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Motion by Curvature of Planar Networks
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Abstract. We consider the motion by curvature of a network of smooth curves
with multiple junctions in the plane, that is, the geometric gradient flow associated
to the length functional.
Such a flow represents the evolution of a two–dimensional multiphase system
where the energy is simply the sum of the lengths of the interfaces, in particular it
is a possible model for the growth of grain boundaries.
Moreover, the motion of these networks of curves is the simplest example of
curvature flow for sets which are “essentially” non regular.
As a first step, in this paper we study in detail the case of three curves in the plane
meeting at a single triple junction and with the other ends fixed. We show some
results about the existence, uniqueness and, in particular, the global regularity of
the flow, following the line of analysis carried on in the last years for the evolution
by mean curvature of smooth curves and hypersurfaces.
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1. – Introduction and basic definitions

In this work we address the problem of the motion by curvature of a network
of curves in the plane, where by network of curves we mean a connected planar
graph without self–intersections.

The evolution by curvature of such a network is the geometric gradient
flow with respect to the energy given by the Length functional which is simply
the sum of the lengths of all the curves of the network (see [10]).

We point out two motivations to study this evolution. The first is the
analysis of models of two-dimensional multiphase systems, where the problem
of the structure and regularity of the interfaces between different phases arises
naturally. As an example, the model where the energy of a configuration is
simply the total length has proven useful in the analysis of the growth of grain
boundaries, see [10], [11], [20], [30], the papers by Herring and Mullins in [9]
and http://mimp.mems.cmu.edu.

The second motivation is more theoretical: the evolution of such a network
of curves in the plane is the simplest example of motion by mean curvature
of a set which is essentially singular. In the literature there are various gen-
eralized definitions of flow by mean curvature for non regular sets (see [3],
[10], [14], [18], [27], [36], for instance). All of them are fairly general, but
usually lack uniqueness and a satisfactory regularity theory, even in simple
situations.

Inspired by Grayson’s Theorem in [19], stating that any smooth closed
curve embedded in R

2 evolves by curvature without singularities before van-
ishing, and by the new approach to such result by Huisken in [26], one can
reasonably expect that an “embedded” network of smooth curves does not de-
velop singularities during the flow if its “topological structure” does not change
(we will be more precise about this point in the sequel) and asymptotically
converges to a critical configuration for the Length functional.

Moreover, in [26] it is also shown that the motion by curvature of a single
embedded curve in a strip of R

2, with its end points fixed to be some P1 and
P2 on the boundary of the strip, evolves smoothly and approaches the segment
connecting the two points P1, P2. We can see this case as a very special
positive example of motion of a network and we will try to follow the line of
analysis traced in that paper.

We consider a connected network S = ∪n
i=1σ

i , composed of a finite family
of smooth curves σ i (x) : [0, 1] → �, where � is a smooth open convex subset
of R

2, that can intersect each other or self–intersect only at their end points.
We call “multi–points” the vertices O1, O2, . . . , On ∈ � of such smooth graph
S, where the order is greater than one. Moreover, we assume that all the other
ends of the curves (if present) have to coincide with some points Pl on the
boundary of �.

The problem is then to analyse the existence, uniqueness, regularity and
asymptotic behavior of the evolution by curvature of such a network, under the
constrain that the end points Pl ∈ ∂� stay fixed.



MOTION BY CURVATURE OF PLANAR NETWORKS 237

Clearly, one can also set an analogous “Neumann” problem, requiring that,
instead of being fixed, at the “free” ends the curves intersect orthogonally the
boundary of �.

Remark 1.1. If � is a generic smooth open subset of R
2, possibly non

convex, it could happen that during the evolution one of the curves “hits” the
boundary of � with a point different from its end point. Then, for sake of
simplicity, we assume the convexity of the domain since this condition excludes
a priori such an event (Proposition 4.1).

The hypothesis that the points Pl stay on the boundary and not inside �,
is also in this spirit. If the fixed end points are inside the domain the interior
of a curve could possibly “touch” one of them, forming a loop and losing the
“embeddedness” of the network.

The convexity assumption and the fact that Pl ∈ ∂� avoid this possibility,
as we will see in Section 4.

In such a generality, although simplified in this way, this problem shares
various complications related to the multi-points.

As previously underlined, the existing weak definitions of curvature motion
do not give uniqueness of the flow, or allow “fattening” phenomena (see [18],
for instance) which we would like to avoid, as they seems quite extraneous to
our setting. Among the existing notions, the most suitable to our point of view
is Brakke’s one (see Definition 2.8 and the subsequent discussion), which also
lacks uniqueness but maintains the (Hausdorff) dimension of the sets, excluding
at least the event of fattening. In what follows this definition is the only that
we consider in relation to the evolution of networks, in particular, our flows
are Brakke flows.

