In this paper we study the solutions of Toda systems on Riemann surface in the critical case, proving a sufficient condition for existence.
@article{ASNSP_2005_5_4_4_703_0, author = {Li, Jiayu and Li, Yuxiang}, title = {Solutions for {Toda} systems on {Riemann} surfaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {703--728}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {4}, year = {2005}, mrnumber = {2207740}, zbl = {1170.35410}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2005_5_4_4_703_0/} }
TY - JOUR AU - Li, Jiayu AU - Li, Yuxiang TI - Solutions for Toda systems on Riemann surfaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 703 EP - 728 VL - 4 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2005_5_4_4_703_0/ LA - en ID - ASNSP_2005_5_4_4_703_0 ER -
%0 Journal Article %A Li, Jiayu %A Li, Yuxiang %T Solutions for Toda systems on Riemann surfaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 703-728 %V 4 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2005_5_4_4_703_0/ %G en %F ASNSP_2005_5_4_4_703_0
Li, Jiayu; Li, Yuxiang. Solutions for Toda systems on Riemann surfaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 4, pp. 703-728. http://www.numdam.org/item/ASNSP_2005_5_4_4_703_0/
[1] A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys. 143 (1992), 501-525. | MR | Zbl
, , and ,[2] A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II, Commun. Math. Phys. 174 (1995), 229-260. | MR | Zbl
, , and ,[3] Conformal deformation of metrics on , J. Differential Geom. 23 (1988), 259-296. | MR | Zbl
and ,[4] Prescribing Gaussian curvature on , Acta Math. 159 (1987), 214-259. | MR | Zbl
and ,[5] Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math. 55 (2002), 728-771. | MR | Zbl
and ,[6] Scalar curvature on , Trans. Amer. Math. Soc. 303 (1987), 365-382. | MR | Zbl
and ,[7] Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615-622. | MR | Zbl
and ,[8] The differential equation on a compact Riemann surface, Asian J. Math. 1 (1997), 230-248. | MR | Zbl
, , and ,[9] An analysis of the two-vortex case in the Chern-Simons Higgs model, Calc. Var. Partial Differential Equations 7 (1998), 87-97. | MR | Zbl
, , and ,[10] Multiplicity results for the two-vortex Chern-Simons Higgs model on the two sphere, Comment. Math. Helv. 74 (1999), 118-142. | MR | Zbl
, , and ,[11] Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with order potentials, Commun. Math. Phys. 217 (2001), 383-407. | MR | Zbl
, , , and ,[12] Existence of conformal metrics with constant -curvature, preprint, SISSA, 70/2004/M. | MR
and ,[13] Multivortex solutions of the Abelian Chern-Simons theory, Phys. Rev. Lett. 64 (1990), 2230-2233. | MR | Zbl
, and ,[14] Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990), 2234-2237. | MR | Zbl
and ,[15] Analytic aspects of the Toda system: II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math., to appear. | MR
, and ,[16] Analytic aspects of the Toda system. I. A Moser-Trudinger inequality, Comm. Pure Appl. Math. 54 (2001), 1289-1319. | MR | Zbl
and ,[17] Curvature functions for compact -manifolds, Ann. of Math. 99 (1974), 14-47. | MR | Zbl
and ,[18] Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equations 14 (2001), 163-192. | MR | Zbl
,[19] The extremal functions for Moser-Trudinger inequality on compact Riemannian manifolds, China Ser. A 48 (2005), 618-648. | MR | Zbl
,[20] Chern-Simons vortes theorey and Toda systems, J. Differential Equations 184 (2002), 443-474. | MR | Zbl
and ,[21] Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differential Equations 9 (1999), 31-94. | MR | Zbl
and ,[22] Vortex condensates for the Chern-Simons theory, Commun. Math. Phys. 213 (2000), 599-639. | MR | Zbl
and ,[23] On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 109-121. | MR | Zbl
and ,[24] Multiple condensate solutions for the Chern-Simons Higgs theory, J. Math. Phys. 37 (1996), 3769-3796. | MR | Zbl
,