. | MR | Zbl
and ,[14] Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, C. R. Acad. Sci. Paris, Ser. I 342 (2006), 23-28. | MR | Zbl
, and ,[15] Elliptic equations with superlinear gradient dependent terms, in preparation.
, and ,[16] Criteria of solvability for multidimensional Riccati equations, Ark. Mat. 37 (1999), 87-120. | MR | Zbl
, and ,[17] Résolution de problèmes elliptiques quasilinèaires, Arch. Ration. Mech. Anal. 74 (1980), 335-353. | Zbl
,[18] Quelques remarques sur les problèmes elliptiques quasilinèaires du second ordre, J. Anal. Math. 45 (1985), 234-254. | MR | Zbl
,[19] Solutions renormalisées d'équations elliptiques non linéaires, unpublished paper.
and ,[20] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258. | Numdam | MR | Zbl
,