Varieties with $P_{3}(X)=4$ and $q(X)=\operatorname{dim}(X)$

JUNGKAI ALFRED CHEN - CHRISTOPHER D. HACON

Abstract

We classify varieties with $P_{3}(X)=4$ and $q(X)=\operatorname{dim}(X)$.

Mathematics Subject Classification (2000): 14J10 (primary); 14C20 (secondary).

1. - Introduction

Let X be a smooth complex projective variety. When $\operatorname{dim}(X) \geq 3$ it is very hard to classify such varieties in terms of their birational invariants. Surprisingly, when X has many holomorphic 1 -forms, it is sometimes possible to achieve classification results in any dimension. In [Ka], Kawamata showed that: If X is a smooth complex projective variety with $\kappa(X)=0$ then the Albanese morphism $\mathrm{a}: X \longrightarrow \mathrm{~A}(X)$ is surjective. If moreover, $q(X)=\operatorname{dim}(X)$, then X is birational to an abelian variety. Subsequently, Kollár proved an effective version of this result (cf. [Ko2]): If X is a smooth complex projective variety with $P_{m}(X)=1$ for some $m \geq 4$, then the Albanese morphism a $: X \longrightarrow \mathrm{~A}(X)$ is surjective. If moreover, $q(X)=\operatorname{dim}(X)$, then X is birational to an abelian variety. These results where further refined and expanded as follows:

Theorem 1.1 (cf. [CH1], [CH3], [HP], [Hac2]). If $P_{m}(X)=1$ for some $m \geq 2$ or if $P_{3}(X) \leq 3$, then the Albanese morphism $\mathrm{a}: X \longrightarrow \mathrm{~A}(X)$ is surjective. If moreover $q(X)=\operatorname{dim}(X)$, then:
(1) If $P_{m}(X)=1$ for some $m \geq 2$, then X is birational to an abelian variety.
(2) If $P_{3}(X)=2$, then $\kappa(X)=1$ and X is birational to a double cover of its Albanese variety.
(3) If $P_{3}(X)=3$, then $\kappa(X)=1$ and X is birational to a bi-double cover of its Albanese variety.
In this paper we will prove a similar result for varieties with $P_{3}(X)=4$ and $q(X)=\operatorname{dim}(X)$. We start by considering the following examples:

Example 1. Let G be a group acting faithfully on a curve C and acting faithfully by translations on an abelian variety \tilde{K}, so that $C / G=E$ is an
elliptic curve and $\operatorname{dim} H^{0}\left(C, \omega_{C}^{\otimes 3}\right)^{G}=4$. Let G act diagonally on $\tilde{K} \times C$, then $X:=\tilde{K} \times C / G$ is a smooth projective variety with $\kappa(X)=1, P_{3}(X)=4$ and $q(X)=\operatorname{dim}(X)$. We illustrate some examples below:
(1) $G=\mathbb{Z}_{m}$ with $m \geq 3$. Consider an elliptic curve E with a line bundle L of degree 1. Taking the normalization of the m-th root of a divisor $B=(m-a) B_{1}+a B_{2} \in|m L|$ with $1 \leq a \leq m-1$ and $m \geq 3$, one obtains a smooth curve C and a morphism $g: C \longrightarrow E$ of degree m. One has that

$$
g_{*} \omega_{C}=\sum_{i=0}^{m-1} L^{(i)}
$$

where $L^{(i)}=L^{\otimes i}\left(-\left\lfloor\frac{i B}{m}\right\rfloor\right)$ for $i=0, \ldots, m-1$.
(2) $G=\mathbb{Z}_{2}$. Let L be a line bundle of degree 2 over an elliptic curve E. Let $C \longrightarrow E$ be the degree 2 cover defined by a reduced divisor $B \in|2 L|$.
(3) $G=\left(\mathbb{Z}_{2}\right)^{2}$. Let L_{i} for $i=1,2$ be line bundles of degree 1 on an elliptic curve E and $C_{i} \longrightarrow E$ be degree 2 covers defined by disjoint reduced divisors $B_{i} \in\left|2 L_{i}\right|$. Then $C:=C_{1} \times_{E} C_{2} \longrightarrow E$ is a G cover.
(4) $G=\left(\mathbb{Z}_{2}\right)^{3}$. For $i=1,2,3,4$, let P_{i} be distinct points on an elliptic curve E. For $j=1,2,3$ let L_{j} be line bundles of degree 1 on E such that $B_{1}=P_{1}+P_{2} \in\left|2 L_{1}\right|, B_{2}=P_{1}+P_{3} \in\left|2 L_{2}\right|$ and $B_{3}=P_{1}+P_{4} \in\left|2 L_{3}\right|$. Let $C_{j} \longrightarrow E$ be degree 2 covers defined by reduced divisors $B_{j} \in\left|2 L_{j}\right|$. Let C be the normalization of $C_{1} \times_{E} C_{2} \times_{E} C_{3} \longrightarrow E$, then C is a G cover.

Note that (1) is ramified at 2 points. Following [Be] Section VI.12, one has that $P_{2}(X)=\operatorname{dim} H^{0}\left(C, \omega_{C}^{\otimes 2}\right)^{G}=2$ and $P_{3}(X)=\operatorname{dim} H^{0}\left(C, \omega_{C}^{\otimes 3}\right)^{G}=4$. Similarly (2), (3), (4) are ramified along 4 points and hence $P_{2}(X)=P_{3}(X)=4$.

Example 2. Let $q: A \longrightarrow S$ be a surjective morphism with connected fibers from an abelian variety of dimension $n \geq 3$ to an abelian surface. Let L be an ample line bundle on S with $h^{0}(S, L)=1, P \in \operatorname{Pic}^{0}(A)$ with $P \notin \operatorname{Pic}^{0}(S)$ and $P^{\otimes 2} \in \operatorname{Pic}^{0}(S)$. For D an appropriate reduced divisor in $\left|L^{\otimes 2} \otimes P^{\otimes 2}\right|$, there is a degree 2 cover a : $X \longrightarrow \mathrm{~A}$ such that $\mathrm{a}_{*}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{\mathrm{A}} \oplus(L \otimes P)^{\vee}$. One sees that $P_{i}(X)=1,4,4$ for $i=1,2,3$.

Example 3. Let $q: \mathrm{A} \longrightarrow E_{1} \times E_{2}$ be a surjective morphism from an abelian variety to the product of two elliptic curves, $p_{i}: \mathrm{A} \longrightarrow E_{i}$ the corresponding morphisms, L_{i} be line bundles of degree 1 on E_{i} and $P, Q \in$ $\operatorname{Pic}^{0}(\mathrm{~A})$ such that P, Q generate a subgroup of $\operatorname{Pic}^{0}(\mathrm{~A}) / \operatorname{Pic}^{0}\left(E_{1} \times E_{2}\right)$ which is isomorphic to $\left(\mathbb{Z}_{2}\right)^{2}$. Then one has double covers $X_{i} \longrightarrow$ A corresponding to divisors $D_{1} \in\left|2\left(q_{1}^{*} L_{1} \otimes P\right)\right|, D_{2} \in\left|2\left(q_{2}^{*} L_{2} \otimes Q\right)\right|$. The corresponding bi-double cover satisfies

$$
\mathrm{a}_{*}\left(\omega_{X}\right)=\mathcal{O}_{\mathrm{A}} \oplus p_{1}^{*} L_{1} \otimes P \oplus p_{2}^{*} L_{2} \otimes Q \oplus p_{1}^{*} L_{1} \otimes P \otimes p_{2}^{*} L_{2} \otimes Q
$$

One sees that $P_{i}(X)=1,4,4$ for $i=1,2,3$.
We will prove the following:

Theorem 1.2. Let X be a smooth complex projective variety with $P_{3}(X)=4$, then the Albanese morphism a $: X \longrightarrow \mathrm{~A}$ is surjective (in particular $q(X) \leq$ $\operatorname{dim}(X)$). If moreover, $q(X)=\operatorname{dim}(X)$, then $\kappa(X) \leq 2$ and we have the following cases:
(1) If $\kappa(X)=2$, then X is birational either to a double cover or to a bi-double cover of A as in Examples 2 and 3 and so $P_{2}(X)=4$.
(2) If $\kappa(X)=1$, then X is birational to the quotient $\tilde{K} \times C / G$ where C is a curve, \tilde{K} is an abelian variety, G acts faithfully on C and \tilde{K}. One has that either $P_{2}(X)=2$ and $C \longrightarrow C / G$ is branched along 2 points with inertia group $H \cong \mathbb{Z}_{m}$ with $m \geq 3$ or $P_{2}(X)=4$ and $C \longrightarrow C / G$ is branched along 4 points with inertia group $H \cong\left(\mathbb{Z}_{2}\right)^{s}$ with $s \in\{1,2,3\}$. See Example 1 .

Notation and conventions. We work over the field of complex numbers. We identify Cartier divisors and line bundles on a smooth variety, and we use the additive and multiplicative notation interchangeably. If X is a smooth projective variety, we let K_{X} be a canonical divisor, so that $\omega_{X}=\mathcal{O}_{X}\left(K_{X}\right)$, and we denote by $\kappa(X)$ the Kodaira dimension, by $q(X):=h^{1}\left(\mathcal{O}_{X}\right)$ the irregularity and by $P_{m}(X):=h^{0}\left(\omega_{X}^{\otimes m}\right)$ the m-th plurigenus. We denote by a: $X \rightarrow \mathrm{~A}(X)$ the Albanese map and by $\operatorname{Pic}^{0}(X)$ the dual abelian variety to $\mathrm{A}(X)$ which parameterizes all topologically trivial line bundles on X. For a \mathbb{Q}-divisor D we let $\lfloor D\rfloor$ be the integral part and $\{D\}$ the fractional part. Numerical equivalence is denoted by \equiv and we write $D \prec E$ if $E-D$ is an effective divisor. If $f: X \rightarrow Y$ is a morphism, we write $K_{X / Y}:=K_{X}-f^{*} K_{Y}$ and we often denote by $F_{X / Y}$ the general fiber of f. A \mathbb{Q}-Cartier divisor L on a projective variety X is nef if for all curves $C \subset X$, one has $L . C \geq 0$. For a surjective morphism of projective varieties $f: X \longrightarrow Y$, we will say that a Cartier divisor L on X is Y-big if for an ample line bundle H on Y, there exists a positive integer $m>0$ such that $h^{0}\left(L^{\otimes m} \otimes f^{*} H^{\vee}\right)>0$. The rest of the notation is standard in algebraic geometry.

Acknowledgments. The first author was partially supported by NCTS at Taipei and NSC grant no: 92-2115-M-002-029. The second author was partially supported by NSA research grant no: MDA904-03-1-0101 and by a grant from the Sloan Foundation.

2. - Preliminaries

2.1. - The Albanese map and the Iitaka fibration

Let X be a smooth projective variety. If $\kappa(X)>0$, then the Iitaka fibration of X is a morphism of projective varieties $f: X^{\prime} \rightarrow Y$, with X^{\prime} birational to X and Y of dimension $\kappa(X)$, such that the general fiber of f is smooth,
irreducible, of Kodaira dimension zero. The Iitaka fibration is determined only up to birational equivalence. Since we are interested in questions of a birational nature, we usually assume that $X=X^{\prime}$ and that Y is smooth.
X has maximal Albanese dimension if $\operatorname{dim}\left(\mathrm{a}_{X}(X)\right)=\operatorname{dim}(X)$. We will need the following facts (cf. [HP], Propositions 2.1, 2.3, 2.12 and Lemma 2.14 respectively).

Proposition 2.1. Let X be a smooth projective variety of maximal Albanese dimension, and let $f: X \rightarrow Y$ be the Iitaka fibration (assume Y smooth). Denote by $f_{*}: \mathrm{A}(X) \rightarrow \mathrm{A}(Y)$ the homomorphism induced by f and consider the commutative diagram:

Then:
a) Y has maximal Albanese dimension;
b) f_{*} is surjective and $\operatorname{ker} f_{*}$ is connected of dimension $\operatorname{dim}(X)-\kappa(X)$;
c) There exists an abelian variety P isogenous to $\operatorname{ker} f_{*}$ such that the general fiber of f is birational to P.
Let $K:=\operatorname{ker} f_{*}$ and $F=F_{X / Y}$. Define

$$
G:=\operatorname{ker}\left(\operatorname{Pic}^{0}(X) \rightarrow \operatorname{Pic}^{0}(F)\right)
$$

Then
Lemma 2.2. G is the union offinitely many translates of $\operatorname{Pic}^{0}(Y)$ corresponding to the finite group

$$
\bar{G}:=G / \operatorname{Pic}^{0}(Y) \cong \operatorname{ker}\left(\operatorname{Pic}^{0}(K) \rightarrow \operatorname{Pic}^{0}(F)\right)
$$

2.2. - Sheaves on abelian varieties

Recall the following easy corollary of the theory of Fourier-Mukai transforms cf. [M]:

Proposition 2.3. Let $\psi: \mathcal{F} \hookrightarrow \mathcal{G}$ be an inclusion of coherent sheaves on an abelian variety A inducing isomorphisms $H^{i}(A, \mathcal{F} \otimes P) \rightarrow H^{i}(A, \mathcal{G} \otimes P)$ for all $i \geq 0$ and all $P \in \operatorname{Pic}^{0}(A)$. Then ψ is an isomorphism of sheaves.

