We are interested on families of formal power series in parameterized by (). If every is a polynomial whose degree is bounded by a linear function ( for some and ) then the family is either convergent or the series for all except a pluri-polar set. Generalizations of these results are provided for formal objects associated to germs of diffeomorphism (formal power series, formal meromorphic functions, etc.). We are interested on describing the nature of the set of parameters where converges. We prove that in dimension the sets of convergence of the divergent power series are exactly the polar sets.
@article{ASNSP_2004_5_3_4_657_0, author = {Rib\'on, Javier}, title = {Holomorphic extensions of formal objects}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {657--680}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {4}, year = {2004}, mrnumber = {2124584}, zbl = {1170.32307}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2004_5_3_4_657_0/} }
TY - JOUR AU - Ribón, Javier TI - Holomorphic extensions of formal objects JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 657 EP - 680 VL - 3 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2004_5_3_4_657_0/ LA - en ID - ASNSP_2004_5_3_4_657_0 ER -
Ribón, Javier. Holomorphic extensions of formal objects. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 4, pp. 657-680. http://www.numdam.org/item/ASNSP_2004_5_3_4_657_0/
[1] Théorie itérative: introduction à la théorie des invariants holomorphes, J. Math. Pures Appl. 54 (1975), 183-258. | MR | Zbl
,[2] “Pluripotential theory”, Oxford, 1991. | Zbl
,[3] Convergence or generic divergence of Birkhoff normal form, preprint, UCLA, 2000. http://xxx.lanl.gov/abs/math.DS/0009028. | MR
,[4] Linearization of holomorphic germs with resonant linear part, preprint, UCLA, 2000. http://xxx.lanl.gov/abs/math.DS/0009030.
,[5] A note on holomorphic extensions, preprint, UCLA, 2000. http://xxx.lanl.gov/abs/math.DS/0009031.
,[6] Total convergence or general divergence in Small Divisors, Comm. Math. Phys. (223) 3 (2001), 451-464. | MR | Zbl
,[7] “Potential theory in the complex plane”, London Mathematical Society, Student Texts 28, Cambridge University Press, 1995. | MR | Zbl
,[8] Reduction of singularities of the differential equation , Amer. J. Math. 90 (1968), 248-269. | MR | Zbl
,[9] “Potential theory in modern function theory”, Maruzen, Tokyo, 1959. | MR | Zbl
,