In Section 3 we show a satisfactory small time existence result (Theo-
rems 3.1, 3.22 and Remark 3.24) of a smooth motion for a special class of
networks, that is, the ones having only multi-points with three concurrent curves
forming angles of 120 degrees (this last property is called Herring condition).

We have to say that the uniqueness problem is less clear at the moment
(see Remark 3.23).

In the case of the presence in the initial network of a “bad” 3-point,
not satisfying the Herring condition, we are not able at the moment to show
the existence of a flow, smooth for every positive time, satisfying a “robust”
definition (at least as Definition 2.8).

Actually, one would expect that the desired good definition should give
uniqueness of the motion and force, by an instantaneous regularization, the
three angles to become immediately of 120 degrees and to remain so. This is
sustained by the fact that, by an energy argument ([10]), any smooth Brakke flow
has to share such a property (which is also suggested by numerical and physical
experiments, see at http://mimp.mems.cmu.edu and also the discussions in [9],
[10], [11], [20], [30]).

Notice that, by the variational nature of the problem it is appealing to guess
that some sort of parabolic regularization could play a role here. We remark
that if a multi-point has only two concurrent curves, it can be shown, by the
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regularizing effect of the evolution by curvature (see [4], [6], [7], [19]), that the
two curves together become instantaneously a single smooth curve moving by
curvature. Hence, the 2-point has vanished but this particular event is so “soft”
(and topologically null) that we can avoid to consider it as a real structural
change.

We discuss now some other difficulties of geometric character in having a
good definition of flow for a generic network.

1. The presence of multi–points O j of order greater than three:
In the case of a 4-point (and clearly also of a higher order multi-point),
for instance, considering the network described by two curves crossing
each other, there are really several possible candidates for the flow, even
excluding a priori “fattening” phenomena. One cannot easily decide how
the angles must behave, like in the 3-point case above, moreover, one
can allow the four concurrent curves to separate in two pairs of curves
moving independently each other and it could even be taken into account
the “creation” of new multi-points from such a single one (all these events
are actually possible in Brakke’s definition).
In these latter cases, the topology of the network changes dramatically,
forcing us to change the structure of the system of equations governing the
evolution and the family of curves composing the network.

2. The presence of several multi–points O j :
during the flow some of them can “collapse” together, again modifying the
topological structure of the network, when the length of at least one curve
of the network goes to zero (which can actually happen). In this case, like
at the previous point, one possibly has to “restart” the evolution with a
different set of curves.
Notice that even if one starts with a network such that all the multi-
points are 3-points, in the event of a collapse, one could have to face a
situation with multi-points of order higher than three (consider for instance
two 3-points collapsing along a single curve connecting them) or to deal
with “bad” 3-points (think of three 3-points collapsing together along three
curves connecting them).

Remark 1.2. Actually, it seems reasonable that the configurations with
multi-points of order greater than three or 3-points with angles different from
120 degrees should be unstable (actually, they are unstable for the Length
functional), with the meaning that they can appear at some discrete set of times
(and probably in some cases are unavoidable), but they must vanish immediately
after.

Because of all these complications, as a first step, in this paper we are
going to analyze the simplest possible network which, by construction, rules
out all the troubles related to the cases above.

Anyway, we will point out when the results can be extended to more
general networks.
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Definition 1.3. We call triod T in � a special network composed only
of three regular, embedded C2 curves σ i : [0, 1] → � (here regular means
σ i

x(x) �= 0 for every x ∈ [0, 1] and i ∈ {1, 2, 3}), where � is a smooth open
convex subset of R

2, moreover, these curves (sometimes we will call them also
edges of the triod) intersect each other only at a single 3-point O = σ 1(0) =
σ 2(0) = σ 3(0) (the 3-point of the triod T) and have the other three end points
coinciding with three distinct points Pi = σ i (1) (the end points of T) belonging
to the boundary of �.

Finally, we assume that the tangents of the three curves form angles of
120 degrees at the 3-point O .

We say that the triod is (of class) Ck or C∞ if the three curves are
respectively Ck or C∞. We remark that with this definition we assume that,
unless explicitly otherwise stated, every triod is at least of class C2, in order
to speak of its curvature.

Notice that the angular condition can be expressed as

3∑
i=1

σ i
x(0)

|σ i
x(0)| = 0.

It is obvious that during the motion of such a triod the “bad” configurations
we discussed before are a priori excluded.

Remark 1.4. Since in all the paper we will consider only triods with angles
of 120 degrees between the curves, for sake of simplicity, we chose to call these
sets simply triods with the meaning “triods with angles of 120 degrees”.