Following [M], we will say that a coherent sheaf \mathcal{F} on an abelian variety A is I.T. 0 if $h^{i}(A, \mathcal{F} \otimes P)=0$ for all $i>0$ and for all $P \in \operatorname{Pic}^{0}(A)$. We will say that an inclusion of coherent sheaves on $A, \psi: \mathcal{F} \hookrightarrow \mathcal{G}$ is an I.T. 0 isomorphism if \mathcal{F}, \mathcal{G} are I.T. 0 and $h^{0}(\mathcal{G})=h^{0}(\mathcal{F})$. From the above proposition, it follows that every I.T. 0 isomorphism $\mathcal{F} \hookrightarrow \mathcal{G}$ is an isomorphism. We will need the following result:

Lemma 2.4. Let $f: X \longrightarrow E$ be a morphism from a smooth projective variety to an elliptic curve, such that K_{X} is E-big. Then, for all $P \in \operatorname{Pic}^{0}(X)_{\text {tors }}$, $\eta \in \operatorname{Pic}^{0}(E)$ and all $m \geq 2, f_{*}\left(\omega_{X}^{\otimes m} \otimes P \otimes f^{*} \eta\right)$ is I.T. 0 . In particular

$$
\operatorname{deg}\left(f_{*}\left(\omega_{X}^{\otimes m} \otimes P \otimes f^{*} \eta\right)\right)=h^{0}\left(\omega_{X}^{\otimes m} \otimes P \otimes f^{*} \eta\right)
$$

The proof of the above lemma is analogous to the proof of Lemma 2.6 of [Hac2]. We just remark that it suffices to show that $f_{*}\left(\omega_{X}^{\otimes m} \otimes P\right)$ is I.T. 0 . The sheaf $f_{*}\left(\omega_{X}^{\otimes m} \otimes P\right)$ is torsion free and hence locally free on E. By Riemann-Roch

$$
h^{0}\left(\omega_{X}^{\otimes m} \otimes P\right)=h^{0}\left(f_{*}\left(\omega_{X}^{\otimes m} \otimes P\right)\right)=\chi\left(f_{*}\left(\omega_{X}^{\otimes m} \otimes P\right)\right)=\operatorname{deg}\left(f_{*}\left(\omega_{X}^{\otimes m} \otimes P\right)\right)
$$

2.3. - Cohomological support loci

Let $\pi: X \longrightarrow A$ be a morphism from a smooth projective variety to an abelian variety, $T \subset \operatorname{Pic}^{0}(A)$ the translate of a subtorous and \mathcal{F} a coherent sheaf on X. One can define the cohomological support loci of \mathcal{F} as follows:

$$
V^{i}(X, T, \mathcal{F}):=\left\{P \in T \mid h^{i}\left(X, \mathcal{F} \otimes \pi^{*} P\right)>0\right\}
$$

If $T=\operatorname{Pic}^{0}(X)$ we write $V^{i}(\mathcal{F})$ or $V^{i}(X, \mathcal{F})$ instead of $V^{i}\left(X, \operatorname{Pic}^{0}(X), \mathcal{F}\right)$. When $\mathcal{F}=\omega_{X}$, the geometry of the loci $V^{i}\left(\omega_{X}\right)$ is governed by the following result of Green and Lazarsfeld (cf. [GL], [EL]):

Theorem 2.5 (Generic Vanishing Theorem). Let X be a smooth projective variety. Then:
a) $V^{i}\left(\omega_{X}\right)$ has codimension $\geq i-\left(\operatorname{dim}(X)-\operatorname{dim}\left(\mathrm{a}_{X}(X)\right)\right)$;
b) Every irreducible component of $V^{i}\left(X, \omega_{X}\right)$ is a translate of a sub-torus of $\mathrm{Pic}^{0}(X)$ by a torsion point (the same also holds for the irreducible components of $\left.V_{m}^{i}\left(\omega_{X}\right):=\left\{P \in \operatorname{Pic}^{0}(X) \mid h^{i}\left(X, \omega_{X} \otimes P\right) \geq m\right\}\right)$;
c) Let T be an irreducible component of $V^{i}\left(\omega_{X}\right)$, let $P \in T$ be a point such that $V^{i}\left(\omega_{X}\right)$ is smooth at P, and let $v \in H^{1}\left(X, \mathcal{O}_{X}\right) \cong T_{P} \operatorname{Pic}^{0}(X)$. If v is not tangent to T, then the sequence

$$
H^{i-1}\left(X, \omega_{X} \otimes P\right) \xrightarrow{\cup v} H^{i}\left(X, \omega_{X} \otimes P\right) \xrightarrow{\cup v} H^{i+1}\left(X, \omega_{X} \otimes P\right)
$$

is exact. Moreover, if P is a general point of T and v is tangent to T then both maps vanish;
d) If X has maximal Albanese dimension, then there are inclusions:

$$
V^{0}\left(\omega_{X}\right) \supseteq V^{1}\left(\omega_{X}\right) \supseteq \cdots \supseteq V^{n}\left(\omega_{X}\right)=\left\{\mathcal{O}_{X}\right\}
$$

e) Let $f: Y \longrightarrow X$ be a surjective map of projective varieties, Y smooth, then statements analogous to a), b), c) for $P \in \operatorname{Pic}_{\text {tors }}^{0}(Y)$ and d) above also hold for the sheaves $R^{i} f_{*} \omega_{X}$. More precisely we refer to $[\mathrm{CH} 3],[\mathrm{ClH}]$ and $[\mathrm{Hac5]}$.

When X is of maximal Albanese dimension, its geometry is very closely connected to the properties of the loci $V^{i}\left(\omega_{X}\right)$. We recall the following two results from [CH2]:

Theorem 2.6. Let X be a variety of maximal Albanese dimension. The translates through the origin of the irreducible components of $V^{0}\left(\omega_{X}\right)$ generate a subvariety of $\operatorname{Pic}^{0}(X)$ of dimension $\kappa(X)-\operatorname{dim}(X)+q(X)$. In particular, if X is of general type then $V^{0}\left(X, \omega_{X}\right)$ generates $\operatorname{Pic}^{0}(X)$.

Proposition 2.7. Let X be a variety of maximal Albanese dimension and G, Y defined as in Proposition 2.1. Then
a) $V^{0}\left(X, \operatorname{Pic}^{0}(X), \omega_{X}\right) \subset G$;
b) For every $P \in G$, the loci $V^{0}\left(X, \operatorname{Pic}^{0}(X), \omega_{X}\right) \cap\left(P+\operatorname{Pic}^{0}(Y)\right)$ are non-empty;
c) If P is an isolated point of $V^{0}\left(X, \operatorname{Pic}^{0}(X), \omega_{X}\right)$, then $P=\mathcal{O}_{X}$.

The following result governs the geometry of $V^{0}\left(\omega_{X}^{\otimes m}\right)$ for all $m \geq 2$:
Proposition 2.8. Let X be a smooth projective variety of maximal Albanese dimension, $f: X \rightarrow Y$ the Iitaka fibration (assume Y smooth) and G defined as in Proposition 2.1. If $m \geq 2$, then $V^{0}\left(\omega_{X}^{\otimes m}\right)=G$. Moreover, for any fixed $Q \in$ $V^{0}\left(\omega_{X}^{\otimes m}\right)$, and all $P \in \operatorname{Pic}^{0}(Y)$ one has $h^{0}\left(\omega_{X}^{\otimes m} \otimes Q \otimes P\right)=h^{0}\left(\omega_{X}^{\otimes m} \otimes Q\right)$.

We will also need the following lemma proved in [CH2] Section 3.
Lemma 2.9. Let X be a smooth projective variety and D an effective $\mathrm{a}_{X^{-}}$ exceptional divisor on X. If $\mathcal{O}_{X}(D) \otimes P$ is effective for some $P \in \operatorname{Pic}^{0}(X)$, then $P=\mathcal{O}_{X}$.

The following result is due to Ein and Lazarsfeld (see [HP], Lemma 2.13):
Lemma 2.10. Let X be a variety such that $\chi\left(\omega_{X}\right)=0$ and such that a_{X} : $X \longrightarrow \mathrm{~A}(X)$ is surjective and generically finite. Let T be an irreducible component of $V^{0}\left(\omega_{X}\right)$, and let $\pi_{B}: X \longrightarrow B:=\operatorname{Pic}^{0}(T)$ be the morphism induced by the map $\mathrm{A}(X) \longrightarrow \operatorname{Pic}^{0}\left(\operatorname{Pic}^{0}(X)\right) \longrightarrow B$ corresponding to the inclusion $T \hookrightarrow \operatorname{Pic}^{0}(X)$.

Then there exists a divisor $D_{T} \prec R:=\operatorname{Ram}\left(\mathrm{a}_{X}\right)=K_{X}$, vertical with respect to π_{B} (i.e. $\pi_{B}\left(D_{T}\right) \neq B$), such that for general $P \in T, G_{T}:=R-D_{T}$ is a fixed divisor of each of the linear series $\left|K_{X}+P\right|$.

We have the following useful Corollary:
Corollary 2.11. In the notation of Lemma 2.10, if $\operatorname{dim}(T)=1$, then for any $P \in T$, there exists a line bundle of degree 1 on B such that $\pi_{B}^{*} L_{P} \prec K_{X}+P$.

Proof. By [HP] Step 8 of the proof of Theorem 6.1, for general $Q \in T$, there exists a line bundle of degree 1 on B such that $\pi_{B}^{*} L_{Q} \prec K_{X}+Q$. Write $P=Q+\pi_{B}^{*} \eta$ where $\eta \in \operatorname{Pic}^{0}(B)$. Then, since

$$
h^{0}\left(\omega_{X} \otimes P \otimes \pi_{B}^{*}\left(L_{Q} \otimes \eta\right)^{\vee}\right)=h^{0}\left(\pi_{B, *}\left(\omega_{X} \otimes Q\right) \otimes L_{Q}^{\vee}\right) \neq 0
$$

one sees that there is an inclusion $\pi_{B}^{*}\left(L_{Q} \otimes \eta\right) \longrightarrow \omega_{X} \otimes P$.

Recall the following result (cf. [Hac2], Lemma 2.17):
Lemma 2.12. Let X be a smooth projective variety, let L and M be line bundles on X, and let $T \subset \operatorname{Pic}^{0}(X)$ be an irreducible subvariety of dimension t. If for all $P \in T, \operatorname{dim}|L+P| \geq a$ and $\operatorname{dim}|M-P| \geq b$, then $\operatorname{dim}|L+M| \geq a+b+t$.

Lemma 2.13. Let T be a 1-dimensional component of $V^{0}\left(\omega_{X}\right), E:=T^{\vee}$ and $\pi: X \longrightarrow E$ the induced morphism. Then $\left.P\right|_{F} \cong \mathcal{O}_{F}$ for all $P \in T$.

Proof. Let G_{T}, D_{T} be as in Lemma 2.10, then for $P \in T$ we have $\mid K_{X}+$ $P\left|=G_{T}+\left|D_{T}+P\right|\right.$ and hence the divisor $D_{T}+P$ is effective. It follows that $\left.\left(D_{T}+P\right)\right|_{F}$ is also effective. However D_{T} is vertical with respect to π and hence $\left.D_{T}\right|_{F} \cong \mathcal{O}_{F}$. By Lemma 2.9 , one sees that $\left.P\right|_{F} \cong \mathcal{O}_{F}$.

3. - Kodaira dimension of Varieties with $P_{3}(X)=4, q(X)=\operatorname{dim}(X)$

The purpose of this section is to study the Albanese map and Iitaka fibration of varieties with $P_{3}=4$ and $q=\operatorname{dim}(X)$. We will show that: 1) the Albanese map is surjective, 2) the image of the Iitaka fibration is an abelian variety (and hence the Iitaka fibration factors through the Albanese map), 3) we have that $\kappa(X) \leq 2$.

We begin by fixing some notation. We write

$$
V_{0}\left(X, \omega_{X}\right)=\cup_{i \in I} S_{i}
$$

where S_{i} are irreducible components. Let T_{i} denote the translate of S_{i} passing through the origin and $\delta_{i}:=\operatorname{dim}\left(S_{i}\right)$. For any $i, j \in I$, let $\delta_{i, j}:=\operatorname{dim}\left(T_{i} \cap T_{j}\right)$.

Recall that $V_{0}\left(X, \omega_{X}\right) \subset G \rightarrow \bar{G}:=G / \operatorname{Pic}^{0}(Y)$. For any $\eta \in \bar{G}$, we fix once and for all S_{η} a maximal dimensional component which maps to η. In particular, T_{0} denotes the translate through the origin of a maximal dimensional component $S_{0} \subset V^{0}\left(X, \omega_{X}\right) \cap \operatorname{Pic}^{0}(Y)$. If X is of maximal Albanese dimension with $q(X)=\operatorname{dim}(X)$, then its Iitaka fibration image Y is of maximal Albanese dimension with $q(Y)=\operatorname{dim}(Y)=\kappa(X)$. Moreover, by Proposition 2.7, one has $\delta_{i} \geq 1, \forall i \neq 0$.

We denote by $P_{m, \alpha}:=h^{0}\left(X, \omega_{X}^{\otimes m} \otimes \alpha\right)$ for $\alpha \in \operatorname{Pic}^{0}(X)$. Now let Q_{i} (Q_{η} resp.) be a general element in S_{i} (S_{η} resp.), we denote by $P_{m, i}:=$ $h^{0}\left(X, \omega_{X}^{\otimes m} \otimes Q_{i}\right)\left(P_{m, \eta}\right.$ resp.). We remark that it is convenient to choose Q_{i} (Q_{η} resp.) to be torsion so that the results of Kollár on higher direct images of dualizing sheaves will also apply to the sheaf $\omega_{X} \otimes Q_{i}$. Proposition 2.8 can be rephrased as

$$
\begin{equation*}
P_{m, \alpha}=P_{m, \alpha+\beta} \quad \forall \alpha \in \operatorname{Pic}^{0}(X), \quad \beta \in \operatorname{Pic}^{0}(Y), \quad m \geq 2 \tag{1}
\end{equation*}
$$

Notice that if $\alpha \notin G$ then also $\alpha+\beta \notin G$ and so both numbers are equal to 0 .

By Lemma 2.12 one has, for any $\eta, \zeta \in \bar{G}$,

$$
\left\{\begin{array}{l}
P_{2, \eta+\zeta} \geq P_{1, \eta}+P_{1, \zeta}+\delta_{\eta, \zeta}-1 \tag{2}\\
P_{2,2 \eta} \geq 2 P_{1, \eta}+\delta_{\eta}-1 \\
P_{3, \eta+\zeta} \geq P_{1, \eta}+P_{2, \zeta}+\delta_{\eta}-1
\end{array}\right.
$$

Here $\delta_{\eta}=\delta_{i}$ and $\delta_{\eta, \zeta}=\delta_{i, j}$ if T_{η}, T_{ζ} are represented by T_{i}, T_{j} respectively.
The following lemma is very useful when $\kappa \geq 2$.
Lemma 3.1. Let X be a variety of maximal Albanese dimension with $\kappa(X) \geq 2$. Suppose that there is a surjective morphism $\pi: X \rightarrow E$ to an elliptic curve E, and suppose that there is an inclusion $\varphi: \pi^{*} L \rightarrow \omega_{X}^{\otimes m} \otimes P$ for some $m \geq 2,\left.P\right|_{F}=\mathcal{O}_{F}$ where F is a general fiber of π and L is an ample line bundle on E. Then the induced map $L \rightarrow \pi_{*}\left(\omega_{X}^{\otimes m} \otimes P\right)$ is not an isomorphism, $\operatorname{rank}\left(\pi_{*}\left(\omega_{X}^{\otimes m} \otimes P\right)\right) \geq 2$ and $h^{0}\left(X, \omega_{X}^{\otimes m} \otimes P\right)>h^{0}(E, L)$.

Proof. By the easy addition theorem, $\kappa(F) \geq 1$. Hence by Theorem 1.1, $P_{m}(F) \geq 2$ for $m \geq 2$. The sheaf $\pi_{*}\left(\omega_{X}^{\otimes m} \otimes P\right)$ has rank equal to $h^{0}\left(F,\left.\omega_{X}^{\otimes m} \otimes P\right|_{F}\right)=h^{0}\left(F, \omega_{F}^{\otimes m}\right) \geq 2$. Therefore, $L \rightarrow \pi_{*}\left(\omega_{X}^{\otimes m} \otimes P\right)$ is not an isomorphism. Since they are non-isomorphic I.T.0 sheaves, it follows that $h^{0}\left(\pi_{*}\left(\omega_{X}^{\otimes m} \otimes P\right)\right)>h^{0}(L)$.

