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On the Interior Boundary-Value Problem for the Stationary
Povzner Equation with Hard and Soft Interactions

VLADISLAV A. PANFEROV

Abstract. The Povzner equation is a version of the nonlinear Boltzmann equation,
in which the collision operator is mollified in the space variable. The existence
of stationary solutions in L1 is established for a class of stationary boundary-
value problems in bounded domains with smooth boundaries, without convexity
assumptions. The results are obtained for a general type of collision kernels with
angular cutoff. Boundary conditions of the diffuse reflection type, as well as
the given incoming profile, are treated. The method is based on establishing the
weak compactness of approximate solutions by using estimates of the entropy
production.
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1. – Introduction

The subject of this study is a modification of the nonlinear Boltzmann
equation, introduced by A. Y. Povzner in 1962 [33]. The classical Boltzmann
equation, which plays a fundamental role in the physical theory, is also a well-
known source of challenging problems for analysts. Many of the difficulties
associated to that equation arise because of the discrepancy between the ‘natural’
a priori bounds for solutions and the structure of the equation. More specifically,
the available bounds for the mass, energy and entropy of solutions are not
sufficient to define the collision term in the equation as a function from a
suitable function class. As a consequence, in the present theory, solutions
corresponding to a general type of initial data have to be defined in a rather
weak, renormalized sense (see [2], [14], [18] for a discussion of renormalized
and other equivalent forms of solutions).

These difficulties become especially apparent in the analysis of boundary-
value problems, and particularly so in the stationary case, when, as we discuss
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later, there are fewer a priori estimates available. The source of the problems
is mainly in the particular structure of the collision term which involves the
product of the solution (which is, a priori, a mass density function with some
‘mild’ regularity) by its value at a different velocity, but at the same point in the
physical space (this corresponds to the assumption that collisions are localized
in space). While the local type of the interactions is part of the Boltzmann
model (and is also dictated by the Boltzmann-Grad limit) there are other well-
known models of collisions in which the pointwise product is replaced by a
different structure. One such model is the Enskog equation for a dense gas of
hard spheres [3], [33], [34]. The Povzner equation is another closely related
model, in which the pointwise in x product of the mass-density functions is
replaced by their tensor product (which thereby allows collisions of particles at
different points in the physical space).

The structure of the Povzner collision operator makes it a much more
friendly object from the point of view of apriori bounds. This fact was recently
used by Arkeryd and Nouri [7] in the context of stationary boundary-value
problems. Their results concern L1 solutions for steady Povzner equations under
rather restrictive assumptions on the collision kernels, in domains with convex
geometry. The aim of this paper is to extend the results in [7] to a more
general setting. We show that solutions with similar properties can be obtained
for ‘realistic’ collision operators of both ‘hard’ and ‘soft’ type, in non-convex
domains, for a general class of diffuse reflection operators. We also show a
solution of the problem with given incoming profile of the distribution on
the boundary.

Apart from the motivation presented by the paper [7], the Povzner equation
is an interesting object on its own right. While the model itself was originally
not introduced with any specific particle system in mind, a useful interpretation
of such an equation was later found by Cercignani [12], who obtained a Povzner-
type equation in the Grad’s limit for a system of ‘soft’ spheres, interacting at
a stochastic distance. Hydrodynamic limits of such a particle system were
studied by Lachowicz and Pulvirenti [26], who showed the convergence to the
solutions of the Euler system. Finally, an important motivation for Povzner-type
equations comes from the particle methods in rarefied gas dynamics. Indeed,
in typical numerical schemes collisions occur between particles in cells, and
therefore the physical collision process is necessarily delocalized. The limiting
equations appearing in the convergence analysis of such schemes also involve
spatial delocalization of the collision process [11], [25], [37] (they typically
include even stronger mollifications than the Povzner equation).

Stationary problems for nonlinear kinetic equations have been studied ex-
tensively in the recent years. Existence and stability results in situations close
to equilibrium have been known for a long time [21], [27], [28], [31], [36].
Important results have also been obtained for discrete-velocity models [15], [16]
and for the Boltzmann equation for large Knudsen numbers [24], [28]. More
recently, stationary solutions for Boltzmann equation in slab geometry, with
large data were obtained in measure setting [4], [13] and in L1 setting [6], [8].
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Stationary solutions for the Boltzmann equation in general space dimension,
with given incoming profile were recently obtained by Arkeryd [1] and Arkeryd
and Nouri [9]. The above results for the Boltzmann equation rely on certain
truncations for small speeds, which are not needed in the case of the Povzner
equation (the truncation can also be removed in case of one space dimension for
the Boltzmann equation). Time-dependent solutions for the Povzner equations
have been studied in [10], [23], [33].

The key technique of the paper is based on the weak L1 compactness
of solutions which is obtained via the entropy production analysis of Arkeryd
and Nouri [5], [6], [7], [8]. This approach yields L1 solutions which satisfy
the equation in the renormalized sense, and it generally does not promise the
solutions to be unique. In the ‘hard’ interactions case an apriori bound in L1

for the collision term is available, and the equation is satisfied in a regular
weak sense (see Section 2). In the ‘soft’ interactions case this improved reg-
ularity is not available. However, we are able to show that solutions satisfy
the iterated integral form as in [2] with ‘correct’ boundary terms (the boundary
conditions are thereby satisfied almost everywhere). To obtain this result we
use a recent technique by Mischler [29], which in the present case yields the
weak compactness of the boundary traces.

The structure of the paper is as follows. Section 2 presents the model and
formulates the main results of the paper (Theorems 2.1–2.3). Section 3 discusses
the basic a priori bounds for the total energy and the entropy production of
solutions. In Section 4 solutions for a truncated problem are constructed, which
will later allow to pass to the limit in the equations and to find solutions of the
original problem. Section 5 deals with a priori lower bounds for solutions in
domains with nonconvex geometry. Section 6 contains the weak compactness
analysis based on the entropy production estimates. The final step establishing
the weak compactness in x (Lemma 6.6) is based on an averaging lemma type
argument similar to [20] which was obtained by the author independently in
[31]. This argument is the key to the result for ‘soft’ interactions. The last
section is devoted to proofs of Theorems 2.1, 2.2 and 2.3.

Acknowledgements. I would like to express my gratitude to Leif Arkeryd
and Alexei Heintz, for their encouragement and advice. I am also thankful
to Anne Nouri, Miroslaw Lachowicz, Irene Gamba and Reinhard Illner who
contributed with suggestions and support.

2. – Formulation of the problem and main results

We study a model problem describing the mass density function f for
a gas in a vessel �, with generally non-constant boundary temperature. The
function f is nonnegative and satisfies the following stationary Povzner equation

(2.1) v · ∇x f = Q( f, f ), (x, v) ∈ � × R
3 .
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We assume that � is a bounded domain in R
3, with smooth boundary ∂�. The

Povzner collision operator Q( f, f ) can be written as follows:

(2.2) Q( f, f ) = Q+( f, f ) − Q−( f, f ) ,

where Q−( f, f ) = f ν( f ) is the loss term,

(2.3) ν( f ) =
∫∫

�×R3
f (y, v∗) χ{(v−v∗)·ωxy<0} B(x, v, y, v∗) dy dv∗

is the integral collision frequency, and Q+ is the gain term, defined as follows:

(2.4) Q+( f, f )=
∫∫

�×R3
f (x, v′) f (y, v′

∗)χ{(v−v∗)·ωxy>0} B(x, v, y, v∗) dy dv∗ .

Here, ωxy = (x − y)/|x − y|, is the unit vector defining the impact parameter,
and v′ and v′

∗ denote the pre-collisional velocities, given by the formulas

(2.5) v′ = v − ωxy(ωxy · (v − v∗)), v′
∗ = v∗ + ωxy(ωxy · (v − v∗)) .

Notice, that the conditions (v − v∗) · ωxy < 0 and (v − v∗) · ωxy > 0 in (2.3)
and (2.4) correspond to the (physically meaningful) assumptions that particles
should be approaching each other before the collision and running away from
each other afterwards. We insist on keeping the χ factors in the definition of
the collision terms because of their physical meaning, and also since they will
play a crucial role for establishing a priori bounds for the total energy of the
solutions.

The kernel B in (2.3) and (2.4) describes the rate of collisions for pairs
of particles at points (x, v) and (y, v∗) in the phase space. By its physical
meaning it is nonnegative, and satisfies the symmetry relations

(2.6) B(x, v, y, v∗) = B(y, v∗, x, v) = B(x, v′, y, v′
∗) ,

expressing the facts that the particles are interchangeable and the collision pro-
cess is reversible. We allow functions B of the form

(2.7) B(x, v, y, v∗) = b(x, y) B(ωxy, v − v∗) ,

where b(x, y) is a mollifier and B(ω, v − v∗) is a collision kernel of the Boltz-
mann equation [14]. More precisely, we assume that b(x, y) is a bounded
symmetric function on � × � which satisfies the following support condition:
there are constants c0 > 0 and c1 > 0, such that for all x ∈ �

(2.8) b(x, y) ≥ c0 > 0, for all y ∈ � ∩ {|x − y| ≤ c1} .
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We take the kernel B(ω, v − v∗) corresponding to the inverse power potentials
with Grad’s cutoff:

(2.9) B(ω, v − v∗) = |v − v∗|β h
(∣∣∣∣ (ω, v∗ − v)

|v∗ − v|
∣∣∣∣
)

,

where −3 < β < 2, and h is a nonnegative function in L∞(0, 1) which for
every ε > 0 satisfies

(2.10) h(z) ≥ cε > 0, outside a set of measure ε in (0, 1) .

(The condition h ∈ L∞(0, 1), motivated by the example of ‘hard spheres’,
could be replaced by a less restrictive integral type condition, to the price of
introducing additional technical arguments in the proofs.) We distinguish the
cases of ‘soft’ interactions, when −3 < β < 0 and ‘hard’ interactions for
0 ≤ β < 2 (the case β = 0 is also known as pseudo-maxwellian molecules).

The Povzner collision operator reduces formally to the Enskog one (with
the constant density factors) if we set

(2.11) β = 1, h(x) = d2x, b(x, y) = 1

|x − y| δ

(
|x − y|2

2
− d2

2

)
,

where d = const is the diameter of the particles and δ is the one-dimensional
Dirac delta function (the six-fold integration in (2.3) and (2.4) then reduces to
a five-fold integration). The Boltzmann operator is obtained by setting d = 0
in the last of the formulas (2.11).

We assume the boundary ∂� to be a surface of class C1 satisfying the
following mild regularity condition: for all θ ∈ (0, 1) there exists d = dθ > 0
such that

(2.12)
for all x ∈ ∂� the cone

Cθ,d(x) = {
x ′∣∣|x ′ − x | ≤ d, (x ′ − x) · nx > θ |x ′ − x |} ⊆ � .

(The above condition is automatically satisfied, for instance, when the boundary
is a Lyapunov surface, see e.g. [22]). The notation nx will be used for the
inward normal vector field on ∂�. It is convenient to split the boundary in the
phase space � × R

3 into two parts: the ‘incoming’ ∂�+ and the ‘outcoming’
∂�−, defined as follows:

∂�± = {(x, v) ∈ ∂� × R
3 | ± (v · nx) > 0} .

We will look for nonnegative, integrable solutions of (2.1) for which we would
like to specify a priori the total mass or, more generally, the quantity

(2.13)
∫∫

�×R3
f (x, v) w(x, v) dx dv ,
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where w(x, v) is a suitable weight function (for ‘hard’ forces, it will be con-
venient to choose w(x, v) = (1 + |v|2)β/2, where β is the exponent in (2.9)).
We shall also assume (and subsequently prove) that solutions have boundary
traces (see, e.g. [35]) on ∂�+ and ∂�−, denoted by f+ and f−, respectively,
which are integrable with respect to the measure |v · nx | dσx dv, where dσx is
the surface area measure on ∂�. Integrals with respect to |v · nx | dσx dv have
physical meaning of boundary fluxes.

We study the following two types of boundary conditions. The first one is
a condition of diffuse reflection type, formulated as follows:

(2.14) f+ = R f−, (x, v) ∈ ∂�+ ,

where R is a linear integral operator of the following type:

(2.15) R f−(x, v) = |v · nx |−1
∫

w·nx <0
k(x, v, w) f−(x, w) |w · nx | dw ,

for (x, v) ∈ ∂�+. The kernel k(x, v, w) is assumed to be nonnegative and
satisfy the following assumptions (cf. [14]).

A) The mass conservation condition

(2.16)
∫

v·nx >0
k(x, v, w) dv = 1

is assumed to hold for all (x, w) ∈ ∂�−.

B) There are two half-space Maxwellians, M+
w (x, v) and M−

w (x, v), with tem-
peratures bounded away from zero and from above, such that

(2.17) M+
w = RM−

w , (x, v) ∈ ∂�+ .

Notice that using (2.16) and the homogeneity of (2.14) we can assume,
without restricting the generality∫

v·nx >0
M+

w (x, v) |v · nx | dv =
∫

w·nx <0
M−

w (x, w) |w · nx | dw = 1, x ∈ � .

Therefore, we can write

(2.18) M±
w (x, v) = ϑ2

±(x)

2π
e− 1

2 ϑ±(x) |v|2 ,

where ϑ±(x) are the inverse temperatures of M±
w , which may in general

be different functions of x .

C) Finally, we assume that for every x ∈ ∂�, v · nx > 0 and w · nx < 0,

(2.19) |v · nx | 1(|v|) ≤ k(x, v, w) ≤ |v · nx | 2(|v|) ,
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where 1(|v|) and 2(|v|) are Maxwellians with positive densities and
temperatures. A classical example of the boundary operator R of the above
type is the Maxwellian diffuse reflection [14], in which case k(x, v, w) =
|v · nx | M+

w (x, v).

The second, simpler type of boundary condition allows us to specify the
‘incoming profile’ of the solution. In this case,

(2.20) f+(x, v) = γ fb(x, v), (x, v) ∈ ∂�+ ,

where fb is a given function satisfying

(2.21)
∫∫

∂�+
fb(x, v)

(
1 + |v|2 + log fb(x, v)

) |v · nx | dσx dv ≤ C ,

and γ > 0 is a constant, which we have to leave free, since we would like to
specify the value for the functional (2.13). This type of boundary conditions
was studied in [5], [6], [8].

The transport operator on the left-hand side of (2.1) can be easily inverted by
integration along characteristics, which are the straight lines passing through x ,
in the direction of v. We set

(2.22) f �(x, v, s) = f (x + vs, v)

(and often abbreviate the above notation by writing f �(s) or simply f �) and
define the forward and backward stay times s− and s+ according to

s±(x, v) = inf
{

s > 0
∣∣ (x ∓ sv, v) ∈ ∂�±}

.

Then v · ∇x f = d
ds f �, and we obtain by integration the following mild form

(2.23) f �(t) = f �(s) +
∫ t

s
Q( f, f )�(τ ) dτ ,

for every (x, v) ∈ � × R
3 and every −s+ < s < t < s−. Further, using the

splitting of Q( f, f ) into the gain and loss terms (2.2), we obtain the so-called
exponential form,

(2.24) f �(t) = f �(s) e−
∫ t

s
ν( f )� dτ +

∫ t

s
Q+( f, f )�(τ ) e−

∫ t
τ

ν( f )� du dτ ,

for (x, v) ∈ � × R
3 and for −s+ < s < t < s−. Since the ‘gain’ operator

Q+( f, f ) in (2.24) is nonnegative, by setting in (2.24) t = s− and s = −s+
and denoting x+ = x − s+(x, v)v and x− = x + s−(x, v)v, we obtain the
following inequalities

(2.25) f+(x+, v) e
−

∫ 0
−s+(x,v)

ν( f )� dτ ≤ f (x, v) ≤ f−(x−, v)e
∫ s−(x,v)

0
ν( f )� dτ

.
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These inequalities are an important tool in the analysis, allowing comparison
of the values of the solution inside the domain with the boundary traces.

In order to control the exponential factors in (2.25) it is desirable to have
suitable bounds for the collision frequency ν( f ). In the case of ‘hard’ forces,
when β ≥ 0 in (2.9) and the kernel B(x, v, y, v∗) is locally bounded, a bound
in a weighted L∞ space is readily available. More precisely, we have

(2.26) sup
x∈�

{
ν( f )(x, v) (1 + |v|2)−β/2} ≤ C

∫∫
�×R3

f (x, v) (1 + |v|2)β/2 dx dv .

