Some known localization results for hyperconvexity, tautness or -completeness of bounded domains in are extended to unbounded open sets in .
@article{ASNSP_2005_5_4_4_601_0, author = {Nikolov, Nikolai and Pflug, Peter}, title = {Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {601--618}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {4}, year = {2005}, mrnumber = {2207736}, zbl = {1170.32302}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/} }
TY - JOUR AU - Nikolov, Nikolai AU - Pflug, Peter TI - Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 601 EP - 618 VL - 4 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/ LA - en ID - ASNSP_2005_5_4_4_601_0 ER -
%0 Journal Article %A Nikolov, Nikolai %A Pflug, Peter %T Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 601-618 %V 4 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/ %G en %F ASNSP_2005_5_4_4_601_0
Nikolov, Nikolai; Pflug, Peter. Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 4, pp. 601-618. http://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/
[1] A characterization of hyperbolic manifolds, Proc. Amer. Math. Soc. 117 (1993), 789-793. | MR | Zbl
,[2] The complex Monge-Ampère operator in pluripotential theory, Preprint (2004) (http://www.im.uj.edu.pl).
,[3] An embedding of in with hyperbolic complements, Math. Ann. 306 (1996), 539-546. | MR | Zbl
and ,[4] Bergman completeness of hyperconvex manifolds, Nagoya Math. J. 175 (2004), 165-170. | MR | Zbl
,[5] The Bergman metric on a Stein manifold with a bouded plurisubharminc function, Trans. Amer. Math. Soc. 354 (2002), 2997-3009. | MR | Zbl
and ,[6] À propos des variétés hyperboliques completes, C. R. Acad. Sci. Paris 280 (1975), 1071-1075. | MR | Zbl
,[7] Interpolation by holomorphic automorphisms and embeddings in , J. Geom. Anal. 9 (1999), 93-117. | MR | Zbl
,[8] Tautness and complete hyperbolicity of domains in , Proc. Amer. Math. Soc. 127 (1999), 105-116. | MR | Zbl
,[9] Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann. 257 (1981), 171-184. | MR | Zbl
and ,[10] Remarks on the pluricomplex Green function, Indiana Univ. Math. J. 44 (1995), 535-543. | MR | Zbl
and ,[11] “Invariant Distances and Metrics in Complex Analysis”, de Gruyter, 1993. | MR | Zbl
and ,[12] Invariant distances and metrics in complex analysis-revisited, Dissertationes Math. 430 (2005), 1-192. | MR | Zbl
and ,[13] On Bergman completeness of non-hyperconvex domains, Univ. Iagel. Acta Math. 38 (2000), 169-184. | MR | Zbl
, and ,[14] “Tautness and Kobayashi Hyperbolicty”, Ph. D. thesis, Oldenburg, 2003. | Zbl
,[15] A class of hyperbolic manifolds, In: “Recent Developments in Several Complex Variables”, J. E. Fornaess (ed.), Ann. Math. Studies 100 (1981), 347-372. | MR | Zbl
,[16] On the complete hyperbolicity and the tautness of the Hartogs domains, Internat. J. Math. 11 (2000), 103-111. | MR | Zbl
and ,[17] -extension property without hyperbolicity, Indiana Univ. Math. J. 47 (1998), 1125-1130. | MR | Zbl
and ,[18] Tautness of locally taut domains in complex spaces, Ann. Polon. Math. 83 (2004), 141-148. | MR | Zbl
and ,[19] Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, Teor. Funkcii, Funkcional. Anal. i Prilozen. 19 (1974), 133-157. | MR
,[20] Regularity properties of the Azukawa metric, J. Math. Soc. Japan 52 (2000), 899-914. | MR | Zbl
,