p-harmonic measure is not additive on null sets
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 357-373.

When 1<p< and p2 the p-harmonic measure on the boundary of the half plane + 2 is not additive on null sets. In fact, there are finitely many sets E 1 , E 2 ,...,E κ in , of p-harmonic measure zero, such that E 1 E 2 ...E κ =.

Classification : 31A15, 35J70, 60G46
Llorente, José G. 1 ; Manfredi, Juan J. 2 ; Wu, Jang-Mei 3

1 Department de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Spain
2 Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260, USA
3 Department of Mathematics University of Illinois 1409 West Green Street Urbana, IL 61801, USA
@article{ASNSP_2005_5_4_2_357_0,
     author = {Llorente, Jos\'e G. and Manfredi, Juan J. and Wu, Jang-Mei},
     title = {$p$-harmonic measure is not additive on null sets},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {357--373},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 4},
     number = {2},
     year = {2005},
     mrnumber = {2163560},
     zbl = {1105.31002},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2005_5_4_2_357_0/}
}
TY  - JOUR
AU  - Llorente, José G.
AU  - Manfredi, Juan J.
AU  - Wu, Jang-Mei
TI  - $p$-harmonic measure is not additive on null sets
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2005
SP  - 357
EP  - 373
VL  - 4
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2005_5_4_2_357_0/
LA  - en
ID  - ASNSP_2005_5_4_2_357_0
ER  - 
%0 Journal Article
%A Llorente, José G.
%A Manfredi, Juan J.
%A Wu, Jang-Mei
%T $p$-harmonic measure is not additive on null sets
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2005
%P 357-373
%V 4
%N 2
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2005_5_4_2_357_0/
%G en
%F ASNSP_2005_5_4_2_357_0
Llorente, José G.; Manfredi, Juan J.; Wu, Jang-Mei. $p$-harmonic measure is not additive on null sets. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 357-373. http://www.numdam.org/item/ASNSP_2005_5_4_2_357_0/

[ARY] V. Alvarez, J. M. Rodríguez and D. V. Yakubovich, Estimates for nonlinear harmonic “measures” on trees, Michigan Math. J. 48 (2001), 47-64. | MR | Zbl

[AM] P. Avilés and J. J. Manfredi, On null sets of p-harmonic measure, In: “Partial Differential Equations with minimal smoothness and applications”, Chicago, IL 1990, B. Dahlberg et al. (eds.), Springer Verlag, New York, 1992, 33-36. | MR | Zbl

[B] A. Baernstein, Comparison of p-harmonic measures of subsets of the unit circle, St. Petersburg Math. J. 9 (1998), 543-551. | MR | Zbl

[BBS] A. Björn, J. Björn and N. Shanmugalingam, A problem of Baernstein on the equality of the p-harmonic measure of a set and its closure, Proc. AMS, to appear. | Zbl

[DB] E. Dibenedetto, C 1+α -local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. | MR | Zbl

[CFPR] A. Cantón, J. L. Fernández, D. Pestana and J. M. Rodríguez, On harmonic functions on trees, Potential Anal. 15 (2001), 1999-244. | MR | Zbl

[FGMS] E. Fabes, N. Garofalo, S. Marín-Malave and S. Salsa, Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), 227-251. | MR | Zbl

[GLM] S. Granlund, P. Lindquist and O. Martio, F-harmonic measure in space, Ann. Acad. Sci. Fenn. Math. Diss. 7 (1982), 233-247 | MR | Zbl

[HM] J. Heinonen and O. Martio, Estimates for F-harmonic measures and Øksendal’s theorem for quasiconformal mappings, Indiana Univ. Math. J. 36 (1987), 659-683. | MR | Zbl

[HKM] J. Heinonen, T. Kilpeläinen and O. Martio, “Nonlinear potential theory of degenerate elliptic equations”, Clarendon Press, New York, 1993. | MR | Zbl

[KW] R. Kaufman and J.-M. Wu, Fatou theorem of p-harmonic functions on trees, Ann. Probab. 28 (2000), 1138-1148. | MR | Zbl

[KLW] R. Kaufman, J. G. Llorente and J.-M. Wu, Nonlinear harmonic measures on trees, Ann. Acad. Sci. Fenn. Math. Diss. 28 (2003), 279-302. | EuDML | MR | Zbl

[K] J. Kurki, Invariant sets for 𝒜-harmonic measure, Ann. Acad. Sci. Fenn. Math. Diss. 20 (1995), 433-436. | EuDML | MR | Zbl

[L1] J. L. Lewis, Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J. 32 (1983), 849-856. | MR | Zbl

[L2] J. L. Lewis, “Note on a theorem of Wolff”, Holomorphic Functions and Moduli, Vol. 1, Berkeley, CA, 1986, D. Drasin et al. (eds.), Math. Sci. Res. Inst. Publ., Vol. 10, Springer-Verlag, 1988, 93-100. | MR | Zbl

[MW] J. J. Manfredi and A. Weitsman, On the Fatou theorem for p-harmonic functions, Comm. Partial Differential Equations 13 (1988), 651-658. | MR | Zbl

[M1] O. Martio, Potential theoretic aspects of nonlinear elliptic partial differential equations, Bericht Report 44, University of Jyväskylä, Jyväskylä, 1989. | MR | Zbl

[M2] O. Martio, Sets of zero elliptic harmonic measures, Ann. Acad. Sci. Fenn. Math. Diss. 14 (1989), 47-55. | MR | Zbl

[Ma] V. G. Maz'Ja, On the continuity at a boundary point of solutions of quasi-linear elliptic equations (English translation), Vestnik Leningrad Univ. Math. 3(1976), 225-242. Original in Vestnik Leningrad. Univ. 25 (1970), 42-45 (in Russian). | MR | Zbl

[Wo1] T. Wolff, Gap series constructions for the p-Laplacian, Preprint, 1984. | MR

[Wo2] T. Wolff, Generalizations of Fatou's theorem, Proceedings of the International Congres of Mathematics, Berkeley, CA, 1986, Vol. 2, Amer. Math. Soc., Providence, RI, 1987, 990-993. | MR | Zbl

[W] J.-M. Wu, Null sets for doubling and dyadic doubling measures, Ann. Acad. Sci. Fenn. Math. 18 (1993), 77-91. | EuDML | MR | Zbl