In the case of ‘soft’ forces, the collision frequency is generally not locally
bounded, but a weaker estimate is available: for every R > 0,

(2.27)
∫

|v|≤R

{
sup
x∈�

ν( f )(x, v)
}

dv ≤ CR

∫∫
�×R3

f (x, v) dx dv .

The latter estimate can be interpreted as follows (using an argument based
on Chebyshev’s inequality): for |v| ≤ R the collision frequency is bounded
uniformly outside a set of velocities of ‘small’ measure in {|v| ≤ R}.

If the solution f is integrable and satisfies suitable decay conditions for v

large, and if in addition Q( f, f ) is integrable as a function of x and v, we
obtain the following integral identity by using Green’s formula for the boundary
traces (cf. [35]). For every test function ψ ∈ L∞(� × R

3) such that v · ∇xψ ∈
L∞(� × R

3), we get

(2.28)

∫∫
∂�−

f−ψ− |v · nx | dσx dv −
∫∫

�×R3
f v · ∇xψ dx dv

=
∫∫

∂�+
f+ψ+ |v · nx | dσx dv +

∫∫
�×R3

Q( f, f ) ψ dx dv ,

where dσx denotes the surface measure on ∂�. The above identity can be used
to define weak solutions of (2.1) under the condition that Q( f, f ) ∈ L1(�×R

3).
Namely, we say that a function f ∈ L1(� × R

3) is such a solution if (2.28)
holds for every test function ψ satisfying the two above conditions.

However, the integrability of the collision term should not be taken for
granted: in fact, we are only able to prove it in the case of ‘hard’ or pseudo-
Maxwellian interactions, when β ≥ 0 in (2.9). In the case of ‘soft’ interactions,
when β < 0, we generally only have ν( f ) ∈ L1

loc(�×R
3), and correspondingly,

Q( f, f )/(1 + f ) ∈ L1
loc(� × R

3). Therefore, the solutions in this case can
be defined in the renormalized sense [18], which in fact implies that (2.23)
and (2.24) hold ‘for almost all characteristics’, but which is not enough for the
last term in (2.28) to make sense for all ψ . Instead of working directly with
renormalized solutions in this case we prefer to use a weakened form of (2.28),
similar to the one used in [2] which is obtained as follows.

We notice that every characteristic of (2.1) is uniquely determined by spec-
ifying a pair (x, v), where x ∈ ∂� and v satisfies (v · nx) < 0 (or (v · nx) > 0:
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this gives a different parameterization). We can therefore identify the charac-
teristics with the points of either ∂�− or ∂�+. The natural measure on these
sets is then |v · nx | dσx dv, and we have the identity

(2.29)

∫∫
�×R3

ϕ(x, v) dx dv =
∫∫

∂�−
|v · nx |

∫ 0

−s+(x,v)

ϕ� ds dσx dv

=
∫∫

∂�+
|v · nx |

∫ s−(x,v)

0
ϕ� ds dσx dv ,

for every ϕ ∈ L1(� × R
3), with ϕ� defined by (2.22).

Arguing as in [2], we can show that if Q( f, f )�(x, v, ·) ∈ L1((−s+, s−))

for almost all (x, v) ∈ � × R
3, and if the boundary traces are integrable with

respect to the measure |v · nx | dσx dv, then (2.23) implies the following iterated
integral form

(2.30)

∫∫
∂�−

f−ψ− |v · nx | dσx dv −
∫∫

∂�+
f+ψ+ |v · nx | dσx dv

=
∫∫

�×R3
f v · ∇xψdxdv+

∫∫
∂�−

|v · nx |
∫ 0

−s+(x,v)

Q( f, f )�ψ�dsdσx dv

for every ψ ∈ L∞(� × R
3) for which also v · ∇xψ ∈ L∞(� × R

3). Conversely,
if the above identity is true for all ψ satisfying the above conditions, then f
satisfies the equation in the mild and the exponential form. Identity (2.30) is
thereby a weakened version of (2.28): in (2.30) we do not require integrability
of Q( f, f ) on �× R

3, but rather the integrability of
∫ 0
−s+(x,v) Q( f, f )� ds over

the space of characteristics.
We can now formulate the main results of the paper. The first theorem

concerns the case of the Povzner equation with ‘hard’ interactions and diffuse
reflection boundary conditions.

Theorem 2.1. For every κ > 0, equation (2.1) with the kernel of the type (2.7)–
(2.9) and 0 ≤ β < 2, has nonnegative weak solutions in the sense of the integral
identity (2.28), which satisfy f (1 + |v|2) ∈ L1(� × R

3), Q( f, f ) ∈ L1(� × R
3)

and

(2.31)
∫∫

�×R3
f (x, v)(1 + |v|2)β/2 dx dv = κ .

Moreover, the boundary traces f± are integrable with respect to the measure (1 +
|v|2) |v · nx | dσx dv and satisfy (2.14) almost everywhere on ∂�+.

In the case of ‘soft’ interactions we obtain solutions in the weaker sense
given by the iterated integral form (2.30); however, we do not have to include
the moment of order β in the normalization condition. The precise formulation
is as follows.
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Theorem 2.2. Under the assumptions of Theorem 2.1 in the case −3 < β < 0,

for every κ > 0 there exist nonnegative solutions in the sense of identity (2.30), such
that f (1 + |v|2) ∈ L1(� × R

3) and

(2.32)
∫∫

�×R3
f (x, v) dx dv = κ .

In addition, the boundary traces f± are integrable with respect to the measure
(1 + |v|2) |v · nx | dσx dv and satisfy (2.14) almost everywhere on ∂�+.

Finally, we formulate the results for the incoming profile boundary condi-
tion (2.20).

Theorem 2.3. Let fb be a nonnegative function satisfying conditions (2.21),

and assume that there is an R > 0 such that for every ε > 0,

fb(x+(x, v), v) ≥ cε > 0

pointwise in x ∈ � and for v outside a set of volume ε in {|v| ≤ R}. For every κ > 0,

there exist nonnegative solutions f (1+|v|2) ∈ L1(�×R
3) of equation (2.1), which

satisfy the normalization condition (2.31) if 0 ≤ β < 2 and (2.32) if −3 < β < 0.
The boundary traces f± are integrable with respect to the measure (1 + |v|2) |v ·
nx | dσx dv and satisfy the boundary condition (2.20), with constant γ dependent on
κ, almost everywhere on ∂�+.

3. – Basic a priori bounds

The theory of weak solutions for nonlinear kinetic equations is based on
using certain ‘physical’ a priori bounds, namely those expressing conservation
of mass, momentum, energy, and the entropy production [14]. In general,
only some of the bounds applying to the time-dependent case give meaningful
information about solutions of the steady problem. One especially notable
‘omission’ is the lack of simple a priori bounds for the total mass in terms of
the boundary data, which is not surprising given the structure of the equation, but
which makes the analysis significantly harder. In what follows fundamental role
will be played by the entropy production functional, which is to be expected,
since it determines the time-evolution of a Lyapunov functional in the time-
dependent case. Another important bound may be obtained in a limit of the
time-evolution of the functional

∫∫
�×R3(x ·v) f dx dv (we provide a more direct

argument that applies in the steady case in Lemma 3.1). This bound provides
an a priori estimate for the total kinetic energy.

The following weak form of the collision operator will play the key role in
establishing the a priori bounds (and indeed it may be accepted as an alternative
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definition of the collision term). For every suitable test function ψ(x, v) we
have

(3.1)

∫∫
�×R3

Q( f, f ) ψ dx dv

=
∫∫

(�×R3)2
f f∗ (ψ ′ − ψ) χ{(v−v∗)·ωxy<0} B dy dv∗dx dv ,

where we used shorthand notations f = f (x, v), ψ = ψ(x, v), f∗ = f (y, v∗),
and ψ ′ = ψ(x, v′). The above weak form is obtained by the change of variables
(v, v∗) �→ (v′, v′

∗) in the integral corresponding to Q+( f, f ). Performing another
change of variables, (x, v, y, v∗) �→ (y, v∗, x, v) and using the invariance of the
product f f∗ and the χ function, we obtain the following symmetrized version
of (3.1):

(3.2)
1

2

∫∫
(�×R3)2

f f∗ (ψ ′ + ψ ′
∗ − ψ − ψ∗) χ{(v−v∗)·ωxy<0} B dy dv∗dx dv ,

where we also set ψ ′
∗ = ψ(x, v′

∗) and ψ∗ = ψ(x, v∗). Setting ψ = 1, vi and
|v|2, where vi , i = 1, 2, 3, denote the components of the velocity vector, we see
that, formally, the collision term Q( f, f ) satisfies the global in x conservation
of mass, momentum and energy (in fact, the conservation of mass holds locally,
as can be observed from (3.1)).

Another important idea that we will use below is to introduce an (artificial)
absorption term in the equation, considering the following modified version
of (2.1):

(3.3) v · ∇x f + α f = Q( f, f ) ,

where α > 0 is a constant. Solutions of the original problem will be obtained
by taking the limit α → 0 in (3.3). Equation (3.3) is in certain aspects ‘nicer’
than the original equation (2.1), and can be used to obtain solutions of (2.1)
by letting α tend to zero. This approach has also been used in [1], [6], [9].

The presence of the absorption with α > 0 will modify the mass balance;
therefore, we account for this in the boundary condition (in the diffuse reflection
case) by replacing (2.14) by the following modified version:

(3.4) f+ = R f− + g , (x, v) ∈ ∂�+ .

Here g = g(x, v) is a source term proportional to the total mass, which is
defined as follows

(3.5) g(x, v) = α S(x, v)

∫∫
�×R3

f dx dv, (x, v) ∈ ∂�+ ,

and S is a bounded smooth function on ∂�+, rapidly decaying for |v| large,
which satisfies

(3.6)
∫∫

∂�+
S(x, v) |v · nx | dσx dv = 1 .

Our first result is the following bound for the total energy of the solutions.
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Lemma 3.1. Assume that f is a sufficiently regular solution of (3.3) with α ≥ 0,

such that f (1 + |v|2) ∈ L1(� × R
3) and Q( f, f )(1 + |v|2) ∈ L1(� × R

3). Then∫∫
�×R3

f |v|2 dx dv +
∫∫

�×R3
Q( f, f )(x · v) dx dv

≤ D
∫∫

∂�+
f+ (1 + |v|2) |v · nx | dσx dv ,

where D is the diameter of �.

Remark.
1) We notice at once that the second term on the left-hand side of the above

estimate is nonnegative (it is identically zero in the case of the Boltzmann
equation). To see this, use the symmetrized form (3.2) and notice that

x · v′ + y · v′
∗ − x · v − y · v∗ = −(x − y)ωxy(ωxy · (v − v∗))

= −|x − y| (ωxy · (v − v∗)) ≥ 0 ,

for the ‘physical’ collisions that satisfy (v − v∗) · ωxy < 0 (cf. also [19,
page 295]).

2) The term with the integral of the collision operator was overlooked in [7]:
their argument in Section 4 is incomplete and could be fixed either in the
manner of this paper (notice that then the collision term and entropy pro-
duction functional have to be modified) or by estimating the remainder term
(which would require changing the normalization of solutions to account
for an extra power of |v|).
For the reader’s convenience we give a complete proof of the estimate in

the lemma.
Proof. Using the weak form (2.28) with ψ = (x · v) we obtain

(3.7)

∫∫
�×R3

f |v|2 dx dv +
∫∫

�×R3
Q( f, f ) (x · v) dx dv

= α

∫∫
�×R3

f (x · v) dx dv

+
∫∫

∂�−
f− (x · v) |v · nx | dσx dv

−
∫∫

∂�+
f+ (x · v) |v · nx | dσx dv .

Using the global momentum conservation, for every x0 ∈ � fixed, we can
replace x in every term on the right-hand side by x − x0. The right-hand side
of (3.7) can then be estimated as

D
∫∫

∂�+
f+(1 + |v|2) |v · nx | dσx dv
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by using the inequality

|(e · v)| ≤ 1

2
(1 + |v|2), with e = x − x0

|x − x0| ,

and the relation∫∫
∂�−

f− (1 + |v|2) |v · nx | dσx dv + α

∫∫
�×R3

f (1 + |v|2) dx dv

=
∫∫

∂�+
f+(1 + |v|2) |v · nx | dσx dv ,

which follows by applying the mass and energy conservation in the weak
form (2.28) with ψ = 1 + |v|2.

Remark. The right-hand side of the estimate of the lemma can be simplified
further in the case of the diffuse reflection boundary condition (3.4) (or the
original form (2.14)). Indeed, as a consequence of the mass conservation we
have∫∫

∂�+
f+ |v · nx | dσx dv =

∫∫
∂�−

f− |v · nx | dσx dv + α

∫∫
�×R3

f dx dv ,

and using (2.19) and estimating the |v|2-moment of S by a constant we obtain∫∫
∂�+

f+ |v|2 |v · nx | dσx dv≤C1

∫∫
∂�−

f− |v · nx | dσx dv + C2 α

∫∫
�×R3

f dx dv

≤ C
∫∫

∂�+
f+ |v · nx | dσx dv .

Thus, the term with the energy inflow on the right hand side of the estimate
of the lemma can be estimated by the mass inflow.

We further look for the bounds of the entropy
∫∫

�×R3 f log f dx dv and
the entropy production functional

∫∫
�×R3 e( f, f ) dx dv, where

(3.8) e( f, f ) = 1

2

∫∫
�×R3

f f∗
(

f ′ f ′
∗

f f∗
− log

f ′ f ′
∗

f f∗
− 1

)
χ{(v−v∗)·ωxy<0} B dy dv∗

is the local entropy production (in the Enskog equation case (2.11), for the
time-dependent problem, this functional determines the evolution of an entropy
functional of the type introduced by Résibois [33], see also [3]). We notice
that the integrand in (3.8) is nonnegative, and moreover, using (3.2) and the
elementary inequality t log(s/t) ≤ s − t , we find∫∫

�×R3
Q( f, f ) log f dx dv

= 1

2

∫∫
(�×R3)2

f f∗ log
f ′ f ′

∗
f f∗

χ{(v−v∗)·ωxy<0} B dx dv dy dv∗

≤ 1

2

∫∫
(�×R3)2

( f ′ f ′
∗ − f f∗) χ{(v−v∗)·ωxy<0} B dx dv dy dv∗ .
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Using this property in the weak form (2.28) with ψ = log f we obtain

(3.9)

∫∫
�×R3

e( f, f ) dx dv + α

∫∫
�×R3

f log f dx dv

+
∫∫

∂�−
f− log f− |v · nx | dσx dv ≤

∫∫
∂�+

f+ log f+ |v · nx | dσx dv ,

which implies uniform in α bounds for the entropy production and the entropy
outflow and, for α > 0, an α-dependent bound for the entropy, provided we
have control of the entropy inflow.

Inequality (3.9) is sufficient to provide the desired bounds for the solutions
(and the boundary traces) in the case of the given inflow boundary condi-
tion (2.20). In the diffuse reflection case (2.14) the term with the entropy
inflow in (3.9) generally has to be estimated; a simple and elegant approach
that allows one to do so is based on the Darrozes-Guiraud inequality [17].
To this end, set �(s) = s log s and define the Darrozes-Guiraud information
(cf. [29]):

(3.10) EMw( f ) = R
(

M−
w �

(
f−

M−
w

))
− M+

w �

(
f+ − g

M+
w

)
, (x, v) ∈ ∂�+ .

Then EMw( f ) is a nonnegative quantity, as can be easily verified by applying
Jensen’s inequality to the function �(s) with the measure

k(x, v, w)
|w · nx | M−

w (x, w)

|v · nx | M+
w (x, v)

dw

which satisfies the unit measure condition in view of (2.17). We then establish
the following a priori estimate.

Lemma 3.2. Assume that f is a sufficiently regular solution of (3.3) with α ≥ 0,

such that f (1+|v|2+log f ) ∈ L1(�×R
3) and Q( f, f )(1+|v|2+log f ) ∈ L1(�×

R
3). Assume also that f satisfies the boundary condition (3.4) with the boundary

operator (2.15) satisfying the conditions (2.16)–(2.19) and with g bounded and
having two moments in L1(∂�+, |v · nx | dσx dv). Then

∫∫
�×R3

e( f, f ) dx dv + α

∫∫
�×R3

f log f dx dv

+
∫∫

∂�+
EMw( f ) |v · nx | dσx dv ≤ C

(
1 +

∫∫
∂�+

f+ |v · nx | dσx dv

)
,

with the constant C depending on M+
w , M−

w and the bounds of g only.
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Remark. The estimate of the lemma remains in effect also for α = 0,
in which case we do not have an estimate for the entropy, but we retain the
bounds for the entropy production and the Darrozes-Guiraud information.