Corollary 3.2. Keep the notation as in Lemma 3.1. If there is a morphism $\pi^{\prime}: X \rightarrow E^{\prime}$ and an inclusion $\pi^{* *} L^{\prime} \hookrightarrow \omega_{X} \otimes P^{\vee}$ for some ample line bundle L^{\prime} on E^{\prime} and $P \in \operatorname{Pic}^{0}(X)$ with $\left.P\right|_{F^{\prime}}=\mathcal{O}_{F^{\prime}}$, then for all $m \geq 2$

$$
P_{m+1}(X) \geq 2+h^{0}\left(X, \omega_{X}^{\otimes m} \otimes P\right)>2+h^{0}\left(E^{\prime}, L^{\prime}\right)
$$

Proof. The inclusion $\pi^{* *} L^{\prime} \hookrightarrow \omega_{X} \otimes P^{\vee}$ induces an inclusion

$$
\pi^{\prime *} L^{\prime} \otimes \omega_{X}^{\otimes m} \otimes P \hookrightarrow \omega_{X}^{\otimes m+1}
$$

By Riemann-Roch, one has
$P_{m+1}(X) \geq h^{0}\left(E^{\prime}, L^{\prime} \otimes \pi_{*}^{\prime}\left(\omega_{X}^{\otimes m} \otimes P\right)\right) \geq h^{0}\left(E^{\prime}, \pi_{*}^{\prime}\left(\omega_{X}^{\otimes m} \otimes P\right)\right)+\operatorname{rank}\left(\pi_{*}^{\prime}\left(\omega_{X}^{\otimes m} \otimes P\right)\right)$.
By Proposition 2.7, there exists $\alpha \in \operatorname{Pic}^{0}(Y)$ such that $h^{0}\left(\omega_{X}^{\otimes m-1} \otimes P^{\otimes 2} \otimes \alpha\right) \neq 0$ and hence there is an inclusion

$$
\pi^{\prime *} L^{\prime} \hookrightarrow \omega_{X}^{\otimes m} \otimes P \otimes \alpha
$$

By Proposition 2.8 and Lemma 3.1,

$$
h^{0}\left(X, \omega_{X}^{\otimes m} \otimes P\right)=h^{0}\left(X, \omega_{X}^{\otimes m} \otimes P \otimes \alpha\right)>h^{0}\left(E^{\prime}, L^{\prime}\right)
$$

Remark 3.3. Let X be a variety with $\kappa(X) \geq 2$. Suppose that there is a 1-dimensional component $S_{i} \subset V^{0}\left(\omega_{X}\right)$. We often consider the induced map $\pi: X \rightarrow E:=T_{i}^{\vee}$. It is easy to see that π factors through the Iitaka fibration. By Corollary 2.11 and Lemma 2.13, there is an inclusion $\varphi: \pi^{*} L \rightarrow \omega_{X} \otimes P$ for some $P \in \operatorname{Pic}^{0}(X)$ with $\left.P\right|_{F}=\mathcal{O}_{F}$ and some ample line bundle L on E. In what follows, we will often apply Lemma 3.1 and Corollary 3.2 to this situation.

Lemma 3.4. Let X be a variety of maximal Albanese dimension with $\kappa(X) \geq 2$ and $P_{3}(X)=4$. Then for any $\zeta \neq 0 \in \bar{G}$, one has $P_{2, \zeta} \leq 2$.

Proof. If $P_{2, \zeta} \geq 3$, then by (2) and Proposition 2.7, one sees that $\delta_{-\zeta}=1$. Let $\pi: X \longrightarrow E:=T_{-\zeta}^{\vee}$ be the induced morphism. Then there is an ample line bundle L on the elliptic curve E and an inclusion $L \longrightarrow \pi_{*}\left(\omega_{X} \otimes Q_{-\zeta}\right)$. By Corollary 3.2, $P_{3}(X) \geq 2+P_{2, \zeta} \geq 5$ which is impossible.

Theorem 3.5. Let X be a smooth projective variety with $P_{3}(X)=4$, then the Albanese morphism a $: X \longrightarrow \mathrm{~A}$ is surjective.

Proof. We follow the proof of Theorem 5.1 of [HP]. Assume that a : $X \longrightarrow$ A is not surjective, then we may assume that there is a morphism $f: X \longrightarrow Z$ where Z is a smooth variety of general type, of dimension at least 1 , such that its Albanese map $\mathrm{a}_{Z}: Z \longrightarrow S$ is birational onto its image. By the proof of Theorem 5.1 of [HP], it suffices to consider the cases in which $P_{1}(Z) \leq 3$ and hence $\operatorname{dim}(Z) \leq 2$. If $\operatorname{dim}(Z)=2$, then $q(Z)=\operatorname{dim}(S) \geq 3$ and since $\chi\left(\omega_{Z}\right)>0$, one sees that $V^{0}\left(\omega_{Z}\right)=\operatorname{Pic}^{0}(S)$. By the proof of Theorem 5.1 of [HP], one has that for generic $P \in \operatorname{Pic}^{0}(S)$,

$$
P_{3}(X) \geq h^{0}\left(\omega_{Z} \otimes P\right)+h^{0}\left(\omega_{X}^{\otimes 3} \otimes f^{*} \omega_{Z}^{\vee} \otimes P\right)+\operatorname{dim}(S)-1 \geq 1+2+3-1 \geq 5
$$

This is a contradiction, so we may assume that $\operatorname{dim}(Z)=1$. It follows that $g(Z)=q(Z)=P_{1}(Z) \geq 2$ and one may write $\omega_{Z}=L^{\otimes 2}$ for some ample line bundle L on Z. Therefore, for general $P \in \operatorname{Pic}^{0}(Z)$, one has that $h^{0}\left(\omega_{Z} \otimes L \otimes P\right) \geq 2$ and proceeding as in the proof of Theorem 5.1 of [HP], that $h^{0}\left(\omega_{X}^{\otimes 3} \otimes f^{*}\left(\omega_{Z} \otimes L\right)^{\vee} \otimes P\right) \geq 2$. It follows as above that

$$
P_{3}(X) \geq h^{0}\left(\omega_{Z} \otimes L \otimes P\right)+h^{0}\left(\omega_{X}^{\otimes 3} \otimes f^{*}\left(\omega_{Z} \otimes L\right)^{\vee} \otimes P\right)+\operatorname{dim}(S)-1 \geq 2+2+2-1 \geq 5 .
$$

This is a contradiction and so a : $X \longrightarrow \mathrm{~A}$ is surjective.
Proposition 3.6. Let X be a smooth projective variety with $P_{3}(X)=4, q(X)=$ $\operatorname{dim}(X)$, then
(1) X is not of general type and
(2) if $\kappa(X) \geq 2$, then

$$
V^{0}\left(\omega_{X}\right) \cap f^{*} \operatorname{Pic}^{0}(Y)=\left\{\mathcal{O}_{X}\right\}
$$

Proof. If $\kappa(X)=1$, then clearly X is not of general type as otherwise X is a curve with $P_{3}(X)=5 g-5>4$. We thus assume that $\kappa(X) \geq 2$. It suffices to prove (2) as then (1) will follow from Theorem 2.6.

If all points of $V^{0}\left(\omega_{X}\right) \cap f^{*} \mathrm{Pic}^{0}(Y)$ are isolated, then the above statement follows from Proposition 2.7. Therefore, it suffices to prove that $\delta_{0}=0$. (Recall that δ_{0} is the maximal dimension of a component in $\operatorname{Pic}^{0}(Y)$.)

Suppose that $\delta_{0} \geq 2$. Then by (2) and Proposition 2.8, one has

$$
P_{2} \geq 1+1+\delta_{0}-1 \geq 3, \quad P_{3} \geq 3+1+\delta_{0}-1 \geq 5
$$

which is impossible.
Suppose now that $\delta_{0}=1$, i.e. there is a 1-dimensional component $S_{0} \subset$ $V^{0}\left(\omega_{X}\right) \cap f^{*} \operatorname{Pic}^{0}(Y)$. Let $\pi: X \longrightarrow E:=T_{0}^{\vee}$ be the induced morphism. By

Corollary 2.11, for some general $P \in S_{0}$, there exists a line bundle of degree 1 on E and an inclusion $\pi^{*} L \longrightarrow \omega_{X} \otimes P$. By Lemma 2.13, $\left.P\right|_{F_{X / E}} \cong \mathcal{O}_{F_{X / E}}$.

We consider the inclusion $\varphi: L^{\otimes 2} \longrightarrow \pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P^{\otimes 2}\right)$. By Lemma 3.1, one sees that $h^{0}\left(\omega_{X}^{\otimes 2} \otimes P^{\otimes 2}\right) \geq 3$, and $\operatorname{rank}\left(\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P^{\otimes 2}\right)\right) \geq 2$. So

$$
\begin{aligned}
P_{3}(X) & =h^{0}\left(\omega_{X}^{\otimes 3} \otimes P^{\otimes 3}\right) \geq h^{0}\left(\omega_{X}^{\otimes 2} \otimes P^{\otimes 2} \otimes \pi^{*} L\right) \\
& =h^{0}\left(\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P^{\otimes 2}\right) \otimes L\right) \geq \operatorname{deg}\left(\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P^{\otimes 2}\right)\right)+\operatorname{rank}\left(\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P^{\otimes 2}\right)\right) \\
& \geq 3+2
\end{aligned}
$$

and this is the required contradiction.
Proposition 3.7. Let X be a smooth projective variety with $P_{3}(X)=4$, $q(X)=\operatorname{dim}(X)$, and $f: X \longrightarrow Y$ be a birational model of its Itaka fibration. Then Y is birational to an abelian variety.

Proof. Since X, Y are of maximal Albanese dimension, $K_{X / Y}$ is effective. If $h^{0}\left(\omega_{Y} \otimes P\right)>0$, it follows that $h^{0}\left(\omega_{X} \otimes f^{*} P\right)>0$ and so by Proposition 3.6, $f^{*} P=\mathcal{O}_{X}$. By Proposition 2.1, the map $f^{*}: \operatorname{Pic}^{0}(Y) \longrightarrow \operatorname{Pic}^{0}(X)$ is injective and hence $P=\mathcal{O}_{Y}$. Therefore $V^{0}\left(\omega_{Y}\right)=\left\{\mathcal{O}_{Y}\right\}$ and by Theorem 2.6, one has $\kappa(Y)=0$ and hence Y is birational to an abelian variety.

We are now ready to describe the cohomological support loci of varieties with $\kappa(X) \geq 2$ explicitly. Recall that by Proposition 2.7 , for all $\eta \neq 0 \in \bar{G}$, $\delta_{\eta} \geq 1$.

Theorem 3.8. Let X be a smooth projective variety with $P_{3}(X)=4, q(X)=$ $\operatorname{dim}(X)$ and $\kappa(X) \geq 2$. Then $\kappa(X)=2$ and $\bar{G} \cong\left(\mathbb{Z}_{2}\right)^{s}$ for some $s \geq 1$.

Proof. The proof consists of following claims:
Claim 3.9. If $\kappa(X) \geq 2$ and $T \subset V^{0}\left(\omega_{X}\right)$ is a positive dimensional component, then $T+T \subset \overline{\operatorname{Pic}}^{0}(Y)$, i.e. $\bar{G} \cong\left(\mathbb{Z}_{2}\right)^{s}$.

Proof of Claim 3.9. It suffices to prove that $2 \eta=0$ for $0 \neq \eta \in \bar{G}$. Suppose that $2 \eta \neq 0$, we will find a contradiction.

We first consider the case that $\delta_{\eta} \geq 2$ and $\delta_{-2 \eta} \geq 2$. Then by (2), $P_{2,2 \eta} \geq$ $1+1+\delta_{\eta}-1 \geq 3$, and $P_{3} \geq 3+1+\delta_{-2 \eta}-1 \geq 5$ which is impossible.

We then consider the case that $\delta_{\eta} \geq 2$ and $\delta_{-2 \eta}=1$. Again we have $P_{2,2 \eta} \geq 3$. We consider the induced map $\pi: X \rightarrow E:=T_{-2 \eta}^{\vee}$ and the inclusion $\varphi: \pi^{*} L \rightarrow \omega_{X} \otimes Q_{-2 \eta}$ where E is an elliptic curve and L is an ample line bundle on E. It follows that there is an inclusion

$$
\pi^{*} L \otimes\left(\omega_{X} \otimes Q_{\eta}\right)^{\otimes 2} \rightarrow \omega_{X}^{\otimes 3} \otimes Q_{\eta}^{\otimes 2} \otimes Q_{-2 \eta}
$$

By Lemma 3.1, one has that $\operatorname{rank}\left(\pi_{*}\left(\omega_{X} \otimes Q_{\eta}\right)^{\otimes 2}\right) \geq 2$. By Proposition 2.8, Riemann-Roch and Lemma 2.4

$$
\begin{aligned}
P_{3}(X) & =h^{0}\left(\omega_{X}^{\otimes 3} \otimes Q_{\eta}^{\otimes 2} \otimes Q_{-2 \eta}\right) \geq h^{0}\left(\pi^{*} L \otimes\left(\omega_{X} \otimes Q_{\eta}\right)^{\otimes 2}\right) \\
& =h^{0}\left(\left(\omega_{X} \otimes Q_{\eta}\right)^{\otimes 2}\right)+\operatorname{rank}\left(\pi_{*}\left(\omega_{X} \otimes Q_{\eta}\right)^{\otimes 2}\right) \geq P_{2,2 \eta}+2 \geq 5
\end{aligned}
$$

which is impossible.

Lastly, we consider the case that $\delta_{\eta}=1$. There is an induced map π : $X \rightarrow E:=T_{\eta}^{\vee}$ and an inclusion $\pi^{*} L \rightarrow \omega_{X} \otimes Q_{\eta}$. Hence there is an inclusion $\varphi: \pi^{*} L^{\otimes 2} \rightarrow\left(\omega_{X} \otimes Q_{\eta}\right)^{\otimes 2}$. By Lemma 3.1, we have $P_{2,2 \eta} \geq 3$. We now proceed as in the previous cases.

Therefore, any element $\eta \in \bar{G}$ is of order 2 and hence $\bar{G} \cong\left(\mathbb{Z}_{2}\right)^{s}$.
Claim 3.10. If there is a surjective map with connected fibers to an elliptic curve $\pi: X \longrightarrow E$ and an inclusion $\pi^{*} L \longrightarrow \omega_{X} \otimes P$ for an ample line bundle L on E and $P \in \operatorname{Pic}^{0}(X)$ (in particular if $\delta_{i}=1$ for some $i \neq 0 \mathrm{cf}$. Corollary 2.11). Then $\kappa(X)=2$.

