We show that the Néron-Severi group of the Prym variety for a degree three unramified Galois covering of a hyperelliptic Riemann surface has a distinguished subgroup of rank three. For the general hyperelliptic curve, the algebra of Hodge cycles on the Prym variety is generated by this group of rank three.
@article{ASNSP_2004_5_3_3_625_0, author = {Biswas, Indranil}, title = {On the {Hodge} cycles of {Prym} varieties}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {625--635}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {3}, year = {2004}, mrnumber = {2099252}, zbl = {1112.14032}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2004_5_3_3_625_0/} }
TY - JOUR AU - Biswas, Indranil TI - On the Hodge cycles of Prym varieties JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 625 EP - 635 VL - 3 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2004_5_3_3_625_0/ LA - en ID - ASNSP_2004_5_3_3_625_0 ER -
Biswas, Indranil. On the Hodge cycles of Prym varieties. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 625-635. http://www.numdam.org/item/ASNSP_2004_5_3_3_625_0/
[BN] Hodge classes of moduli spaces of parabolic bundles over the general curve, J. Algebraic Geom. 6 (1997), 697-715. | MR | Zbl
- ,[BP] The Hodge conjecture for general Prym varieties, Jour. Alg. Geom. 11 (2002), 33-39. | MR | Zbl
- ,[Ho] Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570. | MR | Zbl
,