Proof. Multiplying (3.3) by log f and integrating over � × R
3 yields

∫∫
�×R3

e( f, f ) dx dv + α

∫∫
�×R3

f log f dx dv

=
∫∫

∂�+
f+ log f+ |v · nx | dσx dv −

∫∫
∂�−

f− log f− |v · nx | dσx dv

=
∫∫

∂�+
M+

w �

(
f+ − g

M+
w

)
|v · nx | dσx dv −

∫∫
∂�−

M−
w �

(
f−

M−
w

)
|v · nx | dσx dv

+
∫∫

∂�+
M+

w �

(
f+

M+
w

)
|v · nx | dσx dv −

∫∫
∂�+

M+
w �

(
f+ − g

M+
w

)
|v · nx | dσx dv

+
∫∫

∂�+
f+ log M+

w |v · nx | dσx dv −
∫∫

∂�−
f− log M−

w |v · nx | dσx dv ,

where �(s) = s log s. We next see that the difference of the first two terms on
the right-hand side equals

−
∫∫

∂�+
EMw( f ) |v · nx | dσx dv .

To estimate the logarithms of the boundary Maxwellians we recall (2.18) and
write

| log M±
w | ≤ 1

2
ϑ±(x) |v|2 + 2| log ϑ±(x)| ≤ C1(1 + |v|2) ,

where C1 is a constant depending on the maximum and minimum of ϑ±(x).
Then, the last two terms in the above identity are estimated as

C1

(∫∫
∂�+

f+(1 + |v|2) |v · nx | dσx dv +
∫∫

∂�−
f− (1 + |v|2) |v · nx | dσx dv

)

≤ 2C1

∫∫
∂�+

f+ (1 + |v|2) |v · nx | dσx dv

≤ C
(∫∫

∂�+
f+ |v · nx | dσx dv +

∫∫
∂�+

g (1 + |v|2) |v · nx | dσx dv

)
,

the last inequality following because of the condition (2.16). For the remaining
two terms we apply the elementary inequalities

y log y − (y − s) log (y − s) ≤ s(1 + log y) ,



786 VLADISLAV A. PANFEROV

for all y > s and 1+ log x ≤ x , for x > 0. Setting y = f+/M+
w and s = g/M+

w
we get

∫∫
∂�+

M+
w �

(
f+

M+
w

)
|v · nx | dσx dv −

∫∫
∂�+

M+
w �

(
f+ − g

M+
w

)
|v · nx | dσx dv

≤
∫∫

∂�+
g
(

1+ log
f+

M+
w

)
|v · nx | dσx dv ≤

∫∫
∂�+

g
(

f+ − log M+
w

) |v · nx | dσx dv

≤ C3

∫∫
∂�+

f+ |v · nx | dσx dv + C1

∫∫
∂�+

g (1 + |v|2) |v · nx | dσx dv

≤ C
(

1 +
∫∫

∂�+
f+ |v · nx | dσx dv

)
,

where C3 and C are constants depending on sup g and
∫∫

∂�+ g (1 + |v|2) |v ·
nx | dσx dv. Gathering the above estimated we complete the proof of the
lemma.

The structure of the a priori bounds obtained in the previous two lemmas
prompts the following general remarks. The integral quantities associated to the
solutions in the volume (such as the total energy and the total entropy produc-
tion) are controlled by the boundary inflows (the total inflow of the mass, in
case of the diffuse reflection boundary condition). Therefore, a ‘natural’ formu-
lation of the problem suggested by these bounds would be to look for solutions
f (x, v) which satisfy the condition of prescribed data on the ‘incoming’ part
of the boundary. However, there seems to be an intrinsic difficulty associated
with this approach, since by prescribing the boundary data one generally cannot
control the total mass of the solutions. In particular, in such a formulation we
cannot exclude the possibility of concentrations of mass for small velocities (the
rest of the velocity space can be accounted for using the energy estimate). Such
a difficulty does not appear if we prescribe the total mass of the solutions, or
its weighted analog (2.31), but in that case we need to find a way to control
the boundary inflows appearing in the a priori bounds. For this purpose, in [7]
a certain transformation involving the x variable and the total mass of the so-
lutions was used. Here we shall apply the following simple (and more general)
argument based on homogeneity.

Suppose that for given α ≥ 0 and S satisfying (3.6), equation (3.3) with
the boundary condition (3.4) admits a solution f (x, v) which, for certain κ > 0,
satisfies

(3.11) µ( f ) =
∫∫

�×R3
f (1 + |v|2)β′/2 dx dv = κ ,

where β ′ = max(0, β), and such that for certain λ > 0,

∫∫
∂�+

f+ |v · nx | dσx dv = λ .
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By taking F(x, v) = f (x, v)/λ we then get a function with the unit total mass
inflow which also satisfies µ(F) = κ/λ. We also notice that, by homogeneity,
F solves the following boundary-value problem

(3.12)

v · ∇x F + αF = κ

µ(F)
Q(F, F), (x, v) ∈ � × R

3

F+ = RF− + α S
∫∫

�×R3
F dx dv, (x, v) ∈ ∂�+ .

Conversely, suppose that for every κ > 0 we are able to find a solution of the
problem (3.12), with µ(F) > 0, subject to the condition

(3.13)
∫∫

∂�+
F+ |v · nx | dσx dv = 1 .

Then the function f = κ F/µ(F) solves the problem (3.3), (3.4) and satisfies
the normalizing condition (3.11). The total inflow for the solution f is then, for
fixed κ , inversely proportional to the weighted mass of solution to the auxiliary
problem (3.12), since we have λ = κ/µ(F).

The new formulation (3.12) allows us to avoid some of the difficulties
mentioned above. In particular, the normalization condition (3.13) implies that
the bounds in Lemma 3.1 and 3.2 are expressed in terms of absolute constants,
and the normalizing factor κ/µ(F) in front of the collision term controls the
collision frequency in view of estimates (2.26) and (2.27). We shall therefore
work in this setting, constructing in next section approximating solutions to the
problem (3.12) by introducing certain truncations. Instead of the problem of
controlling the boundary traces we shall then encounter a problem of controlling
the total mass of the normalized solutions F . A solution of this problem will be
achieved in Sections 5 and 6. We shall focus on the case of diffuse reflection
boundary conditions (2.14): the same methodology applies to the problem with
the incoming profile condition (2.20), and we postpone the necessary modifica-
tions until the proof of Theorem 2.3 in Section 7. In the sequel we shall take
κ = 1 in (3.12), without restricting generality.

4. – Solutions of the truncated equations

Following standard methodology, we introduce certain truncations in the
equations, which will allow us to use monotone convergence and fixed point
arguments to construct solutions of the problem. Passing to the limit with
the truncation parameters and using compactness arguments will then allow us
to obtain solutions of the original problem. As a first step, we take in (3.12),
α > 0, fix r > 0 and m > 0 and replace the collision rate function B(x, v, y, v∗)
in (2.3) and (2.4) by the truncated version

(4.1) Brm(x, v, y, v∗) = min
(
m, B(x, v, y, v∗)

)
χr (x, v, y, v∗) ,
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where χr is a cut-off function defined as 0 if min{|v|, |v∗|, |v′|, |v′
∗|} ≤ r and

1 otherwise. Thus, the aim of this section will be to find solutions to the
problem (3.12), with κ = 1, subject to the normalizing condition (3.13), and
with the collision operator Qrm(F, F) obtained by taking (4.1) as a collision
rate function. For definiteness, let us take S in (3.12) to be the boundary
Maxwellian M+

w , so all conditions of Lemma 3.2 are satisfied. In all the sequel
we shall systematically denote families and sequences of solutions either by
a single letter (F , f , etc.) or by a single superscript index, specifying the
dependence on the rest of the parameters only when it is necessary.

We further introduce additional truncation parameters j > 0, i > 0 and
l > 0 and for given λ > 0, µ > 0 satisfying λ+αµ = 1, and given nonnegative
functions f ∈ L1(�×R

3) and g ∈ L1(∂�−, |v·nx | dσx dv) consider the following
problem of linear transport type (a nonlinearity will be introduced by truncation):

(4.2)
v · ∇x F + (α + νj ( f )) F = ϕl ∗ Q+

j (F, f ), (x, v) ∈ � × R
3 ,

F+ = λRi g + αµ S, (x, v) ∈ ∂�+ .

Here ϕl = ϕl(v) is a centered Maxwellian with density one and temperature 1/ l;
νj ( f ) is the regularized collision frequency obtained by replacing B in (2.3) by
a regularized collision rate function Brmj , such that

(4.3)

Brmj = 0 if max(|v|, |v∗|, |v′|, |v′
∗|) > j

Brmj = 0 if min(|v′ − v|, |v′ − v∗|) < 1/j ,

Brmj ∈ C∞ .

We refer to Arkeryd and Nouri [7] for details of defining Brmj in such a way
that the symmetry properties (2.6) are satisfied independently of r , m and j .
The sequence (Brmj ) can be chosen so that, locally, Brmj → Brm as j → ∞,
uniformly outside sets of arbitrarily small measure in (x, v, y, v∗).

The regularized ‘gain’ operator Q+
j (F, f ) in (4.2) is defined as follows:

Q+
j (F, f ) =

∫∫
�×R3

〈F〉j 〈 f∗〉j χ{(v−v∗)·ωxy>0} Brmj dy dv∗

where

〈F〉j = F(x, v)

1 + F(x, v)/( jµ(F))

and 〈 f∗〉j is defined similarly. Notice that for every j > 0 the operation 〈·〉j

is homogeneous of degree one and monotone in the sense that f1 ≥ f2 implies
〈 f1〉j ≥ 〈 f2〉j .

Finally, we set in (4.2)

Ri g (x, v) = |v · nx |−1
∫∫

∂�−
g(y, w) ki (x, v, y, w) |w · ny| dσy dw ,
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where ki is a sequence of mollified kernels, such that for all i > 0, |v · nx |−1 ki

are smooth and bounded, and for all (y, w) ∈ ∂�− and all ϕ ∈ C ∩ L∞(∂�+),

(4.4)
∫∫

∂�+
ki (x, v, y, w) ϕ(x, v) dσx dv −→

i→∞

∫
v·ny>0

k(y, v, w) ϕ(y, v) dv .

In addition we require that for all i > 0 and all (y, w) ∈ ∂�−

(4.5)
∫∫

∂�+
ki (x, v, y, w) dσx dv=1 and

∫∫
∂�+

ki (x, v, y, w)|v|2 dσx dv ≤ C ,

and also that for some ε > 0 and 0 < r1 < r2,

(4.6)
∫∫

{v·nx >ε|v|; r1≤|v|≤r2}
ki (x, v, y, w) dσx dv ≥ c2 .

All of the properties (4.4)–(4.6) are satisfied if we take ki (x, v, y, w) = ψi (x, y)

ϕi (v) ∗ k(y, v, w), where ϕi (v) is a symmetric Maxwellian with unit density,
such that ϕi (v) → δ(v), and ψi (x, v) is a regularizing kernel on ∂� as defined
in [7]. Notice also that in that case Ri satisfy (2.17), with i-dependent boundary
Maxwellians.

To find solutions to problem (4.2) we use the classical iteration scheme in
the exponential form (2.24) (in which α is added to the collision frequency).
We set

U f �(x, v, s) =
∫ s

0
f �(x, v, τ ) dτ ; U± f �(x, v) = U f �(x, v, ∓s±) ,

Eα f (x, v, s) = exp
(
αs + Uνn( f )�

) ; Eα
± f (x, v) = Eα f (x, v, ∓s±) ,

and consider the sequence of iterations:

(4.7)

F0 = 0 ,

Fn+1 = (λRi g + α µ S ) Eα
+ f + U+( ϕl ∗ Q+

j (Fn, f )� Eα f ) ,

n = 0, 1, 2, . . .

It is easily verified that the sequence of functions Fn is pointwise monotone
(notice the monotonicity of Q+

j (F, f )). Using the weak form (2.28) for Fn with
ψ = 1 and noticing that the integral of the collision term in (4.2) is nonpositive,
we get

(4.8)

∫∫
∂�−

(Fn+1)− |v · nx | dσx dv + α

∫∫
�×R3

Fn dx dv

≤ λ

∫∫
∂�−

g |v · nx | dσx dv + α µ

∫∫
∂�+

S |v · nx | dσx dv = 1 .
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Thus, for α > 0 fixed, the total mass of Fn is bounded above by 1/α, and
therefore, by B. Levi’s theorem, the sequence (Fn) converges strongly in L1.
The limit function, which we denote F (and which depends on α, r , m, j and l),
can then easily be shown to satisfy (4.2) in the exponential form (cf. [7]).

We further establish upper and lower bounds for the total mass, energy and
boundary fluxes of solutions F . First of all, passing to the limit in (4.8) we
find that the total mass is bounded above by 1/α and the total mass outflow
cannot exceed 1. Also, using the truncation for |v| > j in (4.3),

F(x, v) = F+(x+, v) exp
(

−
∫ 0

−s+
(ν( f ) + α)� ds

)
, for |v| > j ,

and so,∫∫
�×R3

F |v|2 dx dv ≤ j2
∫∫

�×R3
F dx dv+

∫∫
∂�+

s−(x, v)F+ |v|2 |v · nx | dσx dv

≤ j2

α
+ C(λ + αµ) = Cjα ,

where the constant C depends on the diameter of �, the constant in (4.5)
and the moments of S. To find lower bounds, we first notice that from the
exponential form (2.24),

(4.9) F−(x−, v) ≥ F(x, v) exp

(
−

∫ s−

0
(ν( f ) + α)� ds

)
.

Multiplying by |v| and integrating with respect to (x, v) in � × {|v| > δ}, with
δ a positive constant, yields

D
∫∫

∂�−
F−(x, v) |v · nx | dσx dv ≥ δ e−D(m+α)/δ

∫∫
|v|>δ

F(x, v) dx dv .

In the last integral, we estimate F in terms of F+, using the exponential
form (2.24) and apply the lower bound (4.6). For this take ε > 0 as in (4.6),
choose δ < r1 and d = dε so that the cone Cε,d(x) defined as in (2.12) is
contained in �. We then have

(4.10)

∫∫
|v|>δ

F(x, v) dx dv

≥ e−D(m+α)/δ

∫∫
{|v|>δ; v·nx+>0}

s−(x+, v) F+(x+, v) |v · nx+| dσx+dv

≥ c2 λ
d

r2
e−D(m+α)/δ

∫∫
∂�−

g |v · nx | dσx dv

+ α µ
d

r2

∫∫
{r1≤|v|≤r2; v·nx+>0}

S |v · nx+| dσx+dv

≥ cm(λ + αµ) = cm .
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This allows us to define the operator

T : ( f, g, λ, µ) �→
(

F

µ(F)
,

F−
�−(F−)

,
�−(F−)

�−(F−) + αµ0(F)
,

µ0(F)

�−(F−) + αµ0(F)

)
,

where we set �−(F−) = ∫∫
∂�− F− |v ·nx | dσx dv, µ0(F) = ∫∫

�×R3 F dx dv, and

µ(F) = ∫∫
�×R3 F (1 + |v|2)β′/2 dx dv, where β ′ = max(β, 0). The operator T

maps the bounded convex set

L = {
( f, g, λ, µ) ∈ L1(� × R

3) × L1(∂�−, |v · nx | dσx dv) × [0, 1] × [0, 1/α]∣∣ f ≥ 0, g ≥ 0, µ( f ) = 1, �−(g) = 1, λ + αµ = 1
}

into itself. A fixed point of this operator (after a normalization so that the total
mass inflow is 1) will be a solution of the following boundary-value problem:

(4.11)
v · ∇x F + αF = 1

µ(F)

(
ϕl ∗ Q+

j (F, F) − νj (F) F
)
, (x, v) ∈ � × R

3 ,

F+ = Ri F− + αµ0(F)S

�−(F−) + αµ0(F)
, (x, v) ∈ ∂�+ ,

which will be equivalent to (3.12) (with the r and m truncations) after we take
the limits j → ∞ and i → ∞.