Moreover, sometimes we will speak of a triod without end points composed
of three curves σ i : [0, +∞) → R

2, for instance, when we will need to allow
them go to infinity.

Actually, we could also consider the possibility that the three curves inter-
sect each other, so when ambiguity is possible, we will underline the property
of non self-intersection saying that the triod is embedded.

The paper is devoted to study the existence, uniqueness, regularity and
asymptotic behavior of these embedded triods in �, moving by curvature keeping
fixed the end points P1, P2, P3 .

This problem has been considered by Bronsard and Reitich in [11], where
they prove an existence result which is the core of Theorem 3.1 and by Kinder-
lehrer and Liu in [30] showing the global existence of a flow for an initial triod
sufficiently close to the minimal configuration connecting the three points Pi

(Steiner configuration).
We want to extend all this to any embedded initial triod, concentrating in

particular on the global existence and regularity of the flow. Even if this is
the simplest case, its understanding is clearly crucial in analyzing more general
networks, taking also into account Remark 1.2.

Our conjecture is that any embedded initial triod evolves in time without singu-
larities and asymptotically converges to the minimal connection between the three
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points Pi if the lengths of the three curves stay away from zero, being the “vanishing”
of a curve the only possible “catastrophic” event during the flow.

Remark 1.5. It should be noticed that if the triangle formed by the points
P1, P2, P3 has an angle of more than 120 degrees, then a triod composed of
three segments forming angles of 120 and connecting its vertices does not exist.
Then, if the conjecture is true, necessarily one of the lengths is not uniformly
bounded away from zero.

After discussing the existence (and uniqueness) of a smooth flow on some
maximal time interval in the first part of the paper, in order to prove such
conjecture we try to generalize the analysis of the motion by mean curvature
of smooth closed curves and hypersurfaces in the Euclidean space, employing
a mix of PDE’s and differential geometry techniques.

Essentially, what is needed is the understanding of the structure of the
possible blow up around the singularities, in order to actually exclude these
latter by means of geometric arguments. Some key references for this line of
research are [5], [22], [25], [26].

The most relevant difference between our case and the smooth one, is
the difficulty in using the maximum principle, which is the main tool to get
estimates on the geometric quantities during the flow. Indeed, the 3-point (by
the 120 degrees condition) is nice from the distributional point of view: in a
sense, it is an interior point, but it is troublesome for any argument based on
the maximum principle, since it behaves like a boundary point.

For this reason, some important pointwise estimates which are almost trivial
applications of the maximum principle in the smooth case, are here much more
complicated to prove (sometimes we do not even know if they actually hold)
and we will have to resort to integral estimates. These latter are similar to the
ones in [5], [6], [7], [24] for instance, but require some extra work in order to
deal with this strange “boundary” point.

If the lengths of the curves do not reduce to zero, by means of these
latters estimates, we can see that at the time T of singularity the curvature has
to explode, then like in the smooth case, we separate the analysis according to
its rate of blow up.

We say that a singularity is of Type I if for some constant C we have
maxTt k2 ≤ C/(T − t) as t → T and it is of Type II otherwise.

Rescaling properly the flow around a hypothetical Type I singularity one gets
an evolution of embedded triods (unbounded and without end points) shrinking
homothetically during the motion by curvature. Classifying all such particular
evolutions, we will show that none of them can arise as a blow up of the flow
Tt , this clearly implies that Type I singularities cannot develop.

With the same idea, rescaling the flow around a Type II singularity, one
gets an eternal motion by curvature, that is, an evolution of triods defined for
every time t ∈ R.

What is missing at the moment is that this eternal flow is actually simply
given by a translating triod (unbounded and without end points), like it happens
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in the case of a single smooth curve. Here also, the main difficulty resides in
replacing some maximum principle arguments.

If the blow up would be translating, after classification, we could exclude
also this case by means of an argument based on the monotonicity of a geometric
quantity (see Sections 5 and 7 for details), hence, no singularity at all could
appear during the flow if the lengths of the three curves of the triod stay away
from zero.

The conjecture then would follow.

Acknowledgment. We are grateful to Alessandra Lunardi for helping us
in the proof of the small time existence of a smooth flow in Section 3.

2. – Definitions and preliminaries

We start setting in a precise analytical way the curvature evolution problem
for an embedded initial triod T0 = ∪3

i=1σ
i in �.