Proof of Claim 3.10. Since K_{X} is effective, there is also an inclusion $L \rightarrow$ $\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P\right)$. By Lemma 3.1, one has rank $\left(\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right) \geq 2, h^{0}\left(\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right) \geq 2$. Consider the inclusion

$$
\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P\right) \otimes L \longrightarrow \pi_{*}\left(\omega_{X}^{\otimes 3} \otimes P^{\otimes 2}\right)
$$

Since

$$
\begin{aligned}
P_{3}(X) & =h^{0}\left(\pi_{*}\left(\omega_{X}^{\otimes 3} \otimes P^{\otimes 2}\right)\right) \geq h^{0}\left(\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P\right) \otimes L\right) \\
& \geq \operatorname{deg}\left(\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right)+\operatorname{rank}\left(\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right),
\end{aligned}
$$

it follows that

$$
\operatorname{deg}\left(\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right)=\operatorname{rank}\left(\pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right)=2
$$

and the above homomorphism of sheaves induces an isomorphism on global sections and hence is an isomorphism of sheaves (cf. Proposition 2.3). Therefore,

$$
P_{3}(F)=h^{0}\left(\omega_{F}^{\otimes 3} \otimes P^{\otimes 2}\right)=2
$$

By Theorem 1.1, it follows that $\kappa(F)=1$ and by easy addition, one has that

$$
\kappa(X) \leq \kappa(F)+\operatorname{dim}(E)=2
$$

Claim 3.11. For all $i \neq 0, P_{1, i}=1$.
Proof of Claim 3.11. If $P_{1, i} \geq 2$, then by (2),

$$
4 \geq P_{2} \geq 2 P_{1, i}+\delta_{i}-1
$$

It follows that $\delta_{i}=1$. Let $E=T^{\vee}$ and $\pi: X \longrightarrow E$ be the induced morphism. We follow Lemma 2.10 and let $L:=\pi_{*}\left(\mathcal{O}_{X}\left(D_{T}\right) \otimes Q_{i}\right)$. The sheaf L is torsion free and hence locally free. Since D_{T} is vertical, L is of rank 1, i.e. a line bundle. There is an inclusion $\pi^{*} L \longrightarrow \omega_{X} \otimes Q_{i}$ and one has $h^{0}(E, L)=h^{0}\left(\omega_{X} \otimes Q_{i}\right) \geq 2$. Consider the inclusion $\pi^{*} L^{\otimes 2} \longrightarrow \omega_{X}^{\otimes 2} \otimes Q_{i}^{\otimes 2}$. By Lemma 3.1, one sees that

$$
P_{3} \geq P_{2,2 i}=h^{0}\left(\omega_{X}^{\otimes 2} \otimes Q_{i}^{\otimes 2}\right)>h^{0}\left(E, L^{\otimes 2}\right) \geq 4
$$

which is impossible.

Claim 3.12. If $\kappa(X)=\operatorname{dim}(S)$ for some component S of $V^{0}\left(\omega_{X}\right)$, then $\kappa(X)=2$.

Proof of Claim 3.12. Let Q be a general point in S, and T be the translate of S through the origin. By Proposition 3.7, one sees that the induced map $X \rightarrow T^{\vee}$ is isomorphic to the Iitaka fibration. We therefore identify Y with T^{\vee}. We assume that $\operatorname{dim}(S) \geq 3$ and derive a contradiction. First of all, by (2)

$$
P_{3}(X)=h^{0}\left(\omega_{X}^{\otimes 3} \otimes Q^{\otimes 2}\right) \geq h^{0}\left(\omega_{X}^{\otimes 2} \otimes Q\right)+\operatorname{dim}(S)
$$

and so $h^{0}\left(\omega_{X}^{\otimes 2} \otimes Q\right)=1$ and $\operatorname{dim}(S)=3$.
Let H be an ample line bundle on Y and for m a sufficiently big and divisible integer, fix a divisor $B \in\left|m K_{X}-f^{*} H\right|$. After replacing X by an appropriate birational model, we may assume that B has simple normal crossings support. Let $L=\omega_{X} \otimes \mathcal{O}_{X}(-\lfloor B / m\rfloor)$, then $L \equiv f^{*}(H / m)+\{B / m\}$ i.e. L is numerically equivalent to the sum of the pull back of an ample divisor and a k.l.t. divisor and so one has

$$
h^{i}\left(Y, f_{*}\left(\omega_{X} \otimes L \otimes Q\right) \otimes \alpha\right)=0 \quad \text { for all } \quad i>0 \quad \text { and } \alpha \in \operatorname{Pic}^{0}(Y)
$$

Comparing the base loci, one can see that $h^{0}\left(\omega_{X} \otimes L \otimes Q\right)=h^{0}\left(\omega_{X}^{\otimes 2} \otimes Q\right)=1$ (cf. [CH1], Lemma 2.1 and Proposition 2.8) and so

$$
h^{0}\left(Y, f_{*}\left(\omega_{X} \otimes L \otimes Q\right) \otimes \alpha\right)=h^{0}\left(f_{*}\left(\omega_{X} \otimes L \otimes Q\right)\right)=1 \quad \forall \alpha \in \operatorname{Pic}^{0}(Y)
$$

Since $f_{*}\left(\omega_{X} \otimes L \otimes Q\right)$ is a torsion free sheaf of generic rank one, by [Hac] it is a principal polarization M.

Since one may arrange that $\left\lfloor\frac{B}{m}\right\rfloor \prec K_{X}$, there is an inclusion $\omega_{X} \otimes Q \hookrightarrow$ $\omega_{X} \otimes L \otimes Q$. Pushing forward to Y, it induces an inclusion

$$
\varphi: f_{*}\left(\omega_{X} \otimes Q\right) \hookrightarrow M .
$$

Therefore, $f_{*}\left(\omega_{X} \otimes Q\right)$ is of the form $M \otimes \mathcal{I}_{Z}$ for some ideal sheaf \mathcal{I}_{Z}. However, $h^{0}\left(Y, f_{*}\left(\omega_{X} \otimes Q\right) \otimes P\right)=h^{0}\left(M \otimes P \otimes \mathcal{I}_{Z}\right)>0$ for all $P \in \operatorname{Pic}^{0}(Y)$ and M is a principal polarization. It follows that $\mathcal{I}_{Z}=\mathcal{O}_{Y}$ and thus $f_{*}\left(\omega_{X} \otimes Q\right)=M$. Therefore, one has an inclusion

$$
f^{*} M^{\otimes 2} \hookrightarrow\left(\omega_{X} \otimes Q\right) \otimes\left(\omega_{X} \otimes L \otimes Q\right) \hookrightarrow \omega_{X}^{\otimes 3} \otimes Q^{\otimes 2}
$$

It follows that

$$
4=P_{3}(X)=h^{0}\left(X, \omega_{X}^{\otimes 3} \otimes Q^{\otimes 2}\right) \geq h^{0}\left(Y, M^{\otimes 2}\right) \geq 2^{\operatorname{dim}(S)}
$$

This is the required contradiction.

Claim 3.13. Any two components of $V^{0}\left(\omega_{X}\right)$ of dimension at least 2 must be parallel.

Proof of Claim 3.13. For $i=1,2$, let $p_{i}: X \longrightarrow T_{i}^{\vee}$ be the induced morphism. Assume that $\delta_{1}, \delta_{2} \geq 2$ and T_{1}, T_{2} are not parallel. By Lemma 2.10, one may write $K_{X}=G_{i}+D_{i}$ where D_{i} is vertical with respect to $p_{i}: X \longrightarrow T_{i}^{\vee}$ and for general $P \in S_{i}$, one has $\left|K_{X}+P\right|=G_{i}+\left|D_{i}+P\right|$ is a 0-dimensional linear system (see Claim 3.11).

Recall that we may assume that the image of the Iitaka fibration $f: X \longrightarrow$ Y is an abelian variety. Pick H an ample divisor on Y and for m sufficiently big and divisible integer, let

$$
B \in\left|m K_{X}-f^{*} H\right| .
$$

After replacing X by an appropriate birational model, we may assume that B has normal crossings support. Let

$$
L:=\omega_{X}\left(-\left\lfloor\frac{B}{m}\right\rfloor\right) \equiv\left\{\frac{B}{m}\right\}+f^{*}\left(\frac{H}{m}\right)
$$

It follows that

$$
h^{i}\left(f_{*}\left(\omega_{X} \otimes L \otimes P\right) \otimes \alpha\right)=0 \quad \text { for all } \quad i>0, \quad \alpha \in \operatorname{Pic}^{0}(Y), \quad P \in \operatorname{Pic}^{0}(X)
$$

The quantity $h^{0}\left(\omega_{X} \otimes L \otimes P \otimes f^{*} \alpha\right)$ is independent of $\alpha \in \operatorname{Pic}^{0}(Y)$. For some fixed $P \in S_{1}$ as above, and $\alpha \in \operatorname{Pic}^{0}\left(T_{1}^{\vee}\right)$, one has a morphism

$$
\left|D_{1}+P+\alpha\right| \times\left|D_{1}+P-\alpha\right| \longrightarrow\left|2 D_{1}+2 P\right|
$$

and hence $h^{0}\left(\mathcal{O}_{X}\left(2 D_{1}\right) \otimes P^{\otimes 2}\right) \geq 3$. Similarly for some fixed $Q \in S_{2}$, and $\alpha^{\prime} \in \operatorname{Pic}^{0}\left(T_{2}^{\vee}\right)$, one has a morphism

$$
\left|D_{2}+Q+\alpha^{\prime}\right| \times\left|K_{X}+L-Q+2 P-\alpha^{\prime}\right| \longrightarrow\left|K_{X}+L+D_{2}+2 P\right|
$$

and hence $h^{0}\left(\omega_{X}\left(D_{2}\right) \otimes L \otimes P^{\otimes 2}\right) \geq 3$. It follows that since $h^{0}\left(\omega_{X}^{\otimes 3} \otimes P^{\otimes 2}\right)=4$, there is a 1 dimensional intersection between the images of the 2 morphisms above which are contained in the loci

$$
\left|2 D_{1}+2 P\right|+2 G_{1}+K_{X}, \quad\left|K_{X}+L+D_{2}+2 P\right|+\left\lfloor\frac{B}{m}\right\rfloor+G_{2}
$$

It is easy to see that for all but finitely many $P \in \operatorname{Pic}^{0}(X)$, one has $h^{0}\left(\omega_{X} \otimes P\right) \leq 1$. So there is a 1 parameter family $\tau_{2} \subset \operatorname{Pic}^{0}\left(T_{2}^{\vee}\right)$ such that for $\alpha^{\prime} \in \tau_{2}$, one has that the divisor $D_{Q+\alpha^{\prime}}=\left|D_{2}+Q+\alpha^{\prime}\right|$ is contained in $D_{P+\alpha}+D_{P-\alpha}+2 G_{1}+K_{X}$ where $\alpha \in \tau_{1}$ a 1 parameter family in $\operatorname{Pic}^{0}\left(T_{1}^{\vee}\right)$. Let $D_{Q+\alpha^{\prime}}^{*}$ be the components of $D_{Q+\alpha^{\prime}}$ which are not fixed for general $\alpha^{\prime} \in \tau_{2}$, then $D_{Q+\alpha^{\prime}}^{*}$ is not contained
in the fixed divisor $2 G_{1}+K_{X}$ and hence is contained in some divisor of the form $D_{P+\alpha}^{*}+D_{P-\alpha}^{*}$ and hence is T_{1}^{\vee} vertical.

If $\operatorname{Pic}^{0}\left(T_{1}^{\vee}\right) \cap \operatorname{Pic}^{0}\left(T_{2}^{\vee}\right)=\left\{\mathcal{O}_{X}\right\}$, then $D_{Q+\alpha^{\prime}}^{*}$ is a-exceptional, and this is impossible by Lemma 2.9.

If there is a 1 -dimensional component $\Gamma \subset \operatorname{Pic}^{0}\left(T_{1}^{\vee}\right) \cap \operatorname{Pic}^{0}\left(T_{2}^{\vee}\right)$. Let $E=\Gamma^{\vee}$ and $\pi: X \longrightarrow E$ be the induced morphism. The divisors $D_{Q+\alpha^{\prime}}^{*}$ are E-vertical. We may assume that π has connected fibers. Since the $D_{Q+\alpha^{\prime}}^{*}$ vary with $\alpha^{\prime} \in \tau_{2}$, for general $\alpha^{\prime} \in \tau_{2}$, they contain a smooth fiber of π. So for general $\alpha^{\prime} \in \tau_{2}$ there is an inclusion $\pi^{*} M \longrightarrow \omega_{X} \otimes Q \otimes \pi^{*} \alpha^{\prime}$ where M is a line bundle of degree at least 1. By Claim 3.10, one has $\kappa(X)=2$ and hence T_{1}, T_{2} are parallel.

If there is a 2 -dimensional component $\Gamma \subset \operatorname{Pic}^{0}\left(T_{1}^{\vee}\right) \cap \operatorname{Pic}^{0}\left(T_{2}^{\vee}\right)$, then $\delta_{1}=\delta_{2} \geq 3$. By (2), one sees that $P_{2, Q_{1}+Q_{2}} \geq 3$. By Lemma 3.4, this is impossible.

By Claim 3.10, if there is a one dimensional component, then $\kappa(X)=2$. Therefore, we may assume that $\delta_{i} \geq 2$ for all $i \neq 0$. By Claim 3.13, since $\delta_{i} \geq 2$ for all $i \neq 0$, then S_{i}, S_{j} are parallel for all $i, j \neq 0$. By Theorem 2.6, for an appropriate $i \neq 0, \kappa(X)=\operatorname{dim}\left(S_{i}\right)$ and so by Claim 3.12, one has $\kappa(X)=2$.
4. - Varieties with $P_{3}(X)=4, q(X)=\operatorname{dim}(X)$ and $\kappa(X)=2$

In this section, we classify varieties with $P_{3}(X)=4, q(X)=\operatorname{dim}(X)$ and $\kappa(X)=2$. The first step is to describe the cohomological support loci of these varieties. We must show that the only possible cases are the following (which corresponds to Examples 2 and 3 respectively):
(1) $\bar{G} \cong \mathbb{Z}_{2}, V_{0}\left(X, \omega_{X}\right)=\left\{\mathcal{O}_{X}\right\} \cup S_{\eta}, \delta_{\eta}=2$.
(2) $\bar{G} \cong \mathbb{Z}_{2}^{2}, V_{0}\left(X, \omega_{X}\right)=\left\{\mathcal{O}_{X}\right\} \cup S_{\eta} \cup S_{\zeta} \cup S_{\eta+\zeta}, \delta_{\eta}=\delta_{\zeta}=1, \delta_{\eta+\zeta}=2$.

Using this information, we will determine the sheaves $\mathrm{a}_{*}\left(\omega_{X}\right)$ and this will enable us to prove the following:

Theorem 4.1. Let X be a smooth projective variety with $P_{3}(X)=4, q(X)=$ $\operatorname{dim}(X)$ and $\kappa(X)=2$, then X is one of the varieties described in Examples 2 and 3 .

Proof. Recall that $f: X \longrightarrow Y$ is a morphism birational to the Iitaka fibration, Y is an abelian surface and $f=q \circ$ a where $q: \mathrm{A} \longrightarrow Y$.