To prove that T indeed has a fixed point in L we shall apply Schauder’s
principle which requires us to verify the continuity and compactness of T .
The continuity can be checked by arguing along the lines of [7], using the
monotonicity of Q+

j (F, f ) and the r and m truncations. The compactness
argument, using the j truncation and the convolution with ϕl , can also be adapted
from [7] with minimal changes. We notice also that the fixed point solutions
will satisfy the upper and lower bounds for the mass, energy and boundary
fluxes established above. We can further use the regularizing properties of the
iterated ‘gain’ term as in [7] and establish that the family of the fixed point
solutions F corresponding to l → ∞ is compact in L1(� × R

3) (for this we
use the smoothness and truncations in (4.3)). We can then pass to the limit
l → ∞ in (4.11) and remove the convolution with ϕl .

It remains to pass to the limit as j → ∞ and then as i → ∞ to recover the
collision operator Qrm containing only the r and m truncations and the original
boundary operator R. We first establish a new bound for the total energy, which
is uniform in i and j . Indeed, the collision term in (4.11) satisfies

∫∫
�×R3

(Q+
j (F, F) − νj (F) F) |v|2 dx dv

=
∫∫

(�×R3)2
(F ′F ′

∗ − 〈F ′〉j 〈F ′
∗〉j ) |v|2 χ{(v−v∗)·ωxy>0} B dy dv∗ dx dv ≤ 0 .
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Using the weak form (2.28) with ψ = |v|2 we then obtain

(4.12)

∫∫
∂�−

F−|v|2 |v · nx | dσx dv + α

∫∫
�×R3

F |v|2 dx dv

≤
∫∫

∂�+
F+|v|2 |v · nx | dσx dv .

Expressing F+ using the boundary condition in (4.11) we find that the right-
hand side of (4.12) can be estimated in terms of the constant in (4.5) and the
second moment of S, which in view of (4.12) implies an α-dependent bound
for the total energy.

We further study the truncated version of the equation for the entropy, for
which we multiply equation (4.11) by log 〈F〉j , integrate, and use (3.8) to get

(4.13)

1

µ(F)

∫∫
�×R3

e(〈F〉j , 〈F〉j ) dx dv + α

∫∫
�×R3

F log 〈F〉j dx dv

≤ 1

µ(F)

∫∫
�×R3

(
εj (F, F) + qj (F, F)

)
dx dv

+
∫∫

∂�+
F+ log〈F+〉j |v · nx | dσx dv

+
∫∫

{∂�−: 〈F−〉j <1}
F−| log〈F−〉j | |v · nx | dσx dv .

Here, the terms εj (F, F) and qj (F, F) appear due to the asymmetry between
the ‘gain’ and ‘loss’ terms and the truncation in the logarithm term:

εj (F, F) = −
∫∫

�×R3
(F F∗ − 〈F〉j 〈F∗〉j ) log 〈F〉j χ{(v−v∗)·ωxy<0} B dy dv∗

and

(4.14)

qj (F, F) = − 1

1 + F/( jµ(F))

∫∫
�×R3

(〈F ′〉j 〈F ′
∗〉j χ{(v−v∗)·ωxy>0}

− F F∗ χ{(v−v∗)·ωxy<0}
)

B dy dv∗

≤ 〈F〉j

∫∫
�×R3

F∗ χ{(v−v∗)·ωxy<0} B dy dv∗ .

Recalling that B = Brmj satisfies B ≤ m, the integral of qj (F, F) is estimated
as m (

∫∫
�×R3 F dx dv)2. Further, the integral of εj (F, F) can be estimated as
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follows:

(4.15)

−
∫∫

(�×R3)2
(F F∗ − 〈F〉j 〈F∗〉j ) log 〈F〉j χ{(v−v∗)·ωxy<0} B dx dv dy dv∗

≤
∫∫

{〈F〉j <1}

(
F F∗ − 〈F〉j 〈F∗〉j

) | log 〈F〉j | χ{(v−v∗)·ωxy<0} B dx dv dy dv∗

≤
∫∫

{〈F〉j <1}
F F∗ | log 〈F〉j | χ{(v−v∗)·ωxy<0} B dx dv dy dv∗

≤ m µ(F)

∫∫
{〈F〉j <1}

F | log 〈F〉j | dx dv

≤ Cm µ(F)

(
1 +

∫∫
�×R3

F (1 + |v|2) dx dv

)
.

(The last inequality follows by a well-known argument, see e.g. [18, page 329].)
By the mass and energy estimates the last term is bounded from above, uniformly
in j .

To control the boundary integrals in (4.13) we notice that for every i > 0
fixed, we have the pointwise estimate

F+(x, v) ≤ sup |v · nx |−1ki + sup S ≤ Ci .

Therefore, the integral of F+ log F+ appearing in (4.13) can be bounded uni-
formly in j by a constant depending on i . We also have, similarly to (4.15),

∫∫
{〈F−〉j <1}

F−| log 〈F−〉j | |v · nx | dσx dv

≤ C
(

1 +
∫∫

∂�−
F−(1 + |v|2) |v · nx | dσx dv

)
,

and so, the last term in (4.13) is bounded by a constant independent of i and j .
Equation (4.13) now implies an α-dependent bound for

∫∫
�×R3 F log〈F〉j

dx dv, which is uniform in j . In view of the mass and energy estimates it
follows that the family of solutions F corresponding to j > 0 is weakly compact
in L1. Taking a sequence (F j ) such that it has a weak L1 limit, which we still
denote by F , we can, for α, r , m and i fixed, pass to the limit j → ∞ in the
weak form (2.28) similarly to [7]. It is also easy to verify that the sequence
of boundary traces F j

± is weakly compact in L1(∂�±, |v · nx | dσx dv, and so,
F j

± → F± weakly in L1. Passing to the limit in the boundary condition (4.11)
and noticing that by the mass conservation, �−(F−) + αµ0(F) = 1, we obtain
that the traces F± satisfy the boundary condition

(4.16) F+ = Ri F− + α S
∫∫

�×R3
F dx dv, (x, v) ∈ ∂�+ .
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To pass to the limit in (4.16) we invoke Lemma 3.2 obtaining

(4.17)

1

µ(F)

∫∫
�×R3

e(F, F) dx dv + α

∫∫
�×R3

F log F dx dv

≤C
(

1 +
∫∫

∂�+
F+ |v · nx | dσx dv

)
≤ C ,

which in particular implies that the entropy of F is bounded uniformly in
i . Therefore, the family of solutions (Fi ) is relatively weakly compact in
L1(� × R

3). This implies the corresponding weak compactness of the collision
terms Qrm(Fi , Fi ) (for r and m fixed): indeed ν(Fi )/µ(Fi ) are uniformly
bounded, and one can also verify the inequality

(4.18) F ′F ′
∗ ≤ K F F∗ + K

K log K − K + 1
F ′F ′

∗

(
F F∗
F ′F∗

− log
F F∗
F ′F ′∗

− 1
)

,

for every K > 1 and all (v − v∗) · ωxy > 0, which then, in view of the
bound (4.17) for the entropy production, implies the weak compactness of
Q+

rm(Fi , Fi ) (cf. [18] or [3]). One can then conclude using, for instance, (2.23)
that the boundary traces Fi

± are weakly compact in L1(∂�±, |v · nx | dσx dv).
Choosing a subsequence of Fi which has a limit point in L1(� × R

3) we can
pass to the limit i → ∞ and identify the limits of Fi

± with the boundary traces
of the limit solution.

We have therefore constructed solutions to (3.12), for every α > 0, r > 0
and m > 0. Our further strategy is to study the limits of these solutions as
α → 0, r → 0 and m → ∞. In next two sections we shall establish the
compactness properties of the approximating solutions which will allow us to
pass to the limit in (3.12).

5. – A priori lower bounds in domains with reflecting boundary

In this section we establish certain ‘pointwise’ lower bounds for solutions
(that hold almost everywhere in x , outside arbitrarily small sets in velocity),
which will allow us to reach two important goals. First, as an immediate
consequence of these results we obtain uniform lower bounds for the total mass,
removing, in essence, the dependence on m in estimate (4.10). Second, and
more far-reaching application of the results will become apparent in Section 6
in context of the weak compactness analysis of approximating solutions.

Lower bounds of this type were obtained in [7], for convex domains �,
and when the integral collision frequency (2.3) is a locally bounded function (as
in the ‘hard’ interactions case). Here we use geometric properties of domains
with smooth boundary to get rid of the convexity assumption, together with
a more detailed analysis of characteristics on which the collision frequency is
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bounded: this will allow us to treat a more general collision frequency case.
We shall focus on the problem with boundary condition (2.14); in the case of
the given inflow condition (2.20) similar lower bounds can be obtained in a
much more straightforward way (see proof of Theorem 2.3).

While the main applications of our analysis concern the approximating
solutions constructed in the previous section, the results themselves hold in a
rather abstract setting. Therefore, we shall consider solutions of the differential
inequality

(5.1) v · ∇x f + ν f ≥ 0, (x, v) ∈ � × R
3 ,

(to be satisfied for almost all characteristics, in the sense of an integral form
similar to (2.24)) which also have boundary traces satisfying the inequality

(5.2) f+ ≥ R f−, (x, v) ∈ ∂�+ ,

where R is as in (2.15). Here ν ≥ 0 is a measurable function on � × R
3,

possibly depending on f , which satisfies the following.

Assumption 5.1. For a certain R > 0, and for every η > 0 there is a
constant Aη > 0 (we suppress the dependence on R for brevity), such that

a) for a.a. x ∈ ∂�

(5.3)
∫ s−(x,v)

−s+(x,v)

ν�(x, v, s) ds ≤ Aη ,

for all v ∈ {v ∈ R
3|(v · nx) < 0, |v| ≤ R} outside an x-dependent set of

measure η and
b) for a.a. x ∈ �, condition (5.3) holds for v ∈ {|v| ≤ R}, outside an x-

dependent set of measure η.

It is easy to see that the above assumption is verified for ν = ν( f ) given
by (2.3), in the cases of both ‘hard’ and ‘soft’ interactions, provided that µ( f )

is bounded. Indeed, for β > 0 in (2.9) it suffices to see that according to (2.26)
we have supx∈� ν( f ) ≤ CR for |v| ≤ R and so, for every r1 > 0 condition (5.3)
is satisfied for r1 ≤ |v| ≤ R with Aη = CR Dκ/r1, where D is the diameter
of �. In the case of ‘soft’ interactions (2.27) implies

meas
{

v
∣∣∣|v| ≤ R,

∫
ν� ds > A

}
≤ meas

{
v
∣∣∣|v| ≤ R, sup

x∈�

ν(x, v) >
Ar1

D

}
≤ η

2
,

if Aη = 2 CR Dκ/ηr1, and taking r1 so that B(0, r1) = η/2 we obtain (5.3) for
a.a. x ∈ � and for v in an x-dependent set with complement of measure η in
{|v| ≤ R}.

In the sequel, we will use the following geometric concept.
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Definition 5.1. Given ε ∈ (0, 1) we say that two points x and y on ∂� are
ε-nontangentially connected if the open segment (x; y) = {λx + (1 − λ)y | 0 <

λ < 1} is contained in � and

(5.4) (y − x) · nx > ε|y − x | and (x − y) · ny > ε|y − x | .

We sometimes omit ε from the notation, writing ‘nontangentially connected’
when the value of ε is clear from the context. We denote by Vε(x) the set
of all points y ∈ ∂� nontangentially connected with x . We also define, for
S ⊆ ∂�,

Vε(S) =
⋂
x∈S

Vε(x) ,

the set of points, nontangentially connected with S. If S′ ⊆ Vε(S), we say that
S and S′ are nontangentially connected (notice that nontangentiality of sets so
defined is a symmetric relation). The subsequent proofs will use estimates for
fluxes of solutions to (5.1) on nontangentially connected parts of the boundary.
For this we need the geometric fact formulated in next lemma. We denote by
�δ(x) the neighborhood of x ∈ ∂� obtained by intersecting ∂� with the open
ball B(x, δ) in R

3.

Lemma 5.1. Let � be a bounded domain with C1 boundary satisfying the cone
condition (2.12). There exist constants N > 0, ε > 0 and δ > 0 such that any two
points x, y on ∂� can be connected by a polygonal path in �̄ with nodes {xi }N

i=1
on ∂�, such that x1 = x, xN = y, and δ-neighborhoods �δ(xi ) and �δ(xi+1) are
ε-nontangentially connected for i = 1, . . . , N − 1.

Proof. First, we show that ε > 0 can be chosen so that for all x ∈ ∂�,
the set V4ε(x) is nonempty. For this we use the cone condition, taking θ and
d = dθ according to (2.12). Let �θ(x) denote the solid angle of directions ωxy

corresponding to the cone Cθ,d . Integrating over ωxy in �θ(x), we can estimate
the area of the part of ∂� ‘visible’ in this solid angle. Thus,

|∂�| ≥
∫

�θ (x)

|y − x |3 dωxy

(x − y) · ny
≥ d2

∫
�θ (x)

|x − y| dωxy

(x − y) · ny
.

By Chebyshev’s inequality applied to the last integral, the inequality (x−y)·ny ≤
η|x−y| can only hold for ωxy from a set of area η|∂�|/d2 in �θ(x). Choosing η

small enough, we can guarantee that for all x this set has nonempty complement
in �θ(x). Taking 4ε = min(θ, η), it follows that V4ε(x) is nonempty for all x .

Next, we extend the nontangentiality conditions to δ-neighborhoods in the
following way. We first show that if δ is chosen small enough, then for all
x ∈ ∂� there exists y ∈ ∂� such that �δ(x) and �δ(y) are 2ε-nontangentially
connected. To prove this take first δ < d/4 where d = d4ε is determined
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by (2.12) with C4ε,d(x) as the cone. Picking y ∈ V4ε(x), we have for every
x ′ ∈ �δ(x) and y′ ∈ �δ(y), the inequality |x ′ − y′| > d/2, and moreover,

(x ′ − y′, ny′) = (x − y, ny) + (y − y′, ny) + (x ′ − x, ny′) + (x − y′, ny′ − ny)

≥ 4ε|x − y| − 2δ − ε|x − y′| ≥ 3ε|x ′ − y′| − (9ε + 2)δ

≥ 3ε|x ′ − y′| − (9ε + 2)δ

2d
|x ′ − y′| > 2ε|x ′ − y′| ,

provided δ is small enough, so that |ny′ − ny| < ε and δ < 2εd/(9ε + 2). A
similar calculation shows that

(y′ − x ′, nx ′) > 2ε|x ′ − y′| ,

for sufficiently small δ. Thus, we have shown that �δ(x) and �δ(y) are non-
tangentially connected. Since nx is a uniformly continuous function on ∂�, the
constant δ can be chosen uniformly for all x ∈ ∂�. Now taking an arbitrary
x ′ ∈ �δ(x) we can repeat the above argument and by choosing δ small enough,
prove that also �δ(x ′) is ε-nontangentially connected with �δ(y).

The sequence of nodes (xi )
N
i=1 can now be constructed in the following

way. Take a covering of ∂� by balls of radius δ so that for a subsequence
of their centers, (x ′

i )
M
i=1, it holds x ′

1 = x , x ′
M = y and x ′

i+1 ∈ �δ(x ′
i ) for

i = 1, . . . , M . Let x1 = x and take x2 ∈ V4ε(x1) so that �δ(x2) and �δ(x1) are
2ε-nontangentially connected. Let x3 = x ′

2. Since x3 ∈ �δ(x1), it follows by
the previous argument that �δ(x3) is ε-nontangentially connected with �δ(x2).
Defining x2i−1 = x ′

i , we can continue the process, taking on each step x ′
i as a

new starting point and finding x2i so that �δ(x2i ) is 2ε-nontangentially connected
with �δ(x ′

i ) and ε-nontangentially connected with �δ(x ′
i+1). After M − 1 steps

we end up with a sequence of N = 2M − 1 points (xi )
N
i=1, which satisfies the

requirements of the lemma.

In next lemma we establish a uniform in x ∈ ∂� lower estimate for the
density of the mass outflow

(5.5) ρ(x) =
∫

v·nx <0
f−(x, v) |v · nx | dv ,

generalizing the result of Lemma 2.3 in [7].