Definition 2.1. We say that the triods Tt = ∪3
i=1γ

i (·, t) evolve by curvature
(remaining embedded) in the time interval [0, T ) if the three functions γ i :
[0, 1] × [0, T ) → � are of class C2 in space and C1 in time, at least, and
satisfy the following quasilinear parabolic system

(2.1)



γ i
x (x, t) �= 0 regularity

γ i (x, t) �= γ i (y, t) if x �= y simplicity

γ i (x, t)=γ j (y, t) ⇔ x, y =0 if i �= j intersection only
at the 3-point

3∑
i=1

γ i
x (0, t)

|γ i
x (0, t)| = 0 angles of 120

degrees at the 3-point

γ i (1, t) = Pi fixed end points condition

γ i (x, 0) = σ i (x) initial data

γ i
t (x, t) = γ i

xx(x, t)

|γ i
x (x, t)|2 motion by curvature

for every x ∈ [0, 1], t ∈ [0, T ) and i, j ∈ {1, 2, 3}.
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Remark 2.2. We spend some words on the evolution equation

(2.2) γ i
t = γ i

xx

|γ i
x |2

,

which is not the usual way to describe the motion by curvature, that is,

γ i
t = 〈γ i

xx | νi 〉
|γ i

x |2
νi = kiνi

where we denoted with νi the unit normal to the curve γ i and ki its curvature.
The two velocities differ only by a tangential component which actually

affects the motions of the single points (Lagrangian point of view), but it does
not affect the local motion of a curve as a whole subset of R

2 (Eulerian point
of view).

We remark that this property of global invariance is not peculiar to this
particular tangential term, it holds for any tangential modification of the velocity.
This fact is well known for the curvature evolution of a smooth curve, hence
also for a triod, any tangential contribution to the velocity does not modify the
flow outside the 3-point.

In our situation such extra term becomes necessary in order to allow the
motion of the 3-point O(t) = γ i (0, t). Indeed, since we look for a C2 solution
of Problem (2.1), if the velocity would be in normal direction at every point of
the three curves, the 3-point should move in a direction which is normal to all
of them, then the only possibility would be that it does not move at all (see
also the discussions and examples in [10], [11], [30]).

Remark 2.3. It should be noticed that this definition of flow of a C2 triod
is very strong, indeed, as the maps γ i have to be C1 in time and C2 is space
till the parabolic boundary, the compatibility conditions of order 2 have to be
satisfied, that is,

σ i
xx(1)

|σ i
x(1)|2 = 0 for every i ∈ {1, 2, 3} and

σ i
xx(0)

|σ i
x(0)|2 = σ j

xx(0)

|σ j
x (0)|2

for every i, j ∈ {1, 2, 3} .

(the compatibility conditions of order 0 and 1 are automatically satisfied, since
they are equivalent to say that the three curves σ i form a 3-point with angles
of 120 degrees, which is assumed by construction).

This means, for instance, that for the initial triod the curvature at the end
points Pi and the sum of the three curvatures at the 3-point have to be zero
(see later).

Notice that these two conditions on T0 are really geometric, independent of
the parametrization of the curves γ i , but intrinsic to the set T0 (see Definition 2.5
and Remark 2.7) and are not satisfied by a generic C2 triod.
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Since we are interested in an existence theorem for any triod composed of
C2 curves (Theorem 3.22), we consider also Brakke’s definition of curvature
flow.

Definition 2.4. We say that a triod T0, composed of three C∞ curves σ i

is smooth if it satisfies the compatibility conditions of every order of parabolic
system (2.1) (this is clearly much more striking that being simply a C∞ triod
according to Definition 1.3).

Precisely, this means that at the end points and at the 3-point, there hold all
the relations on the space derivatives of the functions σ i obtained differentiating
in time, at t = 0, the boundary conditions.

We say that a solution Tt of Problem (2.1), given by the curves γ i (x, t) ∈
C∞([0, 1] × [0, T )) is a smooth flow if the compatibility conditions of every
order are satisfied at every time t ∈ [0, T ), that is, all the triods Tt are smooth.

Definition 2.5. We say that a triod T0 is geometrically smooth if there
exist a regular parametrization of its three curves such that the resulting triod
is smooth.

To denote a flow we will often write simply Tt instead of letting explicit
the curves γ i which compose the triods.

Moreover, it will be also useful to describe a triod as a map F : T → �

from a fixed standard triod T in R
2, composed of three unit segments from

the origin in the plane, forming angles of 120 degrees. In this case we will
still denote with O the 3-point of T and with Pi the three end points of such
standard triod.

The evolution then will be given by a map F : T×[0, T ) → �, constructed
naturally from the curves γ i , so Tt = F(T, t).

