A geometric application of Nori's connectivity theorem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 637-656.

We study (rational) sweeping out of general hypersurfaces by varieties having small moduli spaces. As a consequence, we show that general K-trivial hypersurfaces are not rationally swept out by abelian varieties of dimension at least two. As a corollary, we show that Clemens’ conjecture on the finiteness of rational curves of given degree in a general quintic threefold, and Lang’s conjecture saying that such varieties should be rationally swept-out by abelian varieties, contradict.

Classification : 14C05, 14D07
Voisin, Claire 1

1 Institut de mathématiques de Jussieu CNRS,UMR 7586
@article{ASNSP_2004_5_3_3_637_0,
     author = {Voisin, Claire},
     title = {A geometric application of {Nori's} connectivity theorem},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {637--656},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 3},
     number = {3},
     year = {2004},
     mrnumber = {2099253},
     zbl = {1110.14008},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2004_5_3_3_637_0/}
}
TY  - JOUR
AU  - Voisin, Claire
TI  - A geometric application of Nori's connectivity theorem
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2004
SP  - 637
EP  - 656
VL  - 3
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2004_5_3_3_637_0/
LA  - en
ID  - ASNSP_2004_5_3_3_637_0
ER  - 
%0 Journal Article
%A Voisin, Claire
%T A geometric application of Nori's connectivity theorem
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2004
%P 637-656
%V 3
%N 3
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2004_5_3_3_637_0/
%G en
%F ASNSP_2004_5_3_3_637_0
Voisin, Claire. A geometric application of Nori's connectivity theorem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 637-656. http://www.numdam.org/item/ASNSP_2004_5_3_3_637_0/

[1] M. Asakura - S. Saito, Noether-Lefschetz locus for Beilinson-Hodge cycles on open complete intersections, preprint 2003.

[2] J. Carlson - Ph. Griffiths, Infinitesimal variations of Hodge structures and the global Torelli problem, In: “Journées de géométrie algébrique", A. Beauville (eds.), Sijthoff-Nordhoff, 1980, pp. 51-76. | MR | Zbl

[3] E. Cattani - P. Deligne - A. Kaplan, On the locus of Hodge classes, J. Amer. Math. Soc. (2) 8 (1995), 483-506. | MR | Zbl

[4] L. Chiantini - A.-F. Lopez - Z. Ran, Subvarieties of generic hypersurfaces in any variety, Math. Proc. Cambr. Philos. Soc. (2002). | MR | Zbl

[5] H. Clemens, Curves in generic hypersurfaces, Ann. Sci. École Norm. Sup. 19 (1986), 629-636. | Numdam | MR | Zbl

[6] H. Clemens, Curves on higher-dimensional complex projective manifolds, In: “Proceedings of the International Congress of Mathematicians", (2) 1 (Berkeley, Calif., 1986), 634-640. | MR | Zbl

[7] H. Clemens - J. Kollár - S. Mori, “Higher dimensional complex geometry", Astérisque 166, SMF (1988). | MR | Zbl

[8] H. Clemens - Z. Ran, Twisted genus bounds for subvarieties of generic hypersurfaces, Amer. J. Math. 126 (2004), 89-120. | MR | Zbl

[9] P. Deligne, Théorèmes de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. Inst. Hautes Études Sci. 35 (1968), 107-126. | Numdam | MR | Zbl

[10] P. Deligne, Théorie de Hodge II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 5-57. | Numdam | MR | Zbl

[11] P. Deligne, La conjecture de Weil pour les surfaces K3, Invent. Math. 15 (1972), 206-226. | MR | Zbl

[12] L. Ein, Subvarieties of generic complete intersections, Invent. Math. 94 (1988), 163-169. | MR | Zbl

[13] M. Green, Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann, In: “Algebraic curves and projective geometry", E. Ballico - C. Ciliberto (eds.), Lecture Notes in Mathematics 1389, Springer-Verlag 1989, pp. 76-86. | MR | Zbl

[14] M. Green, A new proof of the explicit Noether-Lefschetz theorem, J. Differential Geom. 27 (1988), 155-159. | MR | Zbl

[15] Ph. Griffiths, Periods of certain rational integrals, I, II, Ann. of Math. 90 (1969), 460-541. | MR | Zbl

[16] S. Lang, Hyperbolic and diophantine Analysis, Bull. Amer. Math. Soc. (2) 14 (1986), 159-205. | MR | Zbl

[17] D. Mumford, Rational equivalence of zero-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195-204. | MR | Zbl

[18] M. Nori, Algebraic cycles and Hodge theoretic connectivity, Invent. Math. 111 (1993), 349-373. | MR | Zbl

[19] A. Otwinowska, Asymptotic bounds for Nori's connectivity theorem, preprint 2002. | MR

[20] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996), 200-214, 49 (1998), 601-611. | MR | Zbl

[21] C. Voisin, “Hodge Theory and Complex Algebraic Geometry II", Cambridge University Press, 2003. | MR | Zbl

[22] C. Voisin, Nori's connectivity theorem and higher Chow groups, J. Inst. Math. Jussieu (2) 1 (2002), 307-329. | MR | Zbl