Lemma 5.2. Let � be a bounded domain with C1 boundary satisfying the
cone condition (2.12), and let f satisfy (5.1), (5.2), with the function ν satisfying
Assumption 5.1. Then, there are constants η > 0, b > 0 and c > 0, such that

ρ(x) ≥ b e−cA
∫

∂�

ρ dσx ,

where A = Aη from (5.3). Here the constants b, c and η depend only on R, the
geometry of the domain � and the lower bound (2.19) for the kernel k in (2.15).
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Proof. The proof is based on two facts. First, f−(x, v) can be bounded
from below using (2.25):

(5.6) f−(x, v) ≥ e−Aρ(x+(x, v)) 1(|v|) ,

on those characteristics for which condition (5.3) is fulfilled. We further fix the
constants 0 < r1 < r2 ≤ R, take ε > 0 as in the previous lemma, integrate the
above inequality with respect to v in {r1 ≤ |v| ≤ r2} and use the change of
variables v �→ (|v|, x+(x, v)):

ρ(x) ≥ e−A
∫

{v | v·nx <0;
∫

ν�ds≤A}
dv |v · nx | ρ(x+(x, v)) 1(|v|)

≥ e−A
∫ r2

r1

d |v| 1(|v|) |v|3
∫

{x+∈Vε(x) |
∫

ν�ds≤A}
dσx+ K (x, x+) ρ(x+) .

Here,

K (x, x+) = |(x − x+) · nx | |(x − x+) · nx+|
|x − x+|4 ≥ cε for x+ ∈ Vε(x) ,

the last inequality following directly from (5.4). Thus, ρ(x) can be esti-
mated pointwise by the total flux through the part of the boundary which is
ε-nontangentially connected with x :

(5.7) ρ(x) ≥ c3 e−A
∫ r2

r1

d|v|
∫

{x+∈Vε(x) |
∫

ν�ds≤A}
dσx+ρ(x+) ,

where c3 = cε minr1≤|v|≤r2 1(|v|) |v|3.
Another basic estimate will allow us to compare fluxes through different

parts of the boundary. Let S and S′ be two ε-nontangentially connected sets in
∂�. Using estimate (5.6) and the lower bound (2.19) for the boundary kernel
we obtain:

(5.8)

∫
S′

ρ(x−) dσx−

≥ e−A
∫

S′
dσx−

∫
{x+∈S;

∫
ν�ds≤A}

dv |v · nx−| ρ(x+(x−, v)) 1(|v|)

= e−A
∫

S
dσx+ρ(x+)

∫
{x−∈S′;

∫
ν�ds≤A}

dv |v · nx+| 1(|v|)

≥ c4 e−A
∫

S
ρ(x+) dσx+ .

Here,

c4 = ε min
x+∈S

∫
{x−∈S′;

∫
ν�ds≤A}

1(|v|) |v| dv
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is positive as long as the area |S′| is bounded away from zero. Indeed, since S
and S′ are nontangentially connected, for all x+ ∈ S the solid angle of directions
of v such that x−(x+, v) ∈ S′, is uniformly bounded from below. The set of
integration in v will then have the volume bounded below, if we choose the
constant η in the definition of A small enough.

Now take constants ε and δ as in the previous lemma and cover ∂� by n
balls of radius δ. For one of the balls, say B(x∗, δ), we have, obviously,

∫
�δ(x∗)

ρ(x) dσx ≥ 1

n

∫
∂�

ρ(x) dσx .

Taking x ∈ ∂� and arguing as in the proof of Lemma 5.1, we choose y so that
�δ(y) is ε-nontangentially connected with �δ(x). By (5.7) and (5.8) it follows
then,

(5.9)

ρ(x) ≥ c3 e−A
∫ r2

r1

d|v|
∫

{y′∈�δ(y) |
∫

ν�ds≤A}
ρ(y′) dσy′

≥ c5 e−2A
∫

�δ(x)

ρ(x ′) dσx ′ ,

where c5 depends on ε, δ, r1 and r2 and is uniformly bounded away from
zero for x ∈ ∂�. Using Lemma 5.1 take the polygonal path with the nodes
{xi }N

i=1, connecting x and x∗. Since the consequent nodes of the path are
ε-nontangentially connected, it follows by applying inequality (5.8),

∫
�δ(xi+1)

ρ(x) dσx ≥ c4(ε, δ) e−A
∫

�δ(xi )
ρ(x) dσx .

By repeated application of this inequality we obtain using (5.9),

ρ(x) ≥ c(ε, δ)e−(N+1)A
∫

�δ(x∗)

ρ(x) dσx ≥ 1

n
c(ε, δ) e−(N+1)A

∫
∂�

ρ(x) dσx ,

which proves the lemma.

We conclude this section by an application of the method to solutions of
the boundary-value problem (3.3), (3.4), obtaining lower bounds for solutions
inside the domain that hold ‘pointwise’ in the x variable. This property depends
crucially on the part b) of Assumption 5.1 (which indeed has not been used
so far). In view of the normalization condition (3.13) it is more convenient to
express the bounds in terms of the total mass inflow (rather than the outflow,
as in Lemma 5.2).
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Lemma 5.3. For α ≥ 0 let f be a solution of equation (3.3), with finite weighted
mass µ( f ) as in (3.11), which also satisfies the boundary condition (3.4) with the
source term (3.5). For every ε > 0 and for every R > 0 there exists a constant c
depending on ε, R, and κ in (3.11), in addition to the conditions of Lemma 5.2,

such that

f (x, v) ≥ c
∫∫

∂�+
f+ |v · nx | dσx dv ,

for a.a. x ∈ � and for v in an x-dependent set with complement of measure ε in
{|v| ≤ R}.

Proof. Fixing R > 0 and ε > 0 we pick the set of v in {|v| ≤ R}, with
complement of measure ε, for which Assumption 5.1 is verified. The exponential
estimate (2.25) then implies

f (x, v) ≥ e−Aρ(x+(x, v)) 1(|v|) ≥ c
∫∫

∂�−
f− |v · nx | dσx dv ,

for a.a. x ∈ � and for v from the above set, where we estimated the Maxwellian
1(|v|) from below by a positive constant for |v| ≤ R and used the bound of
Lemma 5.2. We then use (2.25) for x ∈ ∂� to get

f−(x, v) ≥ e−A f+(x+(x, v), v)

and perform the change of variables (v, x−) �→ (v, x+) in the integral (which
preserves the boundary measure |v · nx | dσx dv) to obtain∫∫

∂�−
f−(x−, v) |v · nx−| dσx− dv

≥ e−A
∫∫

{v·nx+>0,
∫

ν( f )� ds≤A}
f+(x+, v) |v · nx+| dσx+dv

and notice that for a.a. x ∈ ∂� the set of integration in v has complement of
measure at most ε in {v|v · nx < 0, |v| ≤ R}. We further estimate

f+(x+, v) ≥ ρ(x+) 1(|v|) + α S(x+, v)

∫∫
�×R3

f dx dv

and recall that 1(|v|) and S(x+, v) are Maxwellians with densities and tem-
peratures uniformly bounded from below. This implies

(5.10)

∫∫
∂�−

f− |v · nx | dσx dv

≥ c
(∫∫

∂�−
f− |v · nx | dσx dv + α

∫∫
�×R3

f dx dv

)

= c
∫∫

∂�+
f+ |v · nx | dσx dv ,

where c is an absolute constant. This completes the proof of the lemma.
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6. – Weak compactness of approximating solutions

The aim of this section is to prove that the family of the approximating
solutions (F) = (Fαrm) (and the corresponding family ( f ) = ( f αrm)) con-
structed in Section 4 is relatively compact in the weak topology of L1(�×R

3).
The symmetries of the truncated collision operator allow us to use the a priori
bounds for the energy and the entropy production of solutions established in
Section 3. Therefore, our next step will be to establish uniform bounds for the
total mass

∫∫
�×R3 F dx dv, based on the above a priori estimates. This result is

formulated below as Lemma 6.3. The key argument, presented in Lemmas 6.1
and 6.2 uses the structure of the entropy production functional, following the
approach in [5], [6], [7], [8]. As a corollary of the entropy production argument
we also obtain a certain condition of equi-integrability in v in Lemma 6.4. We
next use the properties of the transport operator in Lemmas 6.5 and 6.6 to show
that the equi-integrability also holds with respect to the x variable. This will
complete the proof of weak compactness.

We shall start by adapting the bounds of Section 3 and 5 to solutions of
the auxiliary problem (3.12). Recalling that solutions F = Fαrm satisfy the
conditions of the unit mass inflow (3.13) and using Lemma 3.1 we obtain the
bound

(6.1)
∫∫

�×R3
F |v|2 dx dv ≤ C1 ,

where C1 is an absolute constant. Further, to apply the estimate of Lemma 3.2
we use a standard argument (cf. (4.15)) to find

(6.2) −α

∫∫
�×R3

F log F dx dv ≤ Cα

(
1 +

∫∫
�×R3

F (1 + |v|2) dx dv

)
.

With the total energy bounded according to (6.1) and using an obvious bound by
1/α for the total mass of F , we get that the right-hand side of (6.2) is bounded
by an absolute constant. Further, the source term g(x, v) = α S(x, v)

∫∫
�×R3 F

dx dv in the boundary condition (3.12) is bounded uniformly by an absolute
constant and has all v-moments bounded. Therefore, we obtain the inequality

(6.3)
∫∫

�×R3
e(F, F) dx dv ≤ C2

∫∫
�×R3

F (1 + |v|2) dx dv ,

where C2 is an absolute constant, and we augmented the moment of order
β ′ = max(0, β) to a moment of order 2.

It is also easy to adapt the bounds provided by Lemma 5.3 to solutions
of the auxiliary problem. For this recall that the integral collision frequency
in (3.12) is multiplied by the factor 1/µ(F). Therefore, the bounds (2.26)
and (2.27) become expressed in terms of absolute constants, and we can repeat
the arguments of Lemma 5.3 to obtain lower bounds for F which are uniform
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with respect to α, r and m. In particular, this implies that the total weighted
mass µ(F) is bounded below uniformly with respect to our parameters.

The rest of the argument is as follows: assuming that solutions F ‘develop
a concentration’ in a certain region of the (x, v)-space, we compare their values
with those of the integrand of the entropy production functional, establishing
that, ‘pointwise’ in a certain subset of (x, v) and in a ‘suitably large’ set of
(y, v∗),

(6.4) F F∗
(

F ′F ′
∗

F F∗
− log

F ′F ′
∗

F F∗
− 1

)
B ≥ c F ,

where the constant c includes lower bounds for B, F∗ and the expression in
parentheses (the latter is a convex function of the quotient F ′F ′

∗/F F∗ and tends
to infinity as this quotient approaches zero). In particular, we will look for
regions in the space of all variables such that F∗ and B are bounded from
below, the quotient F ′

∗/F∗ is of order 1, and F ′/F � 1. We will then find,
arguing by contradiction, that the total mass of F is uniformly bounded, and will
also establish an equi-integrability condition for sets with small v-sections. We
start with a technical lemma required to establish a condition of the type (6.4).

Lemma 6.1. Let µ > 0 and let S be a bounded measurable subset of � × R
3,

for which
∫∫

S F(x, v) dx dv = µ. Then there exist constants c6, c7, c8, c9 and c10,

a set S′ ⊆ � × R
3 for which

∫∫
S′ F(x, v) dx dv = µ/2, and for every (x, v) ∈ S′,

there exists a set Pxv ⊆ � × R
3, with |Pxv| > c10, and such that

(6.5)

B(x, v, y, v∗) ≥ c9 > 0 ,

F(x, v′) ≤ c8 F(x, v) |Sx |/µ ,

0 < c7 ≤ F(y, v∗) ,

F(y, v′
∗) ≤ c6 ,

for (x, v) ∈ S′ and for (y, v∗) ∈ Pxv, where Sx = {v ∈ R
3|(x, v) ∈ S} is the

v-section of S at x. The sets S′ and Pxv may depend on the choice of F from the
family of solutions (Fαrm), but the values of the constants are uniform with respect
to α, r and m.

Proof. We fix R > 0 so that S ⊆ � × {|v| ≤ R/2}. To establish the first
of the inequalities (6.5) we shall look for lower bounds of the factors b(x, y),
h(z) and |v − v∗|β in (2.7), (2.9). First, we fix 0 < θ < 1 and show that for η

suitably small and for every x ∈ � the cone

(6.6) {x ′||x ′ − x | ≤ η, (x ′ − x) · ny > θ |x ′ − x |} ,

for certain y ∈ ∂� is contained in �. Indeed, take η = min(c2, d/2), where c2
is given by (2.8) and d = dθ is chosen according to (2.12). If dist(x, ∂�) > η,
the statement is evidently true. In the other case we may take y for which

dist(x, y) = inf
y∈∂�

dist(x, y)
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(the infimum is attained since ∂� is smooth). It is easily verified that for such
y we must have (x − y) · ny = 0. Using (2.12) we then see that the cone (6.6)
is contained in �. The lower bound (2.8) then implies the following: for every
x ∈ � the function b(x, y) is bounded away from zero for y in a set of measure
c11, where c11 is the measure of the cone (6.6).

We next show that for every (x, v) ∈ S and for every ωxy corresponding
to y in the cone (6.6) there is a sufficiently large set of v∗ such that the product

(6.7) h(cos ϑ) |v − v∗|β ,

where cos ϑ = ((v − v∗) · ωxy)/|v − v∗|, is positively bounded from below. By
‘sufficiently large’ here we mean that for every ε1 > 0 we can find a set of v∗ in

(6.8) BR+(v) = {v∗ ∈ R
3||v∗| ≤ R, (v − v∗) · ωxy < 0}

with complement of measure ε1. Indeed, given ε1 > 0, we see that the conditions
|v∗| ≤ R and |v| ≤ R

2 imply that |v − v∗| ≤ 3R
2 . Taking ρ > 0 suitably small

(depending on ε1) we exclude v∗ for which |v−v∗| > ρ, which implies a bound
from below for the factor |v − v∗|β . Next, choosing ε in (2.10) suitably small
(depending on ε1) we take a constant cε > 0 and a set of ϑ with complement
of measure ε in (0, π

2 ) for which h(cos ϑ) > cε. This implies that for every
ε1 > 0 the sets

{v∗ ∈ R
3||v∗| ≤ R, |v − v∗| ≥ ρ, (v − v∗) · ωxy < 0, h(cos ϑ) > cε} ,

which deliver ε1-dependent lower bounds for the product (6.7), occupy the part
of the set (6.8) with complement of measure ε1.

Further, to satisfy the second inequality (6.5) we shall choose a subset S′
of S with the properties specified below. First we take a measurable set �′ ⊆ �,
such that for every x ∈ �′

(6.9)
∫

Sx

F(x, v) dv ≥ µ δ2

4 C1

∫
|v|≥δ

F(x, v) dv ,

where C1 is the constant in (6.1) and Sx = {v ∈ R
3|(x, v) ∈ S}. Denoting by

S′
0 the set

{
(x, v) ∈ S

∣∣ x ∈ �′}, we see that S′
0 carries at least 3/4 of the mass

µ, since

∫∫
S\S′

0

F(x, v)dx dv =
∫

�\�′

∫
Sx

F(x, v) dx dv ≤ µ δ2

4 C1

∫∫
|v|≥δ

F(x, v)dx dv ≤ µ

4
.

Now we define the set S′ by taking for every x ∈ �′ the values of v for which
F(x, v) is at least 1/4 of its mean value over Sx :

(6.10) S′ =
{

(x, v) ∈ S′
0

∣∣ F(x, v) ≥ 1

4

1

|Sx |
∫

Sx

F(x, v) dv

}
.
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This set is non-empty, since∫∫
S′

0\S′
F(x, v) dx dv =

∫∫
S′

0

F(x, v)χ{F< 1
4

1
|Sx |

∫
Sx

F(x,v) dv} dx dv

≤ 1

4

∫
�′

dx
∫

Sx

dv
1

|Sx |
∫

Sx

F(x, w) dw ≤ µ

4
.

It follows also that S′ carries at least half of the mass µ.
We next see that for every ε2 > 0 the second inequality (6.5) holds, with

c8 dependent on ε2, for |v′| ≤ R outside a set of measure ε2. Indeed, by
Chebyshev’s inequality, for every x ∈ � and every η > 0

(6.11) meas
{

v′ ∣∣ |v′| ≥ δ, F(x, v′) >
1

η

∫
|v|≥δ

F(x, v) dv

}
≤ η .