We adopt the following notation:

τ i = τ i (x, t) = γ i
x

|γ i
x |

unit tangent vector to γ i ,

νi = νi (x, t) = Rτ i (x, t) = R
γ i

x

|γ i
x |

unit normal vector to γ i ,

O = O(t) = γ i (0, t) 3-point of the triod Tt ,

vi = vi (x, t) = γ i
xx

|γ i
x |2

velocity of the point γ i (x, t) ,

λi =λi (x, t)= 〈γ i
xx | τ i 〉
|γ i

x |2
= 〈γ i

xx | γ i
x 〉

|γ i
x |3

tangential velocity of the point γ i (x, t),

ki =ki (x, t)= 〈γ i
xx | νi 〉
|γ i

x |2
=〈∂sτ

i | νi 〉=

= −〈∂sν
i | τ i 〉 curvature at the point γ i (x, t) ,
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where s is the arclength parameter on the relative curve, defined by s(x, t) =∫ x
0 |γ i

x (ξ, t)| dξ , and R : R
2 → R

2 is the counterclockwise rotation of π/2.
Notice that ∂s = |γ i

x |−1∂x .
Moreover, we set λi = λiτ i and ki = kiνi , then, it clearly follows that

vi = λi + ki and |vi |2 = (λi )2 + (ki )2.
Here and in the sequel, we denote with ∂s f and ∂t f the derivatives of a

function f along a curve with respect to the relative arclength parameter and
the time, ∂n

s f , ∂n
t f are the higher order partial derivatives which often we will

also write as fs, fss, . . . and ft , ftt , . . . .
We adopt the following convention for integrals,

∫
Tt

f (t, γ, τ, ν, k, ks, . . . , λ, λs . . . ) ds

=
3∑

i=1

∫ 1

0
f (t, γ i , τ i , νi , ki , ki

s, . . . , λ
i , λi

s . . . ) |γ i
x | dx

as the arclength measure is given by ds = |γ i
x | dx on the curve γ i .

In general, if there is no need to make explicit the three curves composing
a triod, we simply write τ , ν, v, λ and k for the previous quantities, omitting
the indices.

We suppose now to have a smooth flow Tt on some positive time interval
[0, T ) and we write the evolution equations for the geometric quantities.

Lemma 2.6. If γ is a curve moving by

γt = γxx

|γx |2
= λτ + kν .

then the following commutation rule holds,

(2.3) ∂t∂s = ∂s∂t + (k2 − λs)∂s

Proof. Let f : [0, 1] × [0, T ) → R be a smooth function, then

∂t∂s f − ∂s∂t f = ft x

|γx | − 〈γx | γxt 〉 fx

|γx |3 − ft x

|γx | = −〈τ | ∂sγt 〉∂s f

= −〈τ | ∂s(λτ + kν)〉∂s f = (k2 − λs)∂s f

and the formula is proved.
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Then we can compute,

∂tτ = ∂t∂sγ = ∂s∂tγ + (k2 − λs)∂sγ = ∂s(λτ + kν) + (k2 − λs)τ(2.4)

= (ks + kλ)ν

∂tν = ∂t (Rτ) = R ∂tτ = −(ks + kλ)τ(2.5)

∂t k = ∂t 〈∂sτ | ν〉 = 〈∂t∂sτ | ν〉 = 〈∂s∂tτ | ν〉 + (k2 − λs)〈∂sτ | ν〉(2.6)

= ∂s〈∂tτ | ν〉 + k3 − kλs = ∂s(ks + kλ) + k3 − kλs

= kss + ksλ + k3

∂tλ = −∂t∂x
1

|γx | = ∂x
〈γx | γt x 〉

|γx |3 = ∂x
〈τ | ∂s(λτ + kν)〉

|γx | = ∂x
(λs − k2)

|γx |(2.7)

= ∂s(λs − k2) − λ(λs − k2) = λss − λλs − 2kks + λk2 .

As the triods Tt are smooth, differentiating in time the concurrency condition
γ i (0, t) = γ j (0, t) we obtain λiτ i + kiνi = λ jτ j + k jν j at the 3-point for
every pair of indices i, j . Multiplying these vector equalities for τ l and νl and
varying i, j, l we get the relations

λi = −λi+1/2 −
√

3ki+1/2

λi = −λi−1/2 +
√

3ki−1/2

ki = −ki+1/2 +
√

3λi+1/2

ki = −ki−1/2 −
√

3λi−1/2

with the convention that the superscripts are considered modulus three. Solving
this system we get

λi = ki−1 − ki+1

√
3

ki = λi+1 − λi−1

√
3

which implies
3∑

i=1

ki =
3∑

i=1

λi = 0

at the 3-point of the triods Tt . Moreover, considering K = (k1, k2, k3) and

 = (λ1, λ2, λ3) as vectors in R

3, we have seen that K and 
 belong to
the plane orthogonal to the vector (1, 1, 1) and K = 
 ∧ (1, 1, 1)/