Claim 4.2. One has that $f_{*} \omega_{X}=\mathcal{O}_{Y}$.
Proof of Claim 4.2. By Proposition 3.6, one has that $V^{0}\left(\omega_{X}\right) \cap f^{*} \operatorname{Pic}^{0}(Y)=$ $\left\{\mathcal{O}_{X}\right\}$. By the proof of [CH3] Theorem 4, one sees that $f_{*} \omega_{X} \cong \mathcal{O}_{Y} \otimes H^{0}\left(\omega_{X}\right)$. Since $h^{0}\left(\left.\omega_{X}\right|_{F_{X / Y}}\right)=1$, it follows that $\operatorname{rank}\left(f_{*} \omega_{X}\right)=1$ and hence $f_{*} \omega_{X} \cong \mathcal{O}_{Y}$.

Claim 4.3. Let S_{1}, S_{2} be distinct components of $V^{0}\left(\omega_{X}\right)$ such that $S_{1} \cap S_{2} \neq$ \emptyset, then $S_{1} \cap S_{2}=P$ and

$$
f_{*}\left(\omega_{X} \otimes P\right)=L_{1} \boxtimes L_{2} \otimes \mathcal{I}_{p}
$$

where $Y=E_{1} \times E_{2}$ and L_{i} are line bundles of degree 1 on the elliptic curves E_{i} and p is a point of Y.

Proof of Claim 4.3. Assume that $P \in S_{1} \cap S_{2}$. Since $\kappa(X)=2$, by Proposition 2.7, the T_{i} are 1-dimensional. Let $\pi_{i}: X \longrightarrow E_{i}:=T_{i}^{\vee}$ be the induced morphisms. There are line bundles of degree 1, L_{i} on E_{i} and inclusions $\pi_{i}^{*} L_{i} \longrightarrow \omega_{X} \otimes P$ (cf. Corollary 2.11).

We claim that $\operatorname{rank}\left(\pi_{1, *}\left(\omega_{X} \otimes P\right)\right)=1$. If this were not the case, then by Lemma 2.13
$P_{1}\left(F_{X / E_{1}}\right)=\operatorname{rank}\left(\pi_{1, *}\left(\omega_{X} \otimes P\right)\right) \geq 2, \quad P_{2}\left(F_{X / E_{1}}\right)=\operatorname{rank}\left(\pi_{1, *}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right) \geq 3$
and so

$$
\begin{aligned}
P_{3}(X) & =h^{0}\left(\omega_{X}^{\otimes 3} \otimes P^{\otimes 2}\right) \geq h^{0}\left(\omega_{X}^{\otimes 2} \otimes P \otimes \pi_{1}^{*} L_{1}\right) \\
& =h^{0}\left(\pi_{1, *}\left(\omega_{X}^{\otimes 2} \otimes P\right) \otimes L_{1}\right) \\
& \geq \operatorname{rank}\left(\pi_{1, *}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right)+\operatorname{deg}\left(\pi_{1, *}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right)
\end{aligned}
$$

and therefore

$$
\operatorname{rank}\left(\pi_{1, *}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right)=3, \quad \operatorname{deg}\left(\pi_{1, *}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right)=1
$$

Since $\operatorname{rank}\left(\pi_{1, *}\left(\omega_{X}\right)\right)=\operatorname{rank}\left(\pi_{1, *}\left(\omega_{X} \otimes P\right)\right)$, one has

$$
\operatorname{deg}\left(\pi_{1, *}\left(\omega_{X}^{\otimes 2} \otimes P\right)\right) \geq \operatorname{deg}\left(\pi_{1, *}\left(\omega_{X}\right) \otimes L_{1}\right) \geq \operatorname{rank}\left(\pi_{1, *}\left(\omega_{X}\right)\right) \geq 2
$$

which is impossible. Therefore, we may assume that

$$
\operatorname{rank}\left(\pi_{i, *}\left(\omega_{X} \otimes P\right)\right)=1 \quad \text { for } i=1,2
$$

For any $P_{i} \in S_{i}$, one has that $P_{i} \otimes P^{\vee}=\pi_{i}^{*} \alpha_{i}$ with $\alpha_{i} \in \operatorname{Pic}^{0}\left(E_{i}\right)$. One sees that

$$
h^{0}\left(\omega_{X} \otimes P_{i}\right)=h^{0}\left(\pi_{i, *}\left(\omega_{X} \otimes P\right) \otimes \alpha_{i}\right)=h^{0}\left(\pi_{i, *}\left(\omega_{X} \otimes P\right)\right)=h^{0}\left(\omega_{X} \otimes P\right)
$$

If $h^{0}\left(\omega_{X} \otimes P\right) \geq 2$, then we may assume that $L_{1}:=\pi_{1, *}\left(\omega_{X} \otimes P\right)$ is an ample line bundle of degree at least 2. From the inclusion $\phi: L_{1}^{\otimes 2} \longrightarrow \pi_{1, *}\left(\omega_{X}^{\otimes 2} \otimes P^{\otimes 2}\right)$, one sees that $h^{0}\left(\omega_{X}^{\otimes 2} \otimes P^{\otimes 2}\right)=4$ and ϕ is an I.T. 0 isomorphism (cf. Lemma 2.4) and so

$$
P_{2}\left(F_{X / E_{1}}\right)=h^{0}\left(\left.\omega_{X}^{\otimes 2} \otimes P^{\otimes 2}\right|_{F}\right)=1
$$

By Theorem 1.1, $\kappa\left(F_{X / E_{1}}\right)=0$ and hence by easy addition, $\kappa(X) \leq 1$ which is impossible. Therefore we may assume that $h^{0}\left(\omega_{X} \otimes P\right)=1$.

The coherent sheaf $f_{*}\left(\omega_{X} \otimes P\right)$ is torsion free of generic rank 1 on Y and hence is isomorphic to $L \otimes \mathcal{I}$ where L is a line bundle and \mathcal{I} is an ideal sheaf cosupported at finitely many points. Let $q_{i}: Y \longrightarrow E_{i}$, so that $\pi_{i}=q_{i} \circ f$. Since

$$
1=\operatorname{rank}\left(\pi_{i, *}\left(\omega_{X} \otimes P\right)\right)=\operatorname{rank}\left(q_{i, *}(L \otimes \mathcal{I})\right)=\operatorname{rank}\left(q_{i, *} L\right),
$$

one sees that $L . F_{Y / E_{i}}=1$ and it easily follows that $L=L_{1} \boxtimes L_{2}$ where $L_{i}=q_{i, *}(L)$ is a line bundle of degree 1 on E_{i}. Clearly, \mathcal{I} is the ideal sheaf of a point.

We will now consider the case in which $\bar{G}=\mathbb{Z}_{2}$. Let B be the branch locus of a : $X \longrightarrow \mathrm{~A}$. The divisor B is vertical with respect to $q: \mathrm{A} \longrightarrow Y$ and hence we may write $B=q^{*} \bar{B}$. Let $g \circ h: X \longrightarrow Z \longrightarrow A$ be the Stein factorization of a. Then Z is a normal variety and g is finite of degree 2 and so $g_{*} \mathcal{O}_{Z}=\mathcal{O}_{A} \oplus M^{\vee}$ where M is a line bundle and the branch locus B is a divisor in $|2 M|$. The map $F_{Z / Y} \longrightarrow F_{\mathrm{A} / Y}$ is étale of degree 2 and so $M=q^{*} L \otimes P$ where P is a 2-torsion element of $\operatorname{Pic}^{0}(X)$. Let $v: \mathrm{A}^{\prime} \longrightarrow \mathrm{A}$ be a birational morphism so that $\nu^{*} B$ is a divisor with simple normal crossings support. Let $B^{\prime}=v^{*} B-2\left\lfloor\frac{v^{*} B}{2}\right\rfloor$ and $M^{\prime}=v^{*}(M)\left(-\left\lfloor\frac{v^{*} B}{2}\right\rfloor\right)$. Let Z^{\prime} be the normalization of $Z \times{ }_{\mathrm{A}} \mathrm{A}^{\prime}$, and $g^{\prime}: Z^{\prime} \longrightarrow \mathrm{A}^{\prime}$ be the induced morphism. Then g^{\prime} is finite of degree $2, Z^{\prime}$ is normal with rational singularities and $g_{*}^{\prime}\left(\mathcal{O}_{Z^{\prime}}\right)=\mathcal{O}_{\mathrm{A}^{\prime}} \oplus\left(M^{\prime}\right)^{\vee}$. Let $\underset{\tilde{X}}{\tilde{X}}$ be an appropriate birational model of X such that there are morphisms $\alpha: \tilde{X} \longrightarrow \mathrm{~A}^{\prime}, v: \tilde{X} \longrightarrow X, \tilde{\mathrm{a}}: \tilde{X} \longrightarrow \mathrm{~A}$ and $\beta: \tilde{X} \longrightarrow Z^{\prime}$. For all $n \geq 0$, one has that $\beta_{*}\left(\omega_{\tilde{X}}^{\otimes n}\right) \cong \omega_{Z^{\prime}}^{\otimes n}$. It follows that

$$
\alpha_{*}\left(\omega_{\tilde{X}}^{\otimes m}\right)=\omega_{\mathrm{A}^{\prime}}^{\otimes m} \otimes\left(M^{\prime \otimes m-1} \oplus M^{\prime \otimes m}\right) .
$$

Therefore

$$
\begin{aligned}
\mathrm{a}_{*}\left(\omega_{X}\right) & =\tilde{\mathrm{a}}_{*}\left(\omega_{\tilde{X}}\right) \\
& =v_{*}\left(\omega_{\mathrm{A}^{\prime}} \oplus \omega_{\mathrm{A}^{\prime}} \otimes M^{\prime}\right) \\
& =\mathcal{O}_{\mathrm{A}} \oplus v_{*}\left(\omega_{\mathrm{A}^{\prime}} \otimes v^{*}\left(q^{*} L\right)\left(-\left\lfloor\frac{v^{*} B}{2}\right\rfloor\right)\right) \\
& =\mathcal{O}_{\mathrm{A}} \oplus q^{*} L \otimes P \otimes \mathcal{I}\left(\frac{B}{2}\right)
\end{aligned}
$$

CLaim 4.4. If $\bar{G}=\mathbb{Z}_{2}$, then for any $P \in V^{0}\left(\omega_{X}\right)$, one has

$$
f_{*}\left(\omega_{X} \otimes P\right) \neq L_{1} \boxtimes L_{2} \otimes \mathcal{I}_{p}
$$

where $Y=E_{1} \times E_{2}$ and L_{i} are ample line bundles of degree 1 on E_{i} and p is a point of Y.

Proof of Claim 4.4. If $f_{*}\left(\omega_{X} \otimes P\right)=L_{1} \boxtimes L_{2} \otimes \mathcal{I}_{p}$, then $\frac{B}{2}$ is not log terminal. By [Hac3] Theorem 1, one sees that since $\frac{B}{2}$ is not log terminal, one has that $\left\lfloor\frac{B}{2}\right\rfloor \neq 0$ and this is impossible as then Z is not normal.

Combining Claim 4.3 and Claim 4.4, one sees that if $\bar{G}=\mathbb{Z}_{2}$, then $V_{0}\left(X, \omega_{X}\right)=\left\{\mathcal{O}_{X}\right\} \cup S_{\eta}$ with $\delta_{\eta}=2$. We then have the following:

Claim 4.5. If $\bar{G}=\mathbb{Z}_{2}$, then $h^{0}\left(X, \omega_{X} \otimes P\right)=1$ for all $P \in S_{\eta}$.
Proof of Claim 4.5. It is clear that $h^{0}\left(\tilde{X}, \omega_{\tilde{X}} \otimes P\right)=h^{0}\left(A^{\prime}, \omega_{A^{\prime}} \otimes M^{\prime} \otimes P\right)$ for all $P \in S_{\eta}$, and $h^{0}\left(\tilde{X}, \omega_{\tilde{X}} \otimes P\right)=1$ for general $P \in S_{\eta}$.

If $h^{0}\left(\tilde{X}, \omega_{\tilde{X}} \otimes Q_{0}\right) \geq 2$ for some $Q_{0} \in S_{\eta}$, then $h^{0}\left(\tilde{X}, \omega_{\tilde{X}} \otimes Q_{0}\right)=2$ as otherwise $h^{0}\left(\omega_{\tilde{X}}^{\otimes 2} \otimes Q_{0}^{\otimes 2}\right) \geq 3+3-1$ which is impossible.

Consider the linear series $\left|K_{A^{\prime}}+M^{\prime}+Q_{0}\right|$. Let $\mu: \tilde{A} \rightarrow A^{\prime}$ be a \log resolution of this linear series. We have

$$
\mu^{*}\left|K_{A^{\prime}}+M^{\prime}+Q_{0}\right|=|D|+F,
$$

where $|D|$ is base point free and F has simple normal crossings support. There is an induced map $\phi_{|D|}: \tilde{A} \rightarrow \mathbb{P}^{1}$ such that $|D|=\phi_{|D|}^{*}\left|\mathcal{O}_{\mathbb{P}^{1}}(1)\right|$. We have an inclusion

$$
\varphi_{1}: \phi_{|D|}^{*}\left|\mathcal{O}_{\mathbb{P}^{1}}(2)\right|+G \hookrightarrow \mu^{*}\left|2 K_{A^{\prime}}+2 M^{\prime}+2 Q_{0}\right| .
$$

For all $\alpha \in \operatorname{Pic}^{0}(Y)$, there is a morphism
$\varphi_{2}: \mu^{*}\left|K_{A^{\prime}}+M^{\prime}+Q_{0}+\alpha\right|+\mu^{*}\left|K_{A^{\prime}}+M^{\prime}+Q_{0}-\alpha\right| \longrightarrow \mu^{*}\left|2 K_{A^{\prime}}+2 M^{\prime}+2 Q_{0}\right|$. Notice that $h^{0}\left(A^{\prime}, \omega_{A^{\prime}}^{\otimes 2} \otimes M^{\prime \otimes 2} \otimes Q_{0}^{\otimes 2}\right) \leq h^{0}\left(X, \omega_{X}^{\otimes 2} \otimes Q_{0}^{\otimes 2}\right) \leq 4$.
Since $h^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right)=3, \varphi_{1}$ has a 2-dimensional image. Since α varies in a 2-dimensional family, φ_{2} also has 2-dimensional image. In particular, there is a positive dimensional family $\mathcal{N} \subset \operatorname{Pic}^{0}(Y)$ such that for general $\alpha \in \mathcal{N}$, one has

$$
D_{ \pm \alpha}+F_{ \pm \alpha} \in \mu^{*}\left|K_{A^{\prime}}+M^{\prime}+Q_{0} \pm \alpha\right|
$$

where $G=F_{\alpha}+F_{-\alpha}$ and $D_{\alpha}+D_{-\alpha} \in \phi_{|D|}^{*}\left|\mathcal{O}_{\mathbb{P}^{1}}(2)\right|$. Since G is a fixed divisor, it decomposes in at most finitely many ways as the sum of two effective divisors and so we may assume that $F_{\alpha}, F_{-\alpha}$ do not depend on $\alpha \in \mathcal{N}$.

