We prove that Wada’s twisted Alexander polynomial of a knot group associated to any nonabelian -representation is a polynomial. As a corollary, we show that it is always a monic polynomial of degree for a fibered knot of genus .
@article{ASNSP_2005_5_4_1_179_0, author = {Kitano, Teruaki and Morifuji, Takayuki}, title = {Divisibility of twisted {Alexander} polynomials and fibered knots}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {179--186}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {1}, year = {2005}, mrnumber = {2165406}, zbl = {1117.57004}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2005_5_4_1_179_0/} }
TY - JOUR AU - Kitano, Teruaki AU - Morifuji, Takayuki TI - Divisibility of twisted Alexander polynomials and fibered knots JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 179 EP - 186 VL - 4 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2005_5_4_1_179_0/ LA - en ID - ASNSP_2005_5_4_1_179_0 ER -
%0 Journal Article %A Kitano, Teruaki %A Morifuji, Takayuki %T Divisibility of twisted Alexander polynomials and fibered knots %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 179-186 %V 4 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2005_5_4_1_179_0/ %G en %F ASNSP_2005_5_4_1_179_0
Kitano, Teruaki; Morifuji, Takayuki. Divisibility of twisted Alexander polynomials and fibered knots. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 1, pp. 179-186. http://www.numdam.org/item/ASNSP_2005_5_4_1_179_0/
[1] Fibred knots and twisted Alexander invariants, Trans. Amer. Math. Soc. 355 (2003), 4187-4200. | MR | Zbl
,[2] Introduction aux polynomes d'un nœud, Enseign. Math. 13 (1968), 187-194. | Zbl
,[3] Reidemeister torsion, twisted Alexander polynomial and fibered knots, Comment. Math. Helv. 80 (2005), 51-61. | MR | Zbl
, and ,[4] Twisted Alexander polynomial for -representations and fibered knots, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), 97-101. | MR | Zbl
and ,[5] Twisted topological invariants associated with representations, In: “Topics in Knot Theory”, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 399, Kluwer Academic Publishers, Dordrecht, 1993, 211-227. | MR | Zbl
and ,[6] Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), 635-661. | MR | Zbl
and ,[7] Twisted knot polynomials: inversion, mutation and concordance, Topology 38 (1999), 663-671. | MR | Zbl
and ,[8] Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), 431-442. | MR | Zbl
,[9] Twisted Alexander polynomial and surjectivity of a group homomorphism, preprint. | MR
, and ,[10]
, http://www.math.kobe-u.ac.jp/HOME/kodama/knot.html[11] Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), 361-380. | MR | Zbl
,[12] A twisted invariant for finitely presentable groups, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 143-145. | MR | Zbl
,[13] Twisted Alexander polynomial for the braid group, Bull. Austral. Math. Soc. 64 (2001), 1-13. | MR | Zbl
,[14] “Knot Groups”, Annals of Mathematics Studies, No. 56, Princeton University Press, Princeton, N.J., 1965. | MR | Zbl
,[15] Nonabelian representations of -bridge knot groups, Quarterly J. Math. Oxford (2) 35 (1984), 191-208. | MR | Zbl
,[16] Twisted Alexander polynomial for the Lawrence-Krammer representation, Bull. Austral. Math. Soc. 70 (2004), 67-71. | MR | Zbl
,[17] Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241-256. | MR | Zbl
,