Thus, for every η > 0, combining (6.9), (6.10) and (6.11), we can verify for
(x, v) ∈ S′ and for |v′| ≥ δ, outside an x-dependent set of volume η, the
following chain of inequalities:

|Sx |F(x, v) ≥ 1

4

∫
Sx

F(x, v) dv ≥ µ δ2

16 C1

∫
|v|≥δ

F(x, v) dv ≥ µ η δ2

16 C1
F(x, v′) .

This implies that given ε2 > 0, and choosing δ > 0 and η > 0 so that
|B(0, δ)| + η < ε2, the second estimate in (6.5) is valid with c8 = 16 C1/η δ2,
for (x, v) ∈ S′ and for |v′| ≤ R, outside an x-dependent set of measure ε2.

Let us denote by �x the above set of measure ε2. We then show that
given ε3 > 0 and (x, v) ∈ S′, by choosing ε2 small enough, we can find a set
of y in the cone (6.6) with measure bounded away from zero such that the
inverse image of �x under the mapping

(6.12) v∗ �→ v′, where v′(x, v, v∗) = v − ωxy(ωxy · (v − v∗))

has measure less than ε3 in the set (6.8). Indeed, for every v and ωxy fixed, the
mapping (6.12) acts as the orthogonal projection of the half-space (v−v∗)·ωxy <0
onto the line v +Rωxy . For every x ∈ � we denote by c12 the surface measure
of the solid angle of vectors ωxy corresponding to y in the cone (6.6). It is
then easy to verify that we can find constant c13 > 0 so that for, say, half of
the directions ωxy (measured by the surface measure on S2), the intersections
of the set �x with the rays v + R+ωxy have linear measure less than c13 ε2.
This implies that for certain c14 > 0, and for y from a set of measure at least
c11/2, the inverse image of �x has measure at most c14 ε2 in the set (6.8).

It remains to establish the lower bound for F(y, v∗) and the upper bound
for F(y, v′

∗) in (6.5). To obtain the former, we can use the result of Lemma 5.3
as in the discussion preceding the lemma, and for every ε4 > 0 choose c7 > 0
(depending on ε4) so that

(6.13) F(y, v∗) ≥ c7 ,
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for a.a. y ∈ � and for v∗ in an y-dependent subset of {|v∗| ≤ R} with comple-
ment of measure ε4. To find an upper bound for F(y, v′

∗) we use the integral
bound obtained in next lemma. As a consequence of the integral estimate,
given (x, v) ∈ S′ and ε5 > 0 we can find a set of y of measure c11/4 such that
outside of that set,

F(y, v′
∗(x, v, y, v∗)) ≤ c6 ,

with c6 depending on ε5, for v∗ in a set with complement of measure ε5 in (6.8).
It is also easy to make sure that the set of y can be chosen so that the first
two bounds (6.5) remain valid.

Now given ε > 0 we may take ε1 + ε3 + ε4 + ε5 < ε and obtain the
inequalities (6.5) for all (x, v) ∈ S′, y in an xv-dependent set of measure
c11/4 and v∗ in an xvy-dependent set with complement of measure ε in the
set (6.8). The condition |v| ≤ R/2 then ensures that the volume in the v∗-space
is positively bounded from below. This completes the proof.

Lemma 6.2. For every (x, v) ∈ � × B(0, R/2) and every ε > 0 there is a set
in � × R

3 with the characteristic function χxv(y, v∗) such that∫
�

∫
BR+

(1 − χxv) dy dv∗ < ε

and ∫
�

∫
BR+

F(y, v′
∗(x, v, y, v∗)) χxv dy dv∗ ≤ Cε ,

where
v′

∗(x, v, y, v∗) = v∗ + ωxy(ωxy · (v − v∗)) ,

ωxy is as in (2.5) and BR+ = BR+(v) is defined in (6.8).

Proof. We start by a remark that the statement of the lemma is not a
consequence of the uniform energy bound. Indeed, for every x , v and y fixed,
the mapping v∗ �→ v′

∗ acts as the orthogonal projection of the vector v∗ − v

to the plane through v, with the normal vector ωxy . Thus, in effect we need
to estimate an integral of F over a manifold of codimension 1 in � × R

3; to
accomplish this we shall use the bounds of the boundary fluxes.

We will take χxv such that for every x and v fixed this function is inde-
pendent of |x − y| and of the projection of v∗ − v onto ωxy . The integral in
the statement of the lemma can then be estimated as

(6.14) CR

∫
�

∫
�R (v,ωxy )

F(y, v′
∗) χxv(y, v′

∗) dπv′∗ dy ,

where �R(v, ωxy) = {v′
∗ ∈ R

3||v′
∗| ≤ R, (v − v′

∗) · ωxy = 0} is a part of a
plane, and dπv′∗ is the plane measure on �R(v, ωxy). Changing the order of
integration in (6.14) we can rewrite the above integral as

(6.15)
∫

|v′∗|≤R

1

|v − v′∗|
∫

�(x,v−v′∗)

|x − y| F(y, v′
∗) χxv(y, v′

∗) dπy dv′
∗ ,
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where �(x, v − v′
∗) = {y ∈ �|(v − v′

∗) · ωxy = 0} is a part of a plane in the
physical space, and dπy is the corresponding measure. Fixing δ > 0 we can
use the exponential bound (2.25) together with the estimates (2.26) or (2.27)
and (in the latter case) a standard Chebyshev’s inequality argument to choose
a set of measure δ in |v′

∗| ≤ R such that

F(y, v′
∗) ≤ Cδ F(x+(y, v′

∗), v
′
∗) ,

for a.a. y ∈ � and for v′
∗ in the complement of that set. Choosing χxv vanishing

on the above set of measure δ, estimating the factor |x − y| in (6.15) by D,
where D is the diameter of �, and changing the variables of integration from
y to x−(y, v∗) we obtain the bound for (6.15) in the form

Cδ D
∫

|v′∗|≤R

1

|v − v′∗| |v′∗|
∫

∂�:v′∗·nx−<0
F(x−, v′

∗) χxv(x−, v′
∗) |v′

∗ · nx−| dσx− dv′
∗ .

Given ε > 0 we take χxv vanishing for |v − v′
∗| ≤ δ and |v′

∗| ≤ δ, choose δ

small enough and use the bound for the total mass outflow to complete the
proof of the lemma.

We next establish uniform bounds for the total mass of solutions to (3.12).

Lemma 6.3. Let (F) = (Fαrm) be the family of solutions to (3.12), satisfying
the normalizing condition (3.13) and the bound for the entropy production (6.3).
Then ∫∫

�×R3
F(x, v) dx dv ≤ C3 ,

with the constant C3 independent of α, r and m.

Proof. By the uniform energy estimate,

∫∫
|v|≥1

F(x, v) dx dv ≤
∫∫

|v|≥1
F(x, v) |v|2 dx dv ≤ C1 ,

where C1 is the constant in (6.1). We shall argue by contradiction, assuming
that there is a sequence (Fn) = (Fαn ,rn ,mn ), such that

µn =
∫∫

|v|≤1
Fn dx dv −→

n→∞ ∞ .

Taking n large enough and using (6.1), we see that

(6.16) 2
∫∫

|v|≤1
Fndx dv≥

∫∫
|v|≤1

Fn dx dv + 2C1 ≥
∫∫

�×R3
Fn(1 + |v|2) dx dv .
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Applying Lemma 6.1 with S = � × {|v| ≤ 1}, and using estimate (6.3) we
obtain, denoting b0 = |B(0, 1)|,

(6.17)

C
∫∫

�×R3
Fn (1 + |v|2) dx dv ≥

∫∫
�×R3

e(Fn, Fn) dx dv

≥
∫∫

S′

∫∫
Pxv

Fn Fn
∗

(
Fn ′Fn

∗
′

Fn Fn∗
− log

Fn ′Fn
∗

′

Fn Fn∗
− 1

)
B dy dv∗ dx dv

≥ c7c9c10

(
c6c8b0

c7µn
− log

c6c8b0

c7µn
− 1

) ∫∫
S′

Fn(x, v) dx dv

≥ c7c9c10(log µn − c15)

∫∫
|v|≤1

Fn(x, v) dx dv ,

where c15 > 0 is a constant, and µn is sufficiently large, so that c6c8b0/c7µn < 1.
Combining (6.17) with (6.16) and letting n tend to infinity we arrive at a
contradiction, since we assumed µn → ∞.

In next lemma we give an equi-integrability condition for sets with uni-
formly small v-sections.

Lemma 6.4. Let (F) = (Fαrm) be a family of solutions to (3.12), as in the
previous lemma. For every ε > 0 and every R > 0, there exists δ > 0, such that for
all S ⊆ � × {|v| ≤ R} and for every F from the family of solutions,

∫∫
S

F(x, v) dx dv < ε ,

as soon as the measures of the v-sections |Sx | are less than δ for all x ∈ �.

Proof. To prove the lemma by contradiction, assume that there exists ε > 0
such that the equi-integrability condition is violated for a sequence of solu-
tions (Fn) = (Fαnrnmn ) and a sequence of sets Sn with supx |Sn x | → 0. By
Lemma 6.1 we can pick a sequence S′

n ⊆ Sn and a sequence of sets Pnxy with
measures ≥ c10, such that for all (x, v) ∈ S′

n , and all (y, v∗) ∈ Pnxy

Fn Fn
∗ ≥ c7 Fn

and

Fn ′Fn
∗

′

Fn Fn∗
− log

Fn ′Fn
∗

′

Fn Fn∗
− 1 ≥ c6c8 |Sn x |

c7 ε
− log

c6c8 |Sn x |
c7 ε

− 1 ≥ log
1

|Sn x |
− c15 ,

for n large enough, such that c6c8 |Sn x |/c7 ε < 1. Using the estimate for the
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total mass of Fn and then arguing as in the previous lemma, we obtain

C2 (C3 + C1)

ε

∫∫
Sn

Fn(x, v) dx dv

≥ C1

∫∫
�×R3

Fn(x, v)(1 + |v|2) dx dv

≥
∫∫

�×R3
e(Fn, Fn) dx dv

≥
∫∫

S′
n

∫∫
Pnxy

Fn Fn
∗

(
Fn ′Fn

∗
′

Fn Fn∗
− log

Fn ′Fn
∗

′

Fn Fn∗
− 1

)
B dy dv∗ dx dv

≥ c7c9c10

(
log

1

supx |Sn x |
− c15

) ∫∫
Sn

Fn(x, v) dx dv .

We arrive at a contradiction, since by assumption, supx |Sn x | → 0.

We have now established uniform bounds from above and from below for
the weighted mass µ(F), which allow us to pass to the original formulation of
the problem (3.3), (3.4), with α > 0 and the collision term Qrm( f, f ) retaining
the r and m truncations as in (4.1). Solutions f = f αrm = Fαrm/µ(Fαrm) now
have unit weighted mass (condition (3.11) with κ = 1), and the boundary traces
satisfying the inequalities

(6.18) 0 < c16 ≤
∫∫

∂�±
f± |v · nx | dσx dv ≤ c17 ,

for certain c16, c17 > 0, uniformly in α, r and m. The lower bound for the total
mass provided by Lemma 5.3 also implies that the equi-integrability condition
of Lemma 6.4 can be transfered to solutions f = f αrm .

We next show that the family ( f ) = ( f αrm) is relatively weakly compact
in L1(� × R

3), for which it remains to show the following equi-integrability
condition. For every R > 0 and every ε > 0 there exists δ > 0 such that for
all f from the family of solutions,

(6.19)
∫

�

∫
|v|≤R

f (x, v) dv dx < ε ,

as soon as the set � ⊆ � has measure less than δ. Indeed, having estab-
lished (6.19) we can verify the conditions for the equi-integrability over �×R

3,
as follows. Using the energy bound of Lemma 3.1 the integrals of f over
� × {|v| ≥ R} are uniformly bounded by C1/R2. Also, given R > 0, and a
measurable set S in � × {|v| ≤ R}, we can split its x-projection into two parts
as follows. In the first part we choose those x for which the v-sections have
volume less than |S|1/2, and the remainder is such that its x-projection has
volume less than |S|1/2 in �. By Lemma 6.4, the integral of f over the first
set can be made as small as desired, if |S| is small enough. To estimate the
second part of the integral, the equi-integrability condition (6.19) is sufficient.

We shall first use Lemma 6.4 to establish an equi-integrability condition
for the mass outflow.
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Lemma 6.5. Let ( f ) = ( f αrm) be the family of solutions to (3.3), (3.4),

satisfying (3.11) and (6.18). Then for every R > 0 and every ε > 0 there exists
δ > 0, such that for all f from the family of solutions,

(6.20)
∫

�

∫
{v·nx <0, |v|≤R}

f−(x, v) |v · nx | dv dσx < ε ,

provided the area of � ⊆ ∂� is less than δ.

Proof. We give a proof by contradiction. Assuming that the conclusion of
the lemma is false, we can pick an ε > 0, a sequence of solutions ( f n) and a
sequence of sets (�n) in ∂�, such that |�n| → 0, and for all n, inequality (6.20)
is violated for f = f n and � = �n . Along those characteristics for which

x+ ∈ �n and
∫ s−
−s+ ν� ds ≤ a, with a constant, we can estimate solutions inside

the domain by the incoming traces using (2.25):

(6.21) f (x, v) ≥ e−a f+(x+, v) .

Using the uniform bounds of the total mass and energy and estimates (2.26)
and (2.27), the above inequality is valid for every R > 0 and η > 0, with a
dependent on R and η, for a.a. x+ ∈ ∂� and for v in a set with complement
of measure η in {|v| ≤ R, v · nx+ > 0}. Further, picking θ ∈ (0, 1) and
0 < σ < dθ /2, so that (2.12) is satisfied, we see that the solid angle in
the velocity space, in which �n is ‘visible’ from a point x ∈ � is less than
c |�n|/σ 2, for all |x − x+| > σ . (The last condition defines a set of positive
measure in � for σ small enough, because of the cone condition.) Thus, by
Lemma 6.4,

(6.22)
∫

�

∫
{|v|≤R, x+∈�n , |x−x+|>σ }

f (x, v) dv dx −→
n→∞ 0 .

In the above integral, we split the x-integration into the integration over ∂�

and along the characteristic in the direction of v, and use (6.21), to estimate it
from below as follows:

(6.23) e−a
∫

�n

dσx+
∫

{|v|≤R,
∫

ν�ds≤a}
dv |v · nx+| f+(x+, v)

∫ s−

−s++σ/|v|
ds .

Restricting the directions of v to those in the cone Cθ,dθ
(x+) we have the

inequalities

|v · nx+| ≥ θ |v| and
∫ s−

−s++σ/|v|
ds ≥ σ

|v| .

Using the boundary condition (3.4) and the lower bound (2.19) we can further
estimate (6.23) from below as

σθe−a
∫

�n

dσx

∫
w·nx <0

dw |w · nx | f−(x, w)

∫
{|v|≤R, v·nx >θ |v|,

∫
ν�ds≤a}

1(|v|) dv .
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For every θ fixed, the volume of integration over v in the integral dv is bounded
away from zero if we choose η small enough. Since 1(|v|) is a Maxwellian, the
integral over v is positively bounded from below, independently of n. Therefore,
we obtain a contradiction to (6.22) since we assumed that (6.20) is false for
all n.

Remark. The proof of the lemma uses only the inequality f+ ≥ R f− on
the boundary and estimate of the type (2.25), and so, the result holds in the
generality of Section 5, provided the result of Lemma 6.4 could be established
for solutions of (5.1).

Next lemma provides an argument which establishes the equi-integrability
condition (6.19) and completes the proof of weak compactness. The argument,
based on the bound (4.18) and the regularizing properties of the inverse transport
operator applies in the cases of both ‘hard’ and ‘soft’ interactions. In the ‘hard’
interactions case it offers a shorter proof of Lemma 6.8 in [7].

Lemma 6.6. Let ( f αrm) be the family of solutions of (3.3), (3.4), as in the
previous lemma. Then for each ε > 0 there is a δ > 0, such that for all f ∈ ( f αrm)

condition (6.19) holds, provided the measure of the set � ⊆ � is less than δ.

