Local vs. global hyperconvexity, tautness or k-completeness for unbounded open sets in 𝒞 n
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 4, pp. 601-618.

Some known localization results for hyperconvexity, tautness or k-completeness of bounded domains in n are extended to unbounded open sets in 𝒞 n .

Classification : 32A19, 32F45, 32Q45
Nikolov, Nikolai 1 ; Pflug, Peter 2

1 Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1113 Sofia, Bulgaria
2 Carl von Ossietzky Universität Oldenburg Fachbereich Mathematik Postfach 2503 D-26111 Oldenburg, Germany
@article{ASNSP_2005_5_4_4_601_0,
     author = {Nikolov, Nikolai and Pflug, Peter},
     title = {Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {601--618},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 4},
     number = {4},
     year = {2005},
     mrnumber = {2207736},
     zbl = {1170.32302},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/}
}
TY  - JOUR
AU  - Nikolov, Nikolai
AU  - Pflug, Peter
TI  - Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2005
SP  - 601
EP  - 618
VL  - 4
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/
LA  - en
ID  - ASNSP_2005_5_4_4_601_0
ER  - 
%0 Journal Article
%A Nikolov, Nikolai
%A Pflug, Peter
%T Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2005
%P 601-618
%V 4
%N 4
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/
%G en
%F ASNSP_2005_5_4_4_601_0
Nikolov, Nikolai; Pflug, Peter. Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 4, pp. 601-618. http://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/

[1] M. Abate, A characterization of hyperbolic manifolds, Proc. Amer. Math. Soc. 117 (1993), 789-793. | MR | Zbl

[2] Z. Blocki, The complex Monge-Ampère operator in pluripotential theory, Preprint (2004) (http://www.im.uj.edu.pl).

[3] G. T. Buzzard and J. E. Fornaess, An embedding of in 2 with hyperbolic complements, Math. Ann. 306 (1996), 539-546. | MR | Zbl

[4] B.-Y. Chen, Bergman completeness of hyperconvex manifolds, Nagoya Math. J. 175 (2004), 165-170. | MR | Zbl

[5] B.-Y. Chen and Z.-H. Zhang, The Bergman metric on a Stein manifold with a bouded plurisubharminc function, Trans. Amer. Math. Soc. 354 (2002), 2997-3009. | MR | Zbl

[6] A. Eastwood, À propos des variétés hyperboliques completes, C. R. Acad. Sci. Paris 280 (1975), 1071-1075. | MR | Zbl

[7] F. Forstnerič, Interpolation by holomorphic automorphisms and embeddings in 𝒞 n , J. Geom. Anal. 9 (1999), 93-117. | MR | Zbl

[8] H. Gaussier, Tautness and complete hyperbolicity of domains in n , Proc. Amer. Math. Soc. 127 (1999), 105-116. | MR | Zbl

[9] N. Kerzman and J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann. 257 (1981), 171-184. | MR | Zbl

[10] M. Jarnicki and P. Pflug, Remarks on the pluricomplex Green function, Indiana Univ. Math. J. 44 (1995), 535-543. | MR | Zbl

[11] M. Jarnicki and P. Pflug, “Invariant Distances and Metrics in Complex Analysis”, de Gruyter, 1993. | MR | Zbl

[12] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis-revisited, Dissertationes Math. 430 (2005), 1-192. | MR | Zbl

[13] M. Jarnicki, P. Pflug and W. Zwonek, On Bergman completeness of non-hyperconvex domains, Univ. Iagel. Acta Math. 38 (2000), 169-184. | MR | Zbl

[14] S.-H. Park, “Tautness and Kobayashi Hyperbolicty”, Ph. D. thesis, Oldenburg, 2003. | Zbl

[15] N. Sibony, A class of hyperbolic manifolds, In: “Recent Developments in Several Complex Variables”, J. E. Fornaess (ed.), Ann. Math. Studies 100 (1981), 347-372. | MR | Zbl

[16] Do Duc Thai and Pham Viet Duc, On the complete hyperbolicity and the tautness of the Hartogs domains, Internat. J. Math. 11 (2000), 103-111. | MR | Zbl

[17] Do Duc Thai and P. J. Thomas, 𝔻 * -extension property without hyperbolicity, Indiana Univ. Math. J. 47 (1998), 1125-1130. | MR | Zbl

[18] Do Duc Thai and Pham Nguyen Thu Trang, Tautness of locally taut domains in complex spaces, Ann. Polon. Math. 83 (2004), 141-148. | MR | Zbl

[19] V. P. Zaharjuta,Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, Teor. Funkcii, Funkcional. Anal. i Prilozen. 19 (1974), 133-157. | MR

[20] W. Zwonek, Regularity properties of the Azukawa metric, J. Math. Soc. Japan 52 (2000), 899-914. | MR | Zbl