Take any $\alpha \neq \alpha^{\prime} \in \mathcal{N}$ with $F_{\alpha}=F_{\alpha^{\prime}}$. One has that $D_{\alpha}=\phi_{|D|}^{*} H$ is numerically equivalent to $D_{\alpha^{\prime}}=\phi_{|D|}^{*} H^{\prime}$. It follows that H and H^{\prime} are numerically equivalent on \mathbb{P}^{1} hence linearly equivalent. Thus D_{α} and $D_{\alpha^{\prime}}$ are linearly equivalent which is a contradiction.

Claim 4.6. If $\bar{G}=\mathbb{Z}_{2}$, then a $: X \longrightarrow$ A has generic degree 2 and is branched over a divisor $B \in\left|2 f^{*} \Theta\right|$ where $\mathcal{O}_{Y}(\Theta)$ is an ample line bundle of degree 1. Furthermore, $\mathrm{a}_{*}\left(\mathcal{O}_{X}\right) \cong \mathcal{O}_{\mathrm{A}} \oplus q^{*} \mathcal{O}_{Y}(\Theta) \otimes P$ where $P \notin \operatorname{Pic}^{0}(Y)$ and $P^{\otimes 2}=\mathcal{O}_{\mathrm{A}}$. See Example 2 .

Proof of Claim 4.6. For all $\alpha \in \operatorname{Pic}^{0}(Y)$ and $P \in S_{\eta}$, one has that

$$
h^{0}\left(\omega_{X} \otimes P \otimes \alpha\right)=h^{0}\left(\omega_{\mathrm{A}^{\prime}} \otimes M^{\prime} \otimes P \otimes \alpha\right)=1
$$

The sheaf $q_{*} \nu_{*}\left(\omega_{\mathrm{A}^{\prime}} \otimes M^{\prime} \otimes P\right)$ is torsion free of generic rank 1 and

$$
h^{0}\left(q_{*} \nu_{*}\left(\omega_{\mathrm{A}^{\prime}} \otimes M^{\prime} \otimes P\right) \otimes \alpha\right)=1 \quad \text { for all } \quad \alpha \in \operatorname{Pic}^{0}(Y)
$$

Following the proof of Proposition 4.2 of [HP], one sees that higher cohomologies vanish. By $[\mathrm{Hac}], q_{*} v_{*}\left(\omega_{\mathrm{A}^{\prime}} \otimes M^{\prime} \otimes P\right)$ is a principal polarization $\mathcal{O}_{Y}(\Theta)$. From the isomorphism $\nu_{*}\left(\omega_{\mathrm{A}^{\prime}} \otimes M^{\prime} \otimes P\right) \cong \bar{L} \otimes \mathcal{I}\left(\frac{\bar{B}}{2}\right)$, one sees that $\bar{L}=\mathcal{O}_{Y}(\Theta)$ and $\mathcal{I}\left(\frac{\bar{B}}{2}\right)=\mathcal{O}_{Y}$. Therefore, $v_{*}\left(\omega_{\mathrm{A}^{\prime}} \otimes M^{\prime} \otimes P\right) \cong q^{*} \mathcal{O}_{Y}(\Theta)$. It follows that

$$
\mathrm{a}_{*}\left(\omega_{X}\right) \cong \mathcal{O}_{\mathrm{A}} \oplus q^{*} \mathcal{O}_{Y}(\Theta) \otimes P
$$

From now on we therefore assume that $\bar{G} \neq \mathbb{Z}_{2}$.
Claim 4.7. $V^{0}\left(\omega_{X}\right)$ has at most one 2-dimensional component.
Proof of Claim 4.7. Let S_{η}, S_{ζ} be 2-dimensional components of $V^{0}\left(\omega_{X}\right)$ with $\eta \neq \zeta$. Since $\kappa(X)=2$, one has $\delta_{\eta, \zeta}=2$. Thus by (2), $P_{2, \eta+\zeta} \geq 3$. By Lemma 3.4, this is impossible.

Claim 4.8. Let S_{1}, S_{2} be two parallel 1-dimensional components of $V^{0}\left(\omega_{X}\right)$, then $S_{1}+\operatorname{Pic}^{0}(Y)=S_{2}+\operatorname{Pic}^{0}(Y)$.

Proof of Claim 4.8. Let $P_{i} \in S_{i}, \pi: X \longrightarrow E:=T_{1}^{\vee}=T_{2}^{\vee}$ the induced morphism and L_{i} ample line bundles on E_{i} with inclusions $\phi_{i}: \pi^{*} L_{i} \longrightarrow$ $\omega_{X} \otimes P_{i}$. By Lemma 2.12, one sees that $h^{0}\left(\omega_{X}^{\otimes 2} \otimes P_{1} \otimes P_{2}\right) \geq 2$. If it were equal, then the inclusion

$$
L_{1} \otimes L_{2} \longrightarrow \pi_{*}\left(\omega_{X}^{\otimes 2} \otimes P_{1} \otimes P_{2}\right)
$$

would be an I.T. 0 isomorphisms and this would imply that $P_{2}\left(F_{X / E}\right)=1$ and hence that $\kappa(X) \leq 1$. So $h^{0}\left(\omega_{X}^{\otimes 2} \otimes P_{1} \otimes P_{2}\right) \geq 3$. By Lemma 3.4, this is impossible.

Claim 4.9. If $\bar{G} \neq \mathbb{Z}_{2}$, let S_{η} be a 2-dimensional component of $V^{0}\left(\omega_{X}\right)$, then $h^{0}\left(\omega_{X} \otimes P\right)=1$ for all $P \in S_{\eta}$. In particular $f_{*}\left(\omega_{X} \otimes P\right)$ is a principal polarization.

Proof of Claim 4.9 Let $f: X \longrightarrow\left(T_{\eta}\right)^{\vee}$ be the induced morphism. Then f is birational to the Iitaka fibration of X i.e. $\left(T_{\eta}\right)^{\vee}=Y$. By Claim 4.7, $V^{0}\left(\omega_{X}\right)$ has at most one 2-dimensional component, and so there must exist a 1-dimensional component S_{ζ} of $V^{0}\left(\omega_{X}\right)$. Let $\pi: X \longrightarrow E:=T_{\zeta}^{\vee}$ be the induced morphism. There is an ample line bundle L on E and an inclusion $\pi^{*} L \longrightarrow \omega_{X} \otimes Q_{\zeta}$ for some general $Q_{\zeta} \in S_{\zeta}$.

Assume that $P \in S_{\eta}$ and $h^{0}\left(\omega_{X} \otimes P\right) \geq 2$. If $\operatorname{rank}\left(\pi_{*}\left(\omega_{X} \otimes P\right)\right)=1$, then $\pi_{*}\left(\omega_{X} \otimes P\right)$ is an ample line bundle of degree at least 2 and hence $h^{0}\left(\pi_{*}\left(\omega_{X} \otimes P\right) \otimes \alpha\right) \geq 2$ for all $\alpha \in \operatorname{Pic}^{0}(E)$. It follows that

$$
h^{0}\left(\omega_{X}^{\otimes 2} \otimes P \otimes Q_{\zeta}\right) \geq h^{0}\left(\omega_{X} \otimes P \otimes \pi^{*} L\right)=h^{0}\left(\pi_{*}\left(\omega_{X} \otimes P\right) \otimes L\right) \geq 3
$$

By Lemma 3.4, this is impossible.
Therefore, we may assume that $\operatorname{rank}\left(\pi_{*}\left(\omega_{X} \otimes P\right)\right) \geq 2$. Proceeding as above, since

$$
h^{0}\left(\pi_{*}\left(\omega_{X} \otimes P\right) \otimes L\right) \geq \operatorname{rank}\left(\pi_{*}\left(\omega_{X} \otimes P\right)\right)+\operatorname{deg}\left(\pi_{*}\left(\omega_{X} \otimes P\right)\right),
$$

it follows that $\pi_{*}\left(\omega_{X} \otimes P\right)$ is a sheaf of degree 0 . Since $h^{0}\left(\pi_{*}\left(\omega_{X} \otimes P\right) \otimes \alpha\right)>0$ for all $\alpha \in \operatorname{Pic}^{0}(E)$, By Riemann-Roch one sees that also $h^{1}\left(\pi_{*}\left(\omega_{X} \otimes P\right) \otimes \alpha\right)>0$ for all $\alpha \in \operatorname{Pic}^{0}(E)$. By Theorem 2.5, this is impossible.

Finally, the sheaf $f_{*}\left(\omega_{X} \otimes P\right)$ is torsion free of generic rank 1 on Y and hence, by [Hac], it is a principal polarization.

Claim 4.10. Assume that $\bar{G} \neq \mathbb{Z}_{2}$. Then, for any $P \in V^{0}\left(\omega_{X}\right)-\operatorname{Pic}^{0}(Y)$ one has that $f_{*}\left(\omega_{X} \otimes P\right)$ is either:
i) a principal polarization on Y,
ii) the pull-back of a line bundle of degree 1 on an elliptic curve or
iii) of the form $L \boxtimes L^{\prime} \otimes \mathcal{I}_{p}$ where L, L^{\prime} are ample line bundles of degree 1 on $E, E^{\prime}, Y=E \times E^{\prime}$ and p is a point of Y.
In particular, there are no 2 distinct parallel components of $V^{0}\left(\omega_{X}\right)$.

Proof of Claim 4.10. By Claim 4.9, we only need to consider the case in which all the components of $\left(P+\operatorname{Pic}^{0}(Y)\right) \cap V^{0}\left(\omega_{X}\right)$ are 1-dimensional. By Claim 4.3, we may also assume that these components are parallel.

For any 1 dimensional component S_{i} of $\left(P+\operatorname{Pic}^{0}(Y)\right) \cap V^{0}\left(\omega_{X}\right), P_{i} \in S_{i}$ and corresponding projection $\pi_{i}: X \longrightarrow E_{i}:=T_{i}^{\vee}$, one has $\operatorname{rank}\left(\pi_{i, *}\left(\omega_{X} \otimes P_{i}\right)\right)=1$ and hence $\pi_{i, *}\left(\omega_{X} \otimes P_{i}\right)=L_{i}$ is an ample line bundle of degree at least 1 on E_{i}. If this were not the case, then By Lemma 2.13,

$$
\operatorname{rank}\left(\pi_{i, *}\left(\omega_{X} \otimes P_{i}\right)\right)=h^{0}\left(\omega_{F}\right) \geq 2
$$

and so

$$
\operatorname{rank}\left(\pi_{i, *}\left(\omega_{X}^{\otimes 2} \otimes P_{i}\right)\right)=h^{0}\left(\omega_{F}^{\otimes 2}\right) \geq 3
$$

From the inclusion (cf. Corollary 2.11)

$$
\pi_{i}^{*} L_{i} \longrightarrow \omega_{X} \otimes P_{i} \longrightarrow \omega_{X}^{\otimes 2} \otimes P_{i}
$$

one sees that $h^{0}\left(\omega_{X}^{\otimes 2} \otimes P_{i}\right) \geq 2$ (cf. Lemma 3.1).
By Lemma 2.4, $\operatorname{deg}\left(\pi_{i, *}\left(\omega_{X}^{\bar{\otimes}^{2}} \otimes P_{i}\right)\right) \geq 2$. By Riemann-Roch, one has

$$
h^{0}\left(L \otimes \pi_{i, *}\left(\omega_{X}^{\otimes 2} \otimes P_{i}\right)\right) \geq \operatorname{deg}\left(\pi_{i, *}\left(\omega_{X}^{\otimes 2} \otimes P_{i}\right)\right)+\operatorname{rank}\left(\pi_{i, *}\left(\omega_{X}^{\otimes 2} \otimes P_{i}\right)\right) \geq 5
$$

This is a contradiction and so $\operatorname{rank}\left(\pi_{i, *}\left(\omega_{X} \otimes P_{i}\right)\right)=1$.
Since we assumed that all components of $V^{0}\left(\omega_{X}\right) \cap\left(P+\operatorname{Pic}^{0}(Y)\right)$ are parallel, then one has $\pi_{i}=\pi, E=E_{i}$ are independent of i. Let $q: Y \longrightarrow E$. Since there are injections

$$
\operatorname{Pic}^{0}(E)+P_{1}=S_{1} \hookrightarrow P_{1}+\operatorname{Pic}^{0}(Y) \hookrightarrow \operatorname{Pic}^{0}(X)
$$

we may assume that q has connected fibers. The sheaf $f_{*}\left(\omega_{X} \otimes P_{1}\right)$ is torsion free of rank 1 , and hence we may write $f_{*}\left(\omega_{X} \otimes P_{1}\right) \cong M \otimes \mathcal{I}$ where M is a line bundle and \mathcal{I} is supported in codimension at least 2 (i.e. on points). Since $\operatorname{rank}\left(\pi_{*}\left(\omega_{X} \otimes P_{1}\right)\right)=1$, one has that $h^{0}\left(\left.M\right|_{F_{Y / E}}\right)=1$.