√
3, 
 =

−K ∧ (1, 1, 1)/
√

3 that is, K = S
 and 
 = −SK where S is the rotation in
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R
3 of an angle of π/2 around the axis I = 〈(1, 1, 1)〉. Hence, it also follows

that
3∑

i=1

(ki )2 =
3∑

i=1

(λi )2 and
3∑

i=1

kiλi = 0 .

at the 3-point of the triods Tt .
Now we differentiate in time the angular condition

∑3
i=1 τ i (0, t) = 0 at

the 3-point, by equation (2.4) we get

(2.8) ki
s + λi ki = k j

s + λ j k j

for every pair i, j . In terms of vectors R
3 as before, we can write

Ks + 
K = (k1
s + λ1k1, k2

s + λ2k2, k3
s + λ3k3) ∈ I .

Differentiating repeatedly in time all these vector relations we have

∂ l
t K , ∂ l

t 
 ⊥ I and ∂ l
t (K «
) = 0 ,

∂ l
t 
 = −∂ l

t SK = −S∂ l
t K ,

∂m
t (Ks + 
K) ∈ I ,

which, making explicit the indices, give the following equalities at the 3-point,

∂ l
t

3∑
i=1

ki =
3∑

i=1

∂ l
t ki = ∂ l

t

3∑
i=1

λi =
3∑

i=1

∂ l
t λ

i = ∂t

3∑
i=1

kiλi = 0 ,

(2.9)
3∑

i=1

(∂ l
t ki )2 =

3∑
i=1

(∂ l
t λ

i )2 for every l ∈ N,

∂m
t (ki

s + λi ki ) = ∂m
t (k j

s + λ j k j ) for every pair i, j and m ∈ N.

By the orthogonality relations with respect to the axis I, we get also

∂ l
t K∂m

t (Ks + 
K) = ∂ l
t 
∂m

t (Ks + 
K) = 0 ,

that is,

(2.10)
3∑

i=1

∂ l
t ki ∂m

t (ki
s + λi ki ) =

3∑
i=1

∂ l
t λ

i ∂m
t (ki

s + λi ki ) = 0 for every l, m ∈ N.

Looking then at the three end points, by Lemma 3.10 in the next section,
we have that all the even space derivatives of k and λ are zero.
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Remark 2.7. As the “shape” of the curves is fixed under reparametriza-
tion, if a triod is geometrically smooth, the three curves have to be C∞ once
parametrized in arclength. Moreover, necessarily

∑3
i=1 νi = 0, and

∑3
i=1 ki = 0

at the 3-point must hold, like all the relations one gets from these two, itera-
tively, differentiating in time by means of formulas (2.5), (2.6) and substituting
every occurrence of λi according to the formula (λ1, λ2, λ3) = −(k1, k2, k3) ∧
(1, 1, 1)/

√
3 (notice that in this way λs never appears). Working analogously

at the end points, the compatibility conditions reduce to require that every even
space derivative of the curvature is zero (by Lemma 3.10 in the next section).

These necessary conditions are actually also sufficient, indeed the geomet-
rical smoothness is a matter of curvature, not involving λ. If a triod satisfies
such conditions, we can parametrize every curve γ i in a way that λi at the
3-point has the right value given by the relation λi = −(K ∧ I)i/

√
3 and it is

zero at the end point of the curve, for instance, setting λi
s constantly equal to

−λi (0)/Li , where Li is the length of the curve.
It is straightforward to check that this can be done and the resulting

parametrization gives a smooth triod.

Definition 2.8. We will speak of Brakke flow with equality of an initial
triod T0 in [0, T ), for a family of C2 triods Tt in � all with the same end
points as T0 and satisfying the equation

(2.11)
d

dt

∫
Tt

ϕ(γ, t) ds =−
∫

Tt

ϕ(γ, t)k2 ds +
∫

Tt

〈∇ϕ(γ, t) | k〉 ds +
∫

Tt

ϕt (γ, t) ds ,

for every smooth function with compact support ϕ : � × [0, T ) → R and
t ∈ [0, T ).

This means also that the time derivative at the left hand side has to exist.
The right hand side does not give any problem since the triods are C2, at least.

We will say that a Brakke flow is smooth if all the triods are geometrically
smooth.

Remark 2.9. It is straightforward to check that a solution of Problem 2.1
is also a smooth Brakke flow with equality.