Proof. Given ε > 0, by the equi-integrability condition of Lemma 6.4, we
can take a constant r1 > 0 so small that for all f from the family of solutions,

∫
�

∫
|v|≤r1

f (x, v) dv dx < ε/8 .

Thus, setting χr1 = χ{|v|>r1}, it suffices to prove an inequality of type (6.19)
for χr1 f .

Using (2.24) we represent f (x, v) in the exponential form as

(6.24) f (x, v) = f+(x+, v) e
−

∫ 0
−s+ ν� ds +

∫ 0

−s+
Q+( f, f )� e−

∫ 0
s

ν� dτ ds .

Integrating (6.24) over � × {|v| ≤ R}, we shall estimate separately the terms
corresponding to the boundary data and collisions in the volume. In the boundary
term, we estimate the exponential factor as 1; the remaining integral can be
written as follows:

(6.25)

∫∫
∂�+

χr1(v) f+(x+, v)

∫ s−(x+,v)

0
χ�(x++sv)ds |v · nx+|dσx+dv≤Cα|�|

+
∫∫

∂�−
f−(x, w)

∫
v·nx >0

k(x, v, w)χr1(v)

∫ s−(x,v)

0
χ

�
�ds dv|w · nx |dσx dw ,

where χ
�
� = χ�(x + sv). Here we used the boundary condition (3.4) and

estimated the source term S(x, v) pointwise by its maximum. Further, for
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every x ∈ ∂� and v ∈ {|v| ≤ R} fixed we split � into two sets �1 and �2, so
that ∫ s−(x,v)

0
χ

�
�1

ds ≤ |�|1/2

|v| ≤ |�|1/2

r1
,

and the area of the projection of �2 onto the plane orthogonal to v is less than
|�|1/2. Because of the normalization (2.16) and the uniform bound (6.18), the
integral with χ�1 can be made less than ε/8 by taking |�| small enough. On
the other hand,∫∫

�2×{|v|≤R}
χr1 f+(x+, v) dx dv ≤ D

r1

∫∫
∂�+

χr1 f+(x, v) χ
�+

2
|v · nx | dσx dv ,

where �+
2 is a set of characteristics satisfying

∫∫
∂�+

χ
�+

2
|v · nx | dσx dv ≤ cR|�|1/2 .

The set �+
2 can then be split into two parts, one with measure |�|1/4 on

∂� and the rest such that for every x the measure in the velocity space is
cR|�|1/4. Estimating the integrals of the two parts analogously to (6.25) and
using Lemma 6.5 for the first part and condition (2.16) for the second, we can
ensure that the integral with χ�2 is less than ε/8.

Further, we estimate the second term on the right-hand side of (2.24), for
which we first notice that in view of the bounds (2.26) and (2.27) and the
uniform bounds for the total mass and energy,

(6.26)
∫

|v|≤R

{
sup
x∈�

ν(x, v)
}

dv ≤ CR ,

for both ‘hard’ and ‘soft’ interactions. Thus, choosing a > 0 sufficiently large,
we can pick a set of v ∈ {|v| ≤ R}, with characteristic function χa(v), such that
χa ν( f ) ≤ a, and the complement of that set is as small as desired. Lemma 6.4
then implies that ∫∫

�×R3
f (1 − χa) dx dv < ε/8 ,

for a sufficiently large. Since the exponential factors in (6.24) are bounded
by 1, it suffices to prove a condition of type (6.19) for

(6.27) χr1χa

∫ 0

−s+
Q+

rm( f, f )� ds ,

for every r1 > 0 and a > 0. Using the bound (4.18) with K large enough
we can replace the ‘gain’ term in (6.27) by the ‘loss’ term f ν( f ). Indeed,
integrating (6.27) over � × {|v| ≤ R} and using that for r1 > 0 the integration
along characteristic in (6.27) is a bounded operator from L1(�×R

3) to itself, one
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can make the contribution of the entropy production term in (4.18) as small
as desired by choosing K large enough. Further, since χaν( f ) is bounded
uniformly by a, the problem is reduced to estimating the integral (6.27) with f
instead of Q+

rm( f, f ). This can be accomplished by arguing as follows.
We write x = p + zv/|v|, where p is the projection of x onto the plane

v⊥ = {p ∈ R
3|(p · v) = 0}, and accordingly,

(6.28)

∫∫
�×{|v|≤R}

f dx dv

=
∫

|v|≤R
dv

∫
v⊥

dp
∫ ∞

−∞
dzχ�

(
p + z

v

|v|
)∫ 0

−s+
dsχr1 f

(
p + z

v

|v| + sv, v

)
.

For those characteristics for which the lengths of the sections of � (given by
the integrals

∫ ∞
−∞ χ�(p + zv/|v|) dz) are less than |�|1/4, we obtain:

(6.29)

∫ ∞

−∞
dz χ�

(
p + z

v

|v|
) ∫ 0

−s+
ds χr1 f

(
p + z

v

|v| + sv, v

)

≤
∫ ∞

−∞
dzχ�

(
p + z

v

|v|
)

1

|v|
∫ ∞

−∞
dζχ�

(
p + ζ

v

|v|
)

χr1 f
(

p + ζ
v

|v| , v
)

≤ 1

r1
|�|1/4

∫ ∞

−∞
dζ χ�

(
p + ζ

v

|v|
)

χr1 f
(

p + ζ
v

|v| , v
)

.

Denoting by χ(1) the characteristic function of the above set of (v, p), we
see that the integral of the type (6.28) with χ(1) f can be bounded as follows,
using (6.29) and the uniform mass bound,

1

δ
|�|1/4

∫
|v|≤R

dv

∫
v⊥

dp
∫ ∞

−∞
dζ χ�

(
p + ζ

v

|v|
)

f
(

p + ζ
v

|v| , v
)

= 1

δ
|�|1/4

∫∫
�×R3

f (x, v) dx dv ≤ C |�|1/4 <
ε

8a
,

if |�| is small enough. For the remaining part of (v, p), with the characteristic
function χ(2), we obtain, instead of (6.29),

(6.30)
χ(2)

∫ ∞

−∞
dz χ�

(
p + z

v

|v|
) ∫ 0

−s+
ds χδ f

(
p + z

v

|v| + sv, v

)

≤ D

δ
χ(2)

∫ ∞

−∞
dζ χ�

(
p + ζ

v

|v|
)

χδ f
(

p + ζ
v

|v| , v
)

.

Since the sections of � for all characteristics from the second set have lengths at
least |�|1/4, we can estimate from above the solid angle �(x�) of directions for
such characteristics passing through a given point x� in �. Indeed, writing the
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volume of � as an integral of χ� and transforming to the spherical coordinates
with center at x�, we obtain

|�|≥
∫

�(x�)

dω

∫ ∞

0
ρ2dρχ�(x�+ρω)≥|�(x�)|

∫ 1
2 |�|1/4

0
ρ2 dρ = 1

24
|�(x�)| |�|3/4 ,

where we used that the integral in the spherical coordinates takes its least value
when all sections are the segments of length |�|1/4 centered at x�. The last
inequality implies that |�(x�)| is uniformly in x� ∈ � bounded as follows:

(6.31) |�(x�)| ≤ 24 |�|1/4 .

Thus, integrating (6.30) over (v, p), we obtain∫
�

∫
|v|≤R

χ(2)

∫ 0

−s+
χr1 f � ds dx dv

≤ D

r1

∫
|v|≤R

dv

∫
v⊥

dp χ(2)

∫ ∞

−∞
dζ χ�

(
p + ζ

v

|v|
)

f
(

p + ζ
v

|v| , v
)

= D

r1

∫
dx�

∫{
v
|v| ∈�(x�)

} dv f (x�, v) .

Lemma 6.4 now implies, in view of the condition (6.31) that the last integral
can be made less than ε/8a, uniformly in f , by choosing |�| small. This
completes the proof of the lemma.

7. – Proofs of Theorems 2.1 – 2.3

Proof of Theorem 2.1. Using the weak compactness of the approximations,
established in the previous section, we can pick a subsequence f n = f rn ,mn ,αn

with rn → 0, mn → ∞ and αn → 0, so that f n converges weakly in L1 to a
limit function f . Further, inequality (2.26) for 0 ≤ β < 2 and the uniform bound
for the energy of f imply that the sequence of the ‘loss’ terms f nνn( f n) is
weakly compact in L1. In view of the entropy production estimate of Lemma 3.2
and inequality (4.18), the weak compactness of the ‘gain’ terms also follows.
We now can, following the arguments of [7], for every ψ ∈ L∞(� × R

3) with
v · ∇xψ ∈ L∞(� × R

3), pass to the limit n → ∞ in the weak form

(7.1)

∫∫
∂�−

f n
− ψ− |v · nx | dσx dv −

∫∫
∂�+

f n
+ ψ+ |v · nx | dσx dv

=
∫∫

�×R3
f nv · ∇xψ dx dv +

∫∫
�×R3

(Qn( f n, f n) − αn f n)ψ dx dv ,

where Qn is the collision operator (2.2) with the kernel (4.1) corresponding
to the sequence rn , mn . This allows us to conclude in the case of ‘hard’
interactions.
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The proof in the case of ‘soft’ interactions, −3 < β < 0, requires signifi-
cantly more effort, which is mainly due to the fact that we do not have a priori
bounds for Qn( f n, f n) in L1 (in fact, in the end we are only able to prove
that the limit solutions satisfy the iterated integral form (2.30)). We recall that
we identify the characteristics with the points in the set ∂�−, equipped with
the measure |v · nx | dσx dv, so that identity (2.29) holds. For every R > 0 we
define

∂�−
R = {(x, v) ∈ ∂�− | |v| ≤ R} ,

and for every S ⊆ ∂�− we set

S� = {(x, v) ∈ � × R
3 | (x−(x, v), v) ∈ S} .

We then establish the following compactness result.

Lemma 7.1. Let f n be a sequence of solutions to (2.1), converging weakly in
L1(� × R

3), and let ν( f n) and Q+( f n, f n) be defined by (2.2) and (2.3). Assume
also that f n have boundary traces f n

− which satisfy

∫∫
∂�−

f n
− |v · nx | dσx dv ≤ C ,

uniformly in n. For every R > 0 and every ε > 0 there is a set of characteristics
Eε,R ⊆ ∂�−

R of measure at most ε, such that the sequence χε f nν( f n), where χε =
χε,R is the characteristic function of the set (∂�−

R \ Eε,R)�, is weakly precompact in
L1(� × R

3).

Proof. To construct the sets Eε,R we first notice that the sequence ν( f n)

converges strongly in L1
loc(�×R

3), and therefore, the sequence of the integrals∫ 0
−s+(x,v)ν( f n)� ds converges strongly in L1

loc(∂�−, |v ·nx | dσx dv). Thus, fixing

R > 0 and ε > 0, we can take a set E (1)
ε,R ⊆ ∂�−

R of measure ε, such that the
the integrals along characteristics converge uniformly as functions of (x, v) in
the complement of E (1)

ε,R and are uniformly bounded by a constant aε. Next,
considering |v| ≤ R and using the cone condition for �, we can take τε > 0
and a set of characteristics E (2)

ε,R ⊆ ∂�− of measure ε such that s− + s+ > τε

for all characteristics in its complement. Further, we notice that the strong
convergence of ν( f n) implies that

(7.2)
∫ 0

−ηs+(x,v)

ν( f n)� ds −→
η→0

0 ,

in L1
loc(∂�−, |v · nx | dσx dv), uniformly in n and hence, uniformly in (x, v) ∈

∂�−
R outside a set E (3)

ε,R of measure ε. Finally, we take δ > 0 so small that
the set E (4)

ε = {(x, v) ∈ ∂�− | |v| < δ} has measure ε. We then set Eε,R =
E (1)

ε,R ∩ E (2)
ε,R ∩ E (3)

ε,R ∩ E (4)
ε .
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We next show that χε f nν( f n) is weakly compact in L1(�×R
3) by using

the equi-integrability criterion. First of all, the integrals over the part of �×R
3

close to ∂�− can be made uniformly small. More precisely, integrating along
a characteristic from −ηs+(x, v) to 0 and then over ∂�−, we get using (2.25),

(7.3)

∫∫
∂�−

|v · nx | dσx dv

∫ 0

−ηs+(x,v)

(χε f nν( f n))� ds

≤ eaε

∫∫
∂�−

dv dσx |v · nx | χε f n
−(x, v)

∫ 0

−ηs+(x,v)

ν( f n)� ds .

Since the total mass outflow is bounded uniformly in n, the uniform conver-
gence (7.2) implies that the right-hand side of (7.3) tends to zero as η → 0,
uniformly in n. Fixing η > 0 let us now take a measurable set � in the remain-
der of � × {|v| ≤ R}. Then the set of characteristics passing through � can
be split into two parts: S1 ⊆ ∂�− which has measure |�|1/2, and S2 ⊆ ∂�−,
in which for all (x, v),

∫ 0

−s+(x,v)

χ
�
� ds < |�|1/2 .

For the first set, we obtain, using (2.25) and estimating the infimum by the
mean value,

χε f n�
(s) νn( f n)�(s) ≤ eaεχε νn( f n)�(s) inf

−ηs+<t<s−
f n�

(t)

≤ eaεχε νn( f n)�(s)
1

ηs+(x, v)

∫ 0

−ηs+(x,v)

f n�(t) dt ,

where 0 < s < −ηs+(x, v) and (x, v) ∈ S1. Integrating with respect to s and
then over the characteristics in S1, we can conclude that for all ζ > 0

∫∫
S1

|v · nx | dσx dv χε

∫ −ηs+(x,v)

−s+(x,v)

( f n νn( f n))� ds

≤ aεeaε

η τε

∫∫
S1

|v · nx | dσx dv χε

∫ 0

−ηs+(x,v)

f n�(t) dt < ζ ,

provided |�| is small enough, based on the equi-integrability of f n .
For the characteristics from the set S2, we use the estimate of the type (7.3)

to find ∫∫
S2

|v · nx | dσx dv

∫ 0

−s+(x,v)

(χε χ� f nν( f n))� ds

≤ eaε

∫∫
S2

|v · nx | dσx dv χε f n
−(x−, v)

∫ 0

−s+(x,v)

(χ� ν( f n))� ds
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and notice that the integrals of (χ�ν( f n))� along characteristics converge to
zero uniformly in x , v and n, as |�| → 0. Indeed, we can write∫ 0

−s+(x,v)

(χ�ν( f n))� ds

=
∫∫

�×R3
f n(y, v∗) |v − v∗|β

∫ 0

−s+(x,v)

χ
�
� h(cos θ) b(x + vs, y) ds dy dv∗ ,

where θ is the angle between x + vs − y and v − v∗. Since the product
h(cos θ) b(x +vs, y) is a bounded function and |v| > δ by the definition of E (4)

ε ,
the inner integral along a characteristic tends to zero as |�| → 0, uniformly in
x , v, y and v∗. This proves that χε f nνn( f n) is weakly compact in L1(�×R

3)

and completes the proof of the lemma.

Remark.
1) It is easy to see that the proof of Lemma 7.1 holds for the Povzner equations

with the truncated kernels Brm defined in (4.1).
2) As an immediate consequence of Lemma 7.1 and the entropy production

estimate we obtain that the sequence χε Q+( f n, f n) is weakly compact,
using inequality (4.18).

We further establish a compactness result for the boundary traces, which
will allow us to pass to the limit in the boundary condition (2.14). The author
is thankful to A. Nouri for communicating the idea of the proof [30].

Lemma 7.2. Let f n
± be two sequences of functions uniformly bounded in

L1(∂�±, (1 + |v|2) |v · nx | dσx dv), satisfying the boundary condition (2.14) and
the a priori bound ∫∫

�×R3
EMw( f n) |v · nx | dσx dv ≤ C ,

where EMw( f n) is defined in (3.10). Further, assume that the sequence

ρn(x) =
∫

v·nx <0
f n(x, v) |v · nx | dv

is weakly compact in L1(∂�). Then f n
± are weakly compact in L1(∂�±, |v ·

nx | dσx dv).

Proof. The compactness of f n
+ follows immediately from the compactness

of ρn and the bound

(7.4) f n
+(x, v) ≤ ρn(x) 2(|v|), (x, v) ∈ ∂�+ ,

which we have in view of the assumption (2.19). Therefore, it remains to
establish the weak compactness of f n

−. Using the nonnegativity of EMw( f n) we
can write, for every measurable set S ∈ ∂�,∫

S

∫
v·nx >0

EMw( f n) |v · nx | dσx dv ≤ C .
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Arguing as in the proof of Lemma 3.2, we obtain,∫
S

∫
v·nx <0

f n
− log f n

− |v · nx | dσx dv ≤ C +
∫

S

∫
v·nx >0

f n
+ log f n

+ |v · nx | dσx dv .