For general $\alpha \in \operatorname{Pic}^{0}(Y)$, one has that $V^{0}\left(\omega_{X}\right) \cap P_{1}+\alpha+\operatorname{Pic}^{0}(E)=\emptyset$ and so the semi-positive torsion free sheaf $\pi_{*}\left(\omega_{X} \otimes P_{1} \otimes \alpha\right)$ must be the 0 -sheaf. In particular $h^{0}\left(\left.M \otimes \alpha\right|_{F_{Y / E}}\right)=0$. It follows that $\operatorname{deg}\left(\left.M\right|_{F_{Y / E}}\right)=0$ and hence $\left.M\right|_{F_{Y / E}}=\mathcal{O}_{F_{Y / E}}$. One easily sees that $h^{0}(M \otimes \alpha)=0$ for all $\alpha \in \operatorname{Pic}^{0}(Y)-$ $\operatorname{Pic}^{0}(E)$ and hence

$$
V^{0}\left(\omega_{X}\right) \cap\left(P_{1}+\operatorname{Pic}^{0}(Y)\right)=P_{1}+\operatorname{Pic}^{0}(E)=T_{1}
$$

By Proposition 2.3, one has that $q^{*} L_{1}$ and $f_{*}\left(\omega_{X} \otimes P_{1}\right)$ are isomorphic if and only if the inclusion $q^{*} L_{1} \longrightarrow f_{*}\left(\omega_{X} \otimes P_{1}\right)$ induces isomorphisms

$$
H^{i}\left(Y, q^{*} L_{1} \otimes \alpha\right) \longrightarrow H^{i}\left(Y, f_{*}\left(\omega_{X} \otimes P_{1}\right) \otimes \alpha\right)
$$

for $i=0,1,2$ and all $\alpha \in \operatorname{Pic}^{0}(Y)$. If $\alpha \in \operatorname{Pic}^{0}(Y)-\operatorname{Pic}^{0}(E)$, then both groups vanish and so the isomorphism follows. If $\alpha \in \operatorname{Pic}^{0}(E)$, we proceed as follows: Let $p: \mathrm{A} \longrightarrow E$ and $W \subset H^{1}\left(A, \mathcal{O}_{A}\right)$ a linear subspace complementary to the tangent space to T_{1}. By Proposition 2.12 of [Hac2], one has isomorphisms

$$
\begin{aligned}
H^{i}\left(\mathrm{a}_{*}\left(\omega_{X} \otimes P_{1}\right) \otimes p^{*} \alpha\right) & \cong H^{0}\left(\mathrm{a}_{*}\left(\omega_{X} \otimes P_{1}\right) \otimes p^{*} \alpha\right) \otimes \wedge^{i} W \\
& \cong H^{0}\left(q^{*}\left(L_{1} \otimes \alpha\right)\right) \otimes \wedge^{i} W \\
& \cong H^{i}\left(q^{*} L_{1} \otimes \alpha\right)
\end{aligned}
$$

Pushing forward to Y, one obtains the required isomorphisms.
Claim 4.11. If $\bar{G} \neq \mathbb{Z}_{2}$, then $\bar{G}=\left(\mathbb{Z}_{2}\right)^{2}$ and

$$
V_{0}\left(X, \omega_{X}\right)=\left\{\mathcal{O}_{X}\right\} \cup S_{\alpha} \cup S_{\zeta} \cup S_{\xi}
$$

with $\delta_{\alpha}=2, \delta_{\zeta}=\delta_{\xi}=1$.
Proof of Claim 4.11. We have seen that $V^{0}\left(\omega_{X}\right)$ has at most one 2dimensional component and there are no parallel 1-dimensional components. Since $\bar{G} \neq \mathbb{Z}_{2}$, then there are at least two 1-dimensional components of $V^{0}\left(\omega_{X}\right)$. We will show that given two one dimensional components contained in $Q_{1}+$ $\operatorname{Pic}^{0}(Y) \neq Q_{2}+\operatorname{Pic}^{0}(Y)$, then

$$
\left(Q_{1}+Q_{2}+\operatorname{Pic}^{0}(Y)\right) \cap V^{0}\left(\omega_{X}\right)
$$

does not contain a 1 -dimensional component. Grant this for the time being. Then, by Proposition 2.7, it follows that $Q_{1}+Q_{2}+\operatorname{Pic}^{0}(Y)$ is a 2-dimensional component of $V^{0}\left(\omega_{X}\right)$. If $|\bar{G}|>4$, this implies that there are at least two 2-dimensional components, which is impossible, and so $|\bar{G}|=4$ and the claim follows.

Suppose now that there are three 1-dimensional components of $V^{0}\left(\omega_{X}\right)$, say S_{1}, S_{2}, S_{3}, contained in $Q_{1}+\operatorname{Pic}^{0}(Y), Q_{2}+\operatorname{Pic}^{0}(Y), Q_{3}+\operatorname{Pic}^{0}(Y)$ respectively with $Q_{1}+Q_{2}+Q_{3} \in \operatorname{Pic}^{0}(Y)$. By Claim 4.10, these components are not parallel to each other. We may assume that $\pi_{i}: X \rightarrow E_{i}:=S_{i}^{\vee}$ factors through $f: X \rightarrow Y$ and that Y is an abelian surface. Let $q_{i}: Y \longrightarrow E_{i}$ be the induced morphisms.

Let Q_{1}, Q_{2}, Q_{3} be general torsion elements in S_{1}, S_{2}, S_{3} and

$$
\mathcal{G}:=f_{*}\left(\omega_{X}^{\otimes 2} \otimes Q_{2} \otimes Q_{3}\right), \quad \mathcal{F}:=f_{*}\left(\omega_{X}^{\otimes 3} \otimes Q_{1} \otimes Q_{2} \otimes Q_{3}\right)
$$

From the inclusions $\pi_{i}^{*} L_{i} \longrightarrow \omega_{X} \otimes Q_{i}$, one sees that we have inclusions

$$
\varphi: q_{2}^{*} L_{2} \otimes q_{3}^{*} L_{3} \rightarrow \mathcal{G}, \quad \psi: q_{1}^{*} L_{1} \otimes q_{2}^{*} L_{2} \otimes q_{3}^{*} L_{3} \rightarrow \mathcal{F}
$$

where L_{i} are ample line bundles on E_{i} respectively. Since \mathcal{F} is torsion free of generic rank one, we may write

$$
\mathcal{F}=q_{1}^{*} L_{1} \otimes q_{2}^{*} L_{2} \otimes q_{3}^{*} L_{3} \otimes N \otimes \mathcal{I}
$$

where N is a semi-positive line bundle on Y and \mathcal{I} is an ideal sheaf cosupported at points. If N is not numerically trivial (or if $F_{Y / E_{1}} \cdot q_{i}^{*} L_{i}>1$ for $i=2$ or $i=3$), then N is not vertical with respect to one of the projections q_{i}, say q_{1}. Then

$$
\operatorname{rank}\left(q_{1, *}(\mathcal{F})\right)=F_{Y / E_{1}} \cdot\left(q_{1}^{*} L_{1}+q_{2}^{*} L_{2}+q_{3}^{*} L_{3}+N\right) \geq 3
$$

On the other hand, from the inclusion φ, one sees that $\operatorname{rank}\left(q_{1, *}(\mathcal{G})\right) \geq 2$. Consider the inclusion of I.T. 0 sheaves $L_{1} \longrightarrow q_{1, *}(\mathcal{G} \otimes \alpha)$ with $\alpha=Q_{1} \otimes Q_{2}^{\vee} \otimes Q_{3}^{\vee} \in$ $\operatorname{Pic}^{0}(Y)$. Since it is not an isomorphism, one sees that

$$
h^{0}(\mathcal{G})=h^{0}(\mathcal{G} \otimes \alpha)>h^{0}\left(L_{1}\right) \geq 1
$$

From the inclusion

$$
\rho: L_{1} \otimes q_{1, *}(\mathcal{G}) \longrightarrow q_{1, *}(\mathcal{F})=\pi_{1, *}\left(\omega_{X}^{\otimes 3} \otimes Q_{1} \otimes Q_{2} \otimes Q_{3}\right)
$$

one sees that by Riemann-Roch

$$
h^{0}(\mathcal{G})+\operatorname{rank}\left(q_{1, *}(\mathcal{G})\right) \leq h^{0}\left(\omega_{X}^{\otimes 3} \otimes Q_{1} \otimes Q_{2} \otimes Q_{3}\right)=P_{3}(X)
$$

and therefore

$$
h^{0}(\mathcal{G})=2, \quad \operatorname{rank}\left(q_{1, *}(\mathcal{G})\right)=2
$$

In particular, ρ is an I.T. 0 isomorphism. $\operatorname{So}, \operatorname{rank}\left(q_{1, *}(\mathcal{F})\right)=\operatorname{rank}\left(q_{1, *}(\mathcal{G})\right)=2$ which is a contradiction. Therefore, we have that

$$
N \in \operatorname{Pic}^{0}(Y) \quad \text { and } \quad q_{2}^{*} L_{2} \cdot F_{Y / E_{1}}=q_{3}^{*} L_{3} \cdot F_{Y / E_{1}}=1
$$

Since $\operatorname{deg}\left(L_{i}\right)=1$, one has $q_{i}^{*} L_{i} \equiv F_{Y / E_{i}}$. Since $\left(q_{1}^{*} L_{1} \otimes q_{2}^{*} L_{2} \otimes q_{3}^{*} L_{3}\right)^{2} \geq 8$, we have that $q_{2}^{*} L_{2} \cdot q_{3}^{*} L_{3} \geq 2$. Since

$$
h^{0}\left(q_{2}^{*} L_{2} \otimes q_{3}^{*} L_{3}\right) \leq h^{0}(\mathcal{G})=2
$$

one sees that $q_{2}^{*} L_{2} \cdot q_{3}^{*} L_{3}=2$ and hence $\mathcal{I}=\mathcal{O}_{Y}$.
Now let $\mathcal{G}^{\prime}:=f_{*}\left(\omega_{X}^{\otimes 2} \otimes Q_{1} \otimes Q_{3}\right)$. Proceeding as above, one sees that

$$
\operatorname{rank}\left(q_{2, *} \mathcal{G}^{\prime}\right) \geq F_{Y / E_{2}} \cdot\left(q_{1}^{*} L_{1}+q_{3}^{*} L_{3}\right)=3, \quad h^{0}\left(q_{2, *} \mathcal{G}^{\prime}\right)>h^{0}\left(L_{2}\right)=1
$$

By Riemann Roch, one has that

$$
P_{3}(X)=h^{0}\left(\omega_{X}^{\otimes 3} \otimes Q_{1} \otimes Q_{2} \otimes Q_{3}\right) \geq h^{0}\left(L_{2} \otimes q_{2, *} \mathcal{G}^{\prime}\right) \geq 5
$$

which is the required contradiction.
CLAIM 4.12. If $\bar{G} \cong\left(\mathbb{Z}_{2}\right)^{2}$, then $Y=E_{1} \times E_{2}$ and there are line bundles L_{i} of degree 1 on E_{i}, projections $p_{i}: \mathrm{A} \longrightarrow E_{i}$ and 2-torsion elements $Q_{1}, Q_{2} \in \operatorname{Pic}^{0}(X)$ that generate \bar{G}, such that

$$
\mathrm{a}_{*}\left(\mathcal{O}_{X}\right) \cong \mathcal{O}_{\mathrm{A}} \oplus M_{1}^{\vee} \oplus M_{2}^{\vee} \oplus M_{1}^{\vee} \otimes M_{2}^{\vee}
$$

with

$$
M_{1}=p_{1}^{*} L_{1} \otimes Q_{1}^{\vee}, \quad M_{2}=p_{2}^{*} L_{2} \otimes Q_{2}^{\vee} \quad \text { and } \quad M_{3}=M_{1} \otimes M_{2}
$$

In particular X is birational to the fiber product of two degree 2 coverings $X_{i} \longrightarrow$ A with $P_{3}\left(X_{i}\right)=2$.

Proof of Claim 4.12. By Claim 4.11, the degree of a : $X \longrightarrow \mathrm{~A}$ is $|\bar{G}|=4$ and there are two non parallel 1-dimensional components of $V^{0}\left(\omega_{X}\right)$ say S_{1}, S_{2} such that $S_{1}+\operatorname{Pic}^{0}(Y) \neq S_{2}+\operatorname{Pic}^{0}(Y)$. Let $E_{i}:=T_{i}^{\vee}$ and $q_{i}: Y \longrightarrow E_{i}$, $\pi_{i}: X \longrightarrow E_{i}$ be the induced morphisms. Then there are inclusions $\pi_{i}^{*} L_{i} \longrightarrow$ $\omega_{X} \otimes Q_{i}$ where $Q_{i} \in S_{i}$. Moreover, by Claim 4.11, $Q_{1}+Q_{2}+\operatorname{Pic}^{0}(Y) \subset V^{0}\left(\omega_{X}\right)$. By Claim 4.9, one has that

$$
L:=f_{*}\left(\omega_{X} \otimes Q_{1} \otimes Q_{2}\right)
$$

is an ample line bundle of degree 1. Moreover,

$$
V^{0}\left(\omega_{X}\right)=\left\{\mathcal{O}_{X}\right\} \cup S_{1} \cup S_{2} \cup\left(Q_{1}+Q_{2}+\operatorname{Pic}^{0}(Y)\right)
$$

From the inclusion

$$
q_{1}^{*} L_{1} \otimes q_{2}^{*} L_{2} \otimes L \longrightarrow f_{*}\left(\omega_{X}^{\otimes 3} \otimes Q_{1}^{\otimes 2} \otimes Q_{2}^{\otimes 2}\right)
$$

and the equality $4=P_{3}(X)=h^{0}\left(\omega_{X}^{\otimes 3} \otimes Q_{1}^{\otimes 2} \otimes Q_{2}^{\otimes 2}\right)$, one sees that

$$
L^{2}=2, \quad L \cdot q_{i}^{*} L_{i}=q_{1}^{*} L_{1} \cdot q_{2}^{*} L_{2}=1
$$

By the Hodge Index Theorem, one sees that since

$$
L^{2}\left(q_{1}^{*} L_{1}+q_{2}^{*} L_{2}\right)^{2}=\left(L \cdot\left(q_{1}^{*} L_{1}+q_{2}^{*} L_{2}\right)\right)^{2}
$$

then the principal polarization L is numerically equivalent to $q_{1}^{*} L_{1}+q_{2}^{*} L_{2}$. Therefore,

$$
\left(Y, q_{1}^{*} L_{1} \otimes q_{2}^{*} L_{2}\right) \cong\left(E_{1}, L_{1}\right) \times\left(E_{2}, L_{2}\right)
$$

and one sees that

$$
L=q_{1}^{*}\left(L_{1} \otimes P_{1}\right) \otimes q_{2}^{*}\left(L_{2} \otimes P_{2}\right), \quad P_{i} \in \operatorname{Pic}^{0}\left(E_{i}\right)
$$

We have inclusions

$$
\begin{aligned}
L \longrightarrow & f_{*}\left(\omega_{X} \otimes Q_{1} \otimes Q_{2}\right) \longrightarrow f_{*}\left(\omega_{X}^{\otimes 2} \otimes Q_{1} \otimes Q_{2}\right) \\
& q_{1}^{*} L_{1} \otimes q_{2}^{*} L_{2} \longrightarrow f_{*}\left(\omega_{X}^{\otimes 2} \otimes Q_{1} \otimes Q_{2}\right)
\end{aligned}
$$

Let $\mathcal{G}:=\omega_{X}^{\otimes 2} \otimes Q_{1} \otimes Q_{2}$. If $h^{0}(\mathcal{G})=1$, then $L=q_{1}^{*} L_{1} \otimes q_{2}^{*} L_{2}$ as required. If $h^{0}(\mathcal{G}) \geq 2$, then one sees that

$$
h^{0}\left(\pi_{1, *}(\mathcal{G}) \otimes L_{1} \otimes P_{1}\right) \geq \operatorname{rank}(\mathcal{G})+\operatorname{deg}(\mathcal{G}) \geq 1+2
$$

Since

$$
\operatorname{rank}\left(\pi_{2, *}\left(\mathcal{G} \otimes \pi_{1}^{*}\left(L_{1} \otimes P_{1}\right)\right)\right) \geq \operatorname{rank}\left(q_{2, *}\left(q_{1}^{*}\left(L_{1}^{\otimes 2} \otimes P_{1}\right) \otimes q_{2}^{*}\left(L_{2}\right)\right)\right)=2
$$

one sees that

$$
P_{3}(X) \geq h^{0}\left(\omega_{X}^{\otimes 2} \otimes Q_{1} \otimes Q_{2} \otimes L\right)=h^{0}\left(\pi_{2, *}\left(\mathcal{G} \otimes \pi_{1}^{*}\left(L_{1} \otimes P_{1}\right)\right) \otimes L_{2} \otimes P_{2}\right) \geq 2+3
$$

and this is impossible. Let $M_{i}:=p_{i}^{*} L_{i} \otimes Q_{i}^{\vee}$. By Claim 4.10, one has

$$
\mathrm{a}_{*}\left(\omega_{X}\right) \cong \mathcal{O}_{\mathrm{A}} \oplus M_{1} \oplus M_{2} \oplus M_{1} \otimes M_{2}
$$

and hence by Groethendieck duality,

$$
\mathrm{a}_{*}\left(\mathcal{O}_{X}\right) \cong \mathcal{O}_{\mathrm{A}} \oplus M_{1}^{\vee} \oplus M_{2}^{\vee} \oplus M_{1}^{\vee} \otimes M_{2}^{\vee}
$$

Let $X \longrightarrow Z \longrightarrow$ A be the Stein factorization. Following [HM] Section 7, one sees that the only possible nonzero structure constants defining the $4-1$ cover $Z \longrightarrow \mathrm{~A}$ are $c_{1,4} \in H^{0}\left(M_{1} \otimes M_{2} \otimes M_{3}^{\vee}\right), c_{1,6} \in H^{0}\left(M_{1} \otimes M_{2}^{\vee} \otimes M_{3}\right)$ and $c_{4,6} \in H^{0}\left(M_{1}^{\vee} \otimes M_{2} \otimes M_{3}\right)$. So, $Z \longrightarrow \mathrm{~A}$ is a bi-double cover. It is determined by two degree 2 covers $\mathrm{a}_{i}: X_{i} \longrightarrow$ A defined by $\mathrm{a}_{i, *}\left(\mathcal{O}_{X_{i}}\right)=\mathcal{O}_{\mathrm{A}} \oplus p_{i}^{*} L_{i} \otimes Q_{i}^{\vee}$ and sections $-c_{1,4} c_{1,6} \in H^{0}\left(M_{1}^{\otimes 2}\right)$ and $c_{1,4} c_{4,6} \in H^{0}\left(M_{2}^{\otimes 2}\right)$. It is easy to see that X_{1}, X_{2}, Z are smooth.