Actually, the original definition of Brakke flow stated in [10, Section 3.3]
allows equality (2.11) to be an inequality (and triods Tt to be one-dimensional
countably rectifiable subsets of R

2 with a distributional notion of curvature,
called varifolds, see [34]), precisely,

d

dt

∫
Tt

ϕ(x, t) dH1(x) ≤ −
∫

Tt

ϕ(x, t)k2 dH1(x)

+
∫

Tt

〈∇ϕ(x, t) | k〉 dH1(x) +
∫

Tt

ϕt (x, t) dH1(x) ,

must hold for every positive smooth function with compact support ϕ : � ×
[0, T ) → R and t ∈ [0, T ), where d

dt is the upper derivative (the lim of the
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incremental ratios) and H1 is the Hausdorff one-dimensional measure in R
2 (we

will use this notation through all the paper).
This weaker condition was introduced by Brakke in order to prove an

existence result [10, Section 4.13] for a family of initial sets much wider than
the networks of curves, but, on the other hand, it let open the possibility of
instantaneous vanishing of some parts of the set.

Since for our triods (probably, this can be done also for a general network)
we are able to show the existence of a Brakke flow via a different method, and
this flow is composed of smooth triods and satisfies the equality, for sake of
simplicity, we included such extra properties in the definition.

A big difference between Brakke flows and the evolutions obtained as
solutions of Problem (2.1) is that the former triods are simply considered as
sets without any mention to their parametrization (that clearly is not unique).
This means that actually a Brakke flow can be a family of triods given by the
maps γ i (x, t) which are C2 in space, but possibly do not have absolutely any
regularity with respect to the time variable t .

If we consider two different smooth triods T
1
0 and T

2
0 which are the same

subset of R
2, giving two different solutions T

1
t and T

2
t of Problem (2.1) on

some common interval, then the two associated Brakke flows coincide (Propo-
sition 3.3), that is, as subsets of R

2, forgetting the parametrization, actually
T

1
t = T

2
t for every time t .

This means that the geometric evolution problem has a satisfactory unique-
ness property if the initial triod is smooth.

In general, when we will speak of geometric problem we will mean that we are
thinking of the triods as subsets of R

2, independently of the parametrizations of their
curves.

An open question is whether any smooth Brakke flow with equality admits
a parametrization of the initial triod with an associate solution of Problem (2.1)
representing it at least for some time.

A positive answer would imply the uniqueness in the class of these special
Brakke flows and the coincidence of the two formulations, from the geometric
point of view.

Finally we state precisely the conjecture which is the main topic of the
second part of the paper.

Here and in the following, we denote with Li the lengths of the three
curves and with L = L1 + L2 + L3 the total length of the triod.

Conjecture 2.10. Let Tt be a smooth evolution of embedded triods on a
maximal time interval [0, T ).

If limt→T Li �= 0 for every i ∈ {1, 2, 3}, then T = +∞ and Tt converges,
as t → +∞, to the minimal connection between the three points Pi .
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3. – Small time existence and a priori estimates

The first small time existence result for a flow very similar to Problem (2.1)
is due to Bronsard and Reitich [11]. In their paper it is shown the existence of
a unique solution γ i ∈ C2+2α,1+α([0, 1] × [0, T ]) of the same parabolic system,
for an initial triod composed of three curves σ i ∈ C2+2α([0, 1]) and satisfying
the natural compatibility conditions. The only difference is that they impose
the Neumann boundary condition of orthogonal intersection with ∂�, instead of
keeping the end points Pi ∈ ∂� fixed as we do.

The same technique works also in our case and gives the small time ex-
istence of a unique solution γ i ∈ C2+2α,1+α([0, 1] × [0, T ]) (notice that this
means that the curves are C2+2α till the 3-point and their end points Pi ) of the
following parabolic system

(3.1)



γ i
x (x, t) �= 0 regularity

γ i (0, t) = γ j (0, t) concurrence at the 3-point
3∑

i=1

γ i
x (0, t)

|γ i
x (0, t)| = 0 angles of 120 degrees at the 3-point

γ i (1, t) = Pi fixed end points condition

γ i (x, 0) = σ i (x) initial data

γ i
t (x, t) = γ i

xx(x, t)

|γ i
x (x, t)|2 motion by curvature

given any initial C2+2α triod T0 = ∪3
i=1σ

i , with α ∈ (0, 1/2), satisfying the
compatibility conditions of order 2, that is,

σ i
xx(1)

|σ i
x(1)|2 = 0 for every i ∈ {1, 2, 3} and

σ i
xx(0)

|σ i
x(0)|2 = σ j

xx(0)

|σ j
x (0)|2

for every i, j ∈ {1, 2, 3}

(the compatibility conditions of order 0 and 1 are automatically satisfied, since
they are equivalent to say that the three curves σ i form a triod with angles of
120 degrees).

Now we look for a higher regularity result.

Theorem 3.1. For any initial smooth triod T0 there exists a unique smooth
solution of Problem (2.1) on a maximal time interval [0, T ).