In the last integral we use inequality (7.4) and consider separately the cases
when ρn(x) < 1 and ρn(x) > 1. In the first case the integral is bounded by∫∫

∂�+
f n
+ log (|v|) |v · nx | dσx dv ≤ C

∫∫
∂�+

f n
+(1 + |v|2) |v · nx | dσx dv ≤ C1 .

In the other case, we can use the bound

C
∫

S
ρn log ρn dσx .

We now establish that f n
− is weakly compact by using the equi-integrability

criterion. Taking � ⊆ ∂�− with finite measure, we have for every K > 1 and
c > 1,

(7.5)

∫
�

∫
v·nx <0

f n
− |v · nx | dσx dv ≤ |�|K

+
∫∫

{(x,v)∈�, f n−>K }
f n
− |v · nx | dσx dv

≤ |�|K + 1

log K

∫∫
{(x,v)∈�, f n−>K , ρ(x)≤c}

f n
− log f n

− |v · nx | dσx dv

+
∫∫

{(x,v)∈�, ρn(x)≤c}
f n
− log f n

− |v · nx | dσx dv

≤ |�|K + 1

log K
(C + |∂�|c log c) +

∫
{ρn(x)>c}

ρn(x) dσx .

Now, given ε > 0, we can make the last term to be less than ε/3 by taking c
large enough and using the equi-integrability of ρn(x). Further, taking K large
enough we can ensure that the second term on the right-hand side of (7.5) is
less than ε/3, so that taking |�| < ε/(3A) yields∫

�

f n
− |v · nx | dσx dv < ε .

This proves that the sequence f n
− is weakly compact in L1(∂�−, |v·nx | dσx dv).

Proof of Theorem 2.2. We take the weak form (7.1) in which we first
consider ψ with ψ± = 0, so that the first two terms in (7.1) vanish. Passing
to the limit in (7.1) for such ψ is sufficient to obtain that f is a mild solution
of (2.1), namely that it satisfies (2.23) for almost all characteristics. Moreover,
we can fix R > 0 and for every ε > 0 take ψ = ψε vanishing on a set of
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characteristics of measure ε in ∂�−
R . In particular, by taking the sets Eε,R from

Lemma 7.1, we can ensure that for every ε > 0, χε f nνn( f n) and χε Q+
n ( f n, f n)

are weakly compact in L1(� × R
3).

We next study the limits of each term in (7.1). By the weak convergence
of f n , the first term on the right-hand side converges to∫∫

�×R3
f v · ∇xψε dx dv .

Further, since νn( f n) → ν( f ) strongly in L1
loc(� × R

3), we can take a system
of sets Eη in � × {|v| ≤ R}, with the complements of measure η and the
characteristic functions χη, such that for all η > 0, the sequence χη νn( f n)

converges uniformly in (x, v) to a bounded limit χη ν( f ). Therefore, keeping
ε and η fixed, we obtain by the weak convergence of f n ,

lim
n→∞

∫∫
�×R3

f n (νn( f n) + αn) ψεχη dx dv =
∫∫

�×R3
f ν( f ) ψεχη dx dv .

By the weak compactness of f nνn( f n) ψε, it follows that f ν( f ) ψε ∈ L1, so
that we can remove the η truncation and pass to the limit in the ‘loss’ term with
ψε. It remains to study the limit of the ‘gain’ term in the integral form (7.1),
and to prove that

(7.6) lim
n→∞

∫∫
�×R3

Q+
n ( f n, f n) ψε dx dv =

∫∫
�×R3

Q+( f, f ) ψε dx dv .

Without restricting generality, we can assume that the test functions ψε in (7.6)
are nonnegative. Taking a positive constant M we truncate the ‘gain’ term
Q+

n ( f n, f n), replacing its first argument by min( f n, M). The nonnegative cor-
rection term is estimated with the help of (4.18):∫∫

�×R3
( Q+

n ( f n, f n) − Q+
n (min( f n, M), f n) ) ψε dx dv

≤ C

log K
+ K

∫∫
{ f n>M}

f nνn( f n) ψε dx dv ≤ C

log K
+ K ε1(M)

(for K > 1 large enough, so that the factor in front of the entropy dissipa-
tion in (4.18) is bounded above by C/ log(K )). Here ε1(M) tends to zero as
M → ∞ uniformly in n because of the weak compactness of f nνn( f n) ψε.
Next, we take a positive λ and define the truncated ‘gain’ term Q+

nλ by mul-
tiplying the integrand in Q+

n (min( f n, M), f n) by χλ = χ{|v|2+|v∗|2<λ}. For M
fixed, the following estimate for the nonnegative difference term is obtained by
using (4.18):

(7.7)

∫∫
�×R3

( Q+
n (min( f n, M), f n) − Q+

nλ(min( f n, M), f n) ) ψε dx dv

=
∫∫

(�×R3)2
min( f n ′

, M) f n
∗

′ Bn (1 − χλ) ψε dx dv dy dv∗

≤ C

log K
+ K M ε2(λ) ,
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where ε2(λ) → 0 as λ → ∞ uniformly in n. Using the change of variables
(v′, v′

∗) �→ (v, v∗), the integral of the truncated ‘gain’ term can be written as
follows: ∫∫

�×R3
Q+

nλ(min( f n, M), f n) ψε dx dv

=
∫∫

�×R3
dx dv min( f n, M)

∫∫
�×R3

dy dv∗ f n
∗ Bnχλψ

′
ε .

Now by the weak convergence of f n ,

∫∫
�×R3

dy dv∗ f n
∗ Bnχλψ

′
ε −→

n→∞

∫∫
�×R3

dy dv∗ f∗ B χλψ
′
ε ,

strongly in L1 and hence, for all η > 0, uniformly on a set with complement
of measure η in the space of (x, v). Denoting by χη the characteristic function
of this set, we obtain∣∣∣∣

∫∫
(�×R3)2

min( f n ′
, M) f n

∗
′ Bn χλχη ψε dx dv dy dv∗

−
∫∫

(�×R3)2
f ′ f ′

∗ B χλχηψε dx dv dy dv∗
∣∣∣∣ ≤ C

log K
+ K ε1(M) + ε3(λ, η, n) ,

where ε3(λ, η, n) → 0 as n → ∞ for fixed λ and η, and ε1(M) is as above.
The integral of Q+

nλ over the exceptional set of measure η can be estimated,
analogously to (7.7), by

C

log K
+ K M ε4(λ, η) ,

where ε4(λ, η) tends to zero as η → 0 for fixed λ, uniformly in n. Thus, we
obtain ∣∣∣∣

∫∫
�×R3

Q+
n ( f n, f n) ψε dx dv −

∫∫
�×R3

Q+( f, f ) ψε dx dv

∣∣∣∣
≤ C

log K
+ K ε1(M) + K M

(
ε2(λ) + ε4(λ, η)

) + ε4(λ, η, n) .

From this (7.6) follows by letting n → ∞, η → 0, λ → ∞, M → ∞ and
K → ∞, in this order.

Thus, we have proved that f satisfies the limit form of (7.1) with ψ = ψε

vanishing on ∂�±, and that χε Q( f, f ) is in L1(� × R
3). It follows that f

is a mild solution of (2.1) and that f �(s) is absolutely continuous for almost
all characteristics. We can now get rid of the condition that the test functions
ψ vanish on the boundary by arguing as follows. Let ψ be a function from
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L∞(� × R
3) such that v · ∇xψ ∈ L∞(� × R

3). The mild form (2.23) then
implies, for almost all (x, v) ∈ ∂�−,

(7.8) f+ψ+ − f−ψ− +
∫ 0

−s+(x,v)

(
f v · ∇xψ + Q( f, f ) ψ

)� ds = 0 .

First of all, by taking ψ vanishing on one of the ends of each characteristic,
and integrating (7.8), it is easy to see that χε± f± ∈ L1(∂�±, |v · nx | dσx dv).
For such ψ , we can also pass to the limit in (7.1) with the test function χεψ

and thereby obtain

(7.9) lim
n→∞

∫∫
∂�±

χεψ± f n
± |v · nx | dσx dv =

∫∫
∂�±

χεψ± f± |v · nx | dσx dv .

Taking ψ = 1 on ∂�± and letting ε → 0 and using that the integrals on the
left-hand side of (7.9) are bounded uniformly in n, we obtain by the monotone
convergence that f± ∈ L1(|v · nx | dσx dv). Using (7.8) we then obtain that∫ 0
−s+(x,v)Q( f, f )� ψ ds is integrable over ∂�− and therefore, f satisfies (2.30).

Using the weak compactness of f n
± obtained as a consequence of Lem-

mas 3.2 and 7.2 we can then pass to the limit in the boundary condition satisfied
by f n

±:

(7.10) f n
+ = R f n

− + αn S
∫∫

�×R3
f n dx dv .

Indeed, the convergence (7.9) then implies that

f n
± ⇀ f±, weakly in L1(∂�±, |v · nx | dσx dv) .

Writing the boundary operator R in the weak form with ψ ∈ L∞(∂�+, |v ·
nx | dσx dv) we have,

(7.11)

∫∫
∂�+

R f n ψ |v · nx | dσx dv

=
∫∫

∂�−
dσx dw |w · nx | f n

−

∫
v·nx >0

k(x, v, w) ψ dv .

Using condition (2.16) and the upper bound (2.19), we can pass to the limit as
n → ∞ in (7.11) obtaining

R f n
− ⇀ R f−, weakly in L1(∂�+, |v · nx | dσx dv) .

The last term in (7.10) converges to zero uniformly in (x .v) ∈ ∂�+ and decays
rapidly for |v| large. Passing to the weak limit in (7.10) we obtain the boundary
condition almost everywhere on ∂�+.

Finally, we notice that taking the test functions ψ growing as 1 + |v|2
for |v| large, by using the uniform bounds for the energy and mass of the
approximate solutions and the monotone convergence theorem, we can establish
that the limit solutions f and their boundary traces are also integrable with the
weight (1 + |v|2). This will complete the proof of the theorem.
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We finally give a proof of Theorem 2.3, which will be constructed by
analogy with the already treated reflection case. A number of arguments can be
simplified in view of the assumed bounds for the entropy inflow (2.21). Without
restricting generality we will assume that the boundary profile fb satisfies the
condition

∫∫
∂�+ fb |v · nx | dσx dv = 1.

Proof of Theorem 2.3. Take positive parameters r , m, α, j and l and
consider the linear-type problem (the nonlinearity is introduced by the cutoffs)
for F = Fn , where n = (r, m, α, j, l):

v · ∇x F + αF = Q+
n (F, f ) − νn( f )F, (x, v) ∈ � × R

3 ,

F+ = fb, (x, v) ∈ ∂�+ ,

with truncations and regularizations as in Section 4 (except for the boundary
regularization which is not needed). The unique solution of this problem is
obtained as the limit of the sequence of iterations analogous to (4.7). This
allows us to define the operator

T : f �→ k F/µ(F) ,

which maps the convex bounded set L = { f ∈ L1 | µ( f ) = κ} into itself.
Following the arguments in Section 4 we verify the continuity and compactness
of T and find a fixed point by Schauder’s theorem. We then pass to the
limit as l → ∞ and as j → ∞ using the strong and weak compactness of
solutions, guaranteed by the positiveness of α. The limit function F will then
satisfy equation (3.12) with the r and m truncations and the boundary condition
F+ = fb. Because of the uniform control over the mass and energy fluxes, the
entropy production term

1

µ(F)

∫∫
(�×R3)2

(F F∗ − F ′F ′
∗) log

F F∗
F ′F ′∗

Brm dx dv dy dv∗

is bounded uniformly in r , m and α. In view of the lower bound assumed in the
statement of the theorem, the proof of Lemma 6.1 holds. By Lemma 6.3 and the
uniform energy bound, µ(F) is uniformly bounded from above. Also by (5.10)
and Lemma 5.3, it is uniformly bounded from below. Multiplication by κ/µ(F)

gives the equations for the normalized function f satisfying µ( f ) = κ:

v · ∇x f + α f = Q( f, f ), (x, v) ∈ � × R
3 ,

f+ = γ fb, (x, v) ∈ ∂�+ ,

where γ = κ/µ(F). As in Section 4, Q = Qrm is the collision operator with
the truncated kernel Brm and the constant λ is uniformly bounded from above
and from below. The uniform energy estimate implies that

∫
|v|>R f (x, v) dx dv
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are uniformly small if R is large enough. We can then use inequality (2.25) to
estimate the entropy of solutions f :

∫
{|v|>δ;

∫
ν� ds≤a}

f log f dx dv ≤
∫

{|v|>δ;
∫

ν� ds≤a; f >1}
f log f dx dv

≤ D

δ
ea/δ

∫∫
∂�−

f− (a/δ + | log f−|) |v · nx | dσx dv .

Since µ( f ) = κ , the bound (2.27) implies that for every approximating so-

lution f , the set {(x, v) | |v| ≤ R,
∫ s−
−s+ ν( f )� ds > a} has uniformly small

v-sections. Thus, by Lemma 6.4, choosing δ small and a large enough, the
integral ∫

{|v|≤δ or
∫

ν� ds>a}
f (x, v) dx dv

can be made as small as desired for all f from the family of solutions. The
estimate of the f log f term on the remainder set then implies the weak com-
pactness of f .

For ‘hard’ interactions, we can then conclude as in the proof of Theo-
rem 2.1. For ‘soft’ interactions we continue along the lines of the proof of
Theorem 2.2. Notice the the uniform integrability of the boundary trace f n

−
implied by the entropy estimate can be used to drastically shorten the proof of
Lemma 7.1, reducing it to a single estimate of the type (7.3). Passing to the
limit in the boundary condition

f n
+ = λn fb

using (7.9), we obtain that the limit trace satisfies the equality f+ = λ fb with γ

in the compact interval defined by the upper and lower bounds of κ/µ(F).

Conclusions

We established the existence of L1 solutions to the stationary Povzner
equation (2.1). A number of related questions seem to be worth mentioning
in this context. First of all, it is likely that several assumptions made in the
paper are of purely technical character and could be removed in a subsequent
development. For instance, an extension of the present results to domains
with less regular boundaries and collision kernels B in (2.7) seem feasible (the
precise factorization form in (2.7) is also taken for convenience rather than out
of necessity). The natural questions of uniqueness and further regularity of the
obtained solutions are certainly more deep and seem to require substantial new
ideas.
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Another natural question is the possibility of the localization of the kernel
b(x, y) in (2.7) and the corresponding limit transition to the Enskog and Boltz-
mann equations, as described formally by (2.11). The former equation seems to
be especially closely connected to the present analysis, and in particular, esti-
mates based on the properties of the collision frequency should remain uniform
with respect to the localization parameter when passing from (2.7) to (2.11).
Indeed, the Enskog collision frequency

ν( f )(x, v) = σ 2
∫

R3

∫
S2

f (x + σω, v∗) χ{(v−v∗)·ω<0} |(v − v∗) · ω| dω dv∗

can be shown to satisfy the estimate

sup
x∈∂�

∫
S2+

sup
|v|≤R

{
|v|

∫ s−(x,v)

−s+(x,v)

ν( f )� ds

}
dη ≤ CR

∫∫
�×R3

f∗(1 + |v∗|) dy dv∗ ,

where v = η|v| and S2
+ = {η ∈ S2 | (η ·nx) > 0}, and a similar bound for x ∈ �.

Thus, Assumption 5.1 can be verified in the case of the Enskog equation, and
the lower bound analysis of Section 5 carries over. The bottleneck seems to be
the argument in Lemma 6.2, which relies on the extra integration in the Povzner
collision operator. Nevertheless, it is possible that a more detailed analysis of
the spatial regularity of solutions in the Enskog case could allow one to prove
the weak L1 compactness of solutions using the general framework of Section 6.
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[20] F. Golse – L. Saint-Raymond, Velocity averaging in L1 for the transport equation, C. R.

Math. Acad. Sci. Paris 334 (2002), 557–562.
[21] J.-P. Guiraud, Problème aux limites intérieur pour l’équation de Boltzmann en régime
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