This completes the proof.
5. - Varieties with $P_{3}(X)=4, q(X)=\operatorname{dim}(X)$ and $\kappa(X)=1$

Theorem 5.1. Let X be a smooth projective variety with $P_{3}(X)=4, q(X)=$ $\operatorname{dim}(X)$ and $\kappa(X)=1$ then X is birational to $(C \times \tilde{K}) / G$ where G is an abelian group acting faithfully by translations on an abelian variety \tilde{K} and faithfully on a curve C. The Iitaka fibration of X is birational to $f:(C \times \tilde{K}) / G \longrightarrow C / G=E$ where E is an elliptic curve and $\operatorname{dim} H^{0}\left(C, \omega_{C}^{\otimes 3}\right)^{G}=4$.

Proof. Let $f: X \longrightarrow Y$ be the Iitaka fibration. Since $\kappa(X)=1$, and $\mathrm{a}: X \longrightarrow \mathrm{~A}$ is generically finite, one has that Y is a curve of genus $g \geq 1$. If $g=1$, then Y is an elliptic curve and by Proposition $2.1, Y \longrightarrow \mathrm{~A}(Y)$ is of degree 1 (i.e. an isomorphism). By Proposition 2.1 one sees that if $g \geq 2$, then $q(X) \geq \operatorname{dim}(X)+1$ which is impossible.

From now on we will denote the elliptic curve $\mathrm{A}(Y)$ simply by E and f : $X \longrightarrow E$ will be the corresponding algebraic fiber space. Let $X \longrightarrow \bar{X} \longrightarrow A$ be the Stein factorization of the Albanese map. Since $\bar{X} \longrightarrow E$ is isotrivial, there is a generically finite cover $C \longrightarrow E$ such that $\bar{X} \times_{E} C$ is birational to $C \times \tilde{K}$. We may assume that $C \longrightarrow E$ is a Galois cover with group G. G acts by translations on \tilde{K} and we may assume that the action of G is faithful on C and \tilde{K}. Since G acts freely on $C \times \tilde{K}$, one has that

$$
H^{0}\left(X, \omega_{X}^{\otimes 3}\right)=H^{0}\left(C \times \tilde{K}, \omega_{C \times \tilde{K}}^{\otimes 3}\right)^{G}=\left[H^{0}\left(\tilde{K}, \omega_{\tilde{K}}^{\otimes 3}\right) \otimes H^{0}\left(C, \omega_{C}^{\otimes 3}\right)\right]^{G}
$$

Since G acts on \tilde{K} by translations, G acts on $H^{0}\left(\tilde{K}, \omega_{\tilde{K}}^{\otimes 3}\right)$ trivially. It follows that

$$
4=P_{3}(X)=\operatorname{dim} H^{0}\left(C, \omega_{C}^{\otimes 3}\right)^{G}
$$

Similarly, one sees that $q(X)=q(C / G)+q(\tilde{K} / G)$ and so $q(C / G)=1$.
We now consider the induced morphism $\pi: C \rightarrow C / G=: E$. By the argument of [Be], Example VI.12, one has

$$
4=\operatorname{dim} H^{0}\left(C, \omega_{C}^{\otimes 3}\right)^{G}=h^{0}\left(E, \mathcal{O}\left(\sum_{P \in E}\left\lfloor 3\left(1-\frac{1}{e_{P}}\right)\right\rfloor\right)\right) .
$$

Where P is a branch points of π, and e_{P} is the ramification index of a ramification point lying over P. Note that $|G|=e_{P} s_{P}$, where s_{P} is the number of ramification points lying over P.

It is easy to see that since

$$
\left\lfloor 3\left(1-\frac{1}{e_{P}}\right)\right\rfloor=1(\text { resp. }=2) \quad \text { if } \quad e_{P}=2\left(\text { resp. } e_{P} \geq 3\right)
$$

we have the following cases:
CASE 1. 4 branch points P_{1}, \ldots, P_{4} with $e_{P_{i}}=2$.
CASE 2. 3 branch points P_{1}, P_{2}, P_{3} with $e_{P_{1}} \geq 3, e_{P_{2}}=e_{P_{3}}=2$.
CASE 3. 2 branch points P_{1}, P_{2} with $e_{P_{i}} \geq 3$.
We will follow the notation of [Pa]. Let $\pi: C \rightarrow E$ be an abelian cover with abelian Galois group G. There is a splitting

$$
\pi_{*} \mathcal{O}_{C}=\oplus_{\chi \in G^{*}} L_{\chi}^{\vee}
$$

In particular, if $d_{\chi}:=\operatorname{deg}\left(L_{\chi}\right)$, then

$$
g=1+\sum_{\chi \in G^{*}, \chi \neq 1} d_{\chi}
$$

For every branch point P_{i} with $i=1, \ldots, s$, the inertia group H_{i}, which is defined as the stabilizer subgroup at any point lying over P_{i}, is a cyclic subgroup of order $e_{i}:=e_{P_{i}}$. We also associate a generator ψ_{i} of each H_{i}^{*} which corresponds to the character of P_{i}. For every $\chi \in G^{*}, \chi_{\mid H_{i}}=\psi_{i}^{n(\chi)}$ with $0 \leq n(\chi) \leq\left|H_{i}\right|-1$. And define

$$
\epsilon_{\chi, \chi^{\prime}}^{H_{i}, \psi_{i}}:=\left\lfloor\frac{n(\chi)+n\left(\chi^{\prime}\right)}{\left|H_{i}\right|}\right\rfloor .
$$

Following [Pa], one sees that there is an abelian cover $C \rightarrow E$ with group G with building data L_{χ} if and only if the line bundles L_{χ} satisfy the following set of linear equivalences:

$$
\begin{equation*}
L_{\chi}+L_{\chi^{\prime}}=L_{\chi \chi^{\prime}}+\sum_{i=1, \ldots, s} \epsilon_{\chi, \chi^{\prime}}^{H_{i}, \psi_{i}} P_{i} \tag{3}
\end{equation*}
$$

If $\chi_{\mid H_{i}}=\psi_{i}^{n_{i}(\chi)}$, then

$$
\begin{equation*}
d_{\chi}+d_{\chi^{\prime}}=d_{\chi \chi^{\prime}}+\sum_{i=1, \ldots, s}\left\lfloor\frac{n_{i}(\chi)+n_{i}\left(\chi^{\prime}\right)}{e_{i}}\right\rfloor \tag{4}
\end{equation*}
$$

Let H be the subgroup of G generated by the inertia subgroups H_{i} and let $Q=G / H$. One sees that there is an exact sequence of groups

$$
1 \longrightarrow Q^{*} \longrightarrow G^{*} \longrightarrow H^{*} \longrightarrow 1
$$

The generators ψ_{i} of H_{i}^{*} define isomorphisms $H_{i}^{*} \cong \mathbb{Z}_{e_{i}}$ where $e_{i}:=\left|H_{i}\right|$. Therefore, we have an induced injective homomorphism

$$
\varphi: H^{*} \hookrightarrow \prod_{i=1, \ldots, s} \mathbb{Z}_{e_{i}}
$$

such that the induced maps $\varphi_{i}: H^{*} \longrightarrow \mathbb{Z}_{e_{i}}$ are surjective. By abuse of notation, we will also denote by φ the induced homomorphism $\varphi: G^{*} \longrightarrow \prod_{i=1, \ldots, s} \mathbb{Z}_{e_{i}}$. We will write

$$
\varphi(\chi)=\left(n_{1}(\chi), \ldots, n_{s}(\chi)\right) \quad \forall \chi \in G^{*}
$$

Let $\mu(\chi)$ be the order of χ. By [Pa] Proposition 2.1,

$$
d_{\chi}=\sum_{i=1, \ldots, s} \frac{n_{i}(\chi)}{e_{i}}
$$

We will now analyze all possible inertia groups H.
Case 1: $s=4$, and $e:=e_{i}=2$. Then $H^{*} \subset \mathbb{Z}_{2}^{4}$. Note that $H^{*} \neq \mathbb{Z}_{2}^{4}$ since $(1,0,0,0) \notin H^{*}$. Thus $H^{*} \cong\left(\mathbb{Z}_{2}\right)^{s}$ with $1 \leq s \leq 3$.

By Example 1, all of these possibilities occur.
CASE 2: $s=3$ and $e_{1} \geq 3, e_{2}=e_{3}=2$. There must be a character χ with $\varphi(\chi)=\left(1, n_{2}, n_{3}\right)$, and so

$$
d_{\chi}=\frac{1}{e_{1}}+\frac{n_{2}}{2}+\frac{n_{3}}{2}
$$

which is not an integer. Therefore this case is impossible.
CASE 3: $s=2$ and $e_{1}, e_{2} \geq 3$. Assume that $e_{1}>e_{2}$. Since $G^{*} \rightarrow \mathbb{Z}_{e_{1}}$ is surjective, there is $\chi \in H^{*}$ with $\varphi(\chi)=\left(1, n_{2}\right)$. Then

$$
d_{\chi}=\frac{1}{e_{1}}+\frac{n_{2}}{e_{2}}<1
$$

which is impossible. So we may assume that $e=e_{1}=e_{2} \geq 3$ and $H^{*} \subset \mathbb{Z}_{e}^{2}$. Let $\varphi(\chi)=\left(n_{1}, n_{2}\right)$. One has $d_{\chi}=\frac{n_{1}+n_{2}}{e}$. Thus $n_{2}=e-n_{1}$ for any $\chi \neq 1$. Therefore, $H^{*}=\{(i, e-i) \mid 0 \leq i \leq e-1\} \cong \mathbb{Z}_{e}$. By Example 1, all of these possibilities occur.

From the above discussion, it follows that:
Proposition 5.2. Let $\phi: C \longrightarrow E$ be a G-cover with E an elliptic curve and $\operatorname{dim} H^{0}\left(\omega_{C}^{\otimes 3}\right)^{G}=4$. Then either ϕ is ramified over 4-points and the inertia group H is isomorphic to $\left(\mathbb{Z}_{2}\right)^{s}$ with $s \in\{1,2,3\}$ or ϕ is ramified over 2-points and the inertia group H is isomorphic to \mathbb{Z}_{m} with $m \geq 3$.

REFERENCES

[Be] A. Beauville, "Complex Algebraic Surfaces", London Math. Soc. Student Texts 34, Cambridge University Press, 1996.
[CH1] J. A. Chen - C. D. Hacon, Characterization of Abelian Varieties, Invent. Math. 143 (2001), 435-447.
[CH2] J. A. Chen - C. D. Hacon, Pluricanonical maps of varieties of maximal Albanese dimension, Math. Ann. 320 (2001), 367-380.
[CH3] J. A. Chen - C. D. Hacon, On Algebraic fiber spaces over varieties of maximal Albanese dimension, Duke Math. J. 111 (2002), 159-175.
$[\mathrm{ClH}] \quad$ H. Clemens - C. D. Hacon, Deformations of the trivial line bundle and vanishing theorems, Amer. J. Math. 124 (2002), 769-815.
[EL] L. Ein - R. Lazarsfeld, Singularities of theta divisors and birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997), 243-258.
[GL] M. Green - R. Lazarsfeld, Deformation theory, generic vanishing theorems and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389-407.
[Hac] C. D. Hacon, Fourier transforms, generic vanishing theorems and polarizations of abelian varieties, Math. Z. 235 (2000), 717-726.
[Hac2] C. D. Hacon, Varieties with $P_{3}=3$ and $q=\operatorname{dim}(X)$, to appear in Math. Nachr.
[Hac3] C. D. Hacon, Divisors on principally polarized varieties, Compositio Math. 119 (1999), 321-329.
[Hac4] C. D. Hacon, Effective criteria for birational morphisms, J. London Math. Soc. 67 (2003), 337-348.
[Hac5] C. D. Hacon, A derived category approach to generic vanishing theorems, to appear in J. Reine Angew. Math.
[HP] C. D. Hacon - R. Pardini, On the birational geometry of varieties of maximal albanese dimension, J. Reine Angew. Math. 546 (2002), 177-199.
[Ka] Y. Kawamata, Characterization of abelian varieties, Compositio Math. 43 (1981), 253-276.
[Ko1] J. Kollár, Higher direct images of dualizing sheaves I, Ann. of Math. 123 (1986), 11-42.
[Ko2] J. Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), 177-215.
[HM] D. W. Hahn - D. Miranda, Quadruple covers of algebraic varieties, J. Algebraic Geom. 8 (1999), 1-30.
[M] S. MukaI, Duality between $D(X)$ and $D(\hat{X})$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153-175.
[Pa] R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191-213.

Department of Mathematics National Taiwan University No.1, Sec. 4, Roosevelt Road Taipei, 106, Taiwan jkchen@math.ntu.edu.tw
Department of Mathematics
University of Utah
155 South 1400 East, JWB 233
Salt Lake City
Utah 84112-0090, USA
hacon@math.utah.edu

