The permutation group method for the dilogarithm
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 389-437.

We give qualitative and quantitative improvements on all the best previously known irrationality results for dilogarithms of positive rational numbers. We obtain such improvements by applying our permutation group method to the diophantine study of double integrals of rational functions related to the dilogarithm.

Classification : 11J82, 33B30, 20B35
Rhin, Georges 1 ; Viola, Carlo 2

1 Département de Mathématiques UFR MIM Université de Metz Ile du Saulcy 57045 Metz Cedex 01, France
2 Dipartimento di Matematica Università di Pisa Largo B. Pontecorvo 5 56127 Pisa, Italy
@article{ASNSP_2005_5_4_3_389_0,
     author = {Rhin, Georges and Viola, Carlo},
     title = {The permutation group method for the dilogarithm},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {389--437},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 4},
     number = {3},
     year = {2005},
     mrnumber = {2185863},
     zbl = {1170.11316},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2005_5_4_3_389_0/}
}
TY  - JOUR
AU  - Rhin, Georges
AU  - Viola, Carlo
TI  - The permutation group method for the dilogarithm
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2005
SP  - 389
EP  - 437
VL  - 4
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2005_5_4_3_389_0/
LA  - en
ID  - ASNSP_2005_5_4_3_389_0
ER  - 
%0 Journal Article
%A Rhin, Georges
%A Viola, Carlo
%T The permutation group method for the dilogarithm
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2005
%P 389-437
%V 4
%N 3
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2005_5_4_3_389_0/
%G en
%F ASNSP_2005_5_4_3_389_0
Rhin, Georges; Viola, Carlo. The permutation group method for the dilogarithm. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 389-437. http://www.numdam.org/item/ASNSP_2005_5_4_3_389_0/

[1] F. Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc. 11 (1979), 268-272. | MR | Zbl

[2] E. Bombieri, On G-functions, In: “Recent Progress in Analytic Number Theory”, H. Halberstam and C. Hooley (eds.), Durham, 1979, Academic Press, London-New York, 1981, vol. 2, 1-67. | MR | Zbl

[3] M. Hata, Rational approximations to the dilogarithm, Trans. Amer. Math. Soc. 336 (1993), 363-387. | MR | Zbl

[4] G. Rhin and C. Viola, On a permutation group related to ζ(2), Acta Arith. 77 (1996), 23-56. | MR | Zbl

[5] G. Rhin and C. Viola, The group structure for ζ(3), Acta Arith. 97 (2001), 269-293. | MR | Zbl

[6] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., 1929, n. 1; Gesammelte Abhandlungen, Band I, Springer-Verlag, Berlin-Heidelberg, 1966, 209-266. | JFM

[7] C. Viola, On Siegel's method in diophantine approximation to transcendental numbers, Rend. Sem. Mat. Univ. Pol. Torino 53 (1995), 455-469. | MR | Zbl