Proof. Since the initial triod T0 satisfies the compatibility conditions at
every order, the method of Bronsard and Reitich actually provides a way, for
every n ∈ N, to get a unique solution in C2n+2α,n+α([0, 1] × [0, Tn]), satisfying
the compatibility conditions of order 0, . . . , n at every time.
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Then, by standard methods of one-dimensional parabolic equations we can
obtain a solution which belongs to C∞([0, 1] × [0, T )) for some small positive
time T > 0 and consider its maximal time of existence.

We give just the line of the proof and we indicate the relevant references
for the details.

Let us consider a solution γ i ∈ C2n+2α,n+α([0, 1] × [0, Tn]) for n ≥ 2,
then the functions γ i

x (x, t) belong to C2n−1+2α,n−1/2+α([0, 1] × [0, Tn]) (see for
instance [32, Lemma 5.1.1]), then we look at the parabolic system satisfied by
vi (x, t) = γ i

t (x, t),

vi
t (x, t) = vi

xx(x, t)

|γ i
x (x, t)|2 − 2

〈vi
x(x, t) | γ i

x (x, t)〉γ i
xx(x, t)

|γ i
x (x, t)|4

vi (0, t) = v j (0, t)
3∑

i=1

vi
x(0, t)

|γ i
x (0, t)| − 〈vi

x(0, t) | γ i
x (0, t)〉γ i

x (0, t)

|γ i
x (0, t)|3 = 0

vi (1, t) = 0

vi (x, 0) = σ i
xx (x)

|σ i
x (x)|2

for every i, j ∈ {1, 2, 3}.
This system can be rewritten as

vi
t (x, t) = vi

xx(x, t) f i (x, t) + 〈vi
x(x, t) | gi (x, t)〉

vi (0, t) = v j (0, t)

3∑
i=1

vi
x(0, t)pi (t) + 〈vi

x(0, t) | qi (t)〉r i (t) = 0

vi (1, t) = 0

vi (x, 0) = hi (x)

with coefficients

f i , gi ∈ C2n−2+2α,n−1+α([0, 1] × [0, Tn]), pi , qi , r i ∈ C2n−1+α,n−1/2+α([0, Tn])

and hi ∈ C2n+2α([0, 1]), since the initial triod is smooth.
By Solonnikov [35] results, vi = γ i

t belongs to C2n+2α,n+α([0, 1] × [0, Tn])
and since γ i

xx = γ i
t |γ i

x |2 with |γ i
x |2 ∈ C2n−1+2α,n−1/2+α([0, 1] × [0, Tn]), we get

also γ i
xx ∈ C2n−1+2α,n−1/2+α([0, 1] × [0, Tn]).

Following [33], we can then conclude that γ i ∈ C2n+1+2α,n+1/2+α([0, 1] ×
[0, Tn]).

Iterating this argument, we see that γ i ∈ C∞([0, 1] × [0, Tn]), moreover,
since for every n ∈ N the solution obtained via the method of Bronsard and
Reitich is unique, it must coincide with γ i and we can choose all the Tn to be
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the same positive value T . Finally, by the same reason, all the compatibility
conditions are satisfied at every time, that is, the evolving triods are smooth.

The facts that these triods actually stay in the convex set � and that they
do not develop self-intersections during the flow will follow by the results of
Section 4 (Proposition 4.1 and Theorem 4.6).

Proposition 3.2. Any solution of Problem (2.1) is a smooth Brakke flow with
equality.

Moreover, for every curve γ i (·, t) and for every time t ∈ [0, T ) we have

d Li (t)

dt
= −λi (0, t) −

∫
γ i (·,t)

k2 ds

and
d L(t)

dt
= −

∫
Tt

k2 ds .

Hence, the total length L(t) is decreasing in time and uniformly bounded by the
length of the initial triod T0.

Proof. The geometrical smoothness of the flow is clear.
The time derivative of the measure ds on the curve γ i is given by (λi

s −
(ki )2) ds, considering a smooth function with compact support ϕ :�×[0, T )→ R,
we compute

d

dt

∫
γ i (·,t)

ϕ(γ i , t) ds =
∫

γ i (·,t)
ϕ(γ i , t)(λi

s − (ki )2) ds +
∫

γ i (·,t)
〈∇ϕ(γ i , t) | vi 〉 ds

+
∫

γ i (·,t)
ϕt (γ

i , t) ds

=
∫

γ i (·,t)
∂s(λ

iϕ(γ i , t))−λi 〈∇ϕ(γ i , t) | τ i 〉 − ϕ(γ i , t)(ki )2ds

+
∫

γ i (·,t)
〈∇ϕ(γ i , t) | vi 〉 ds +

∫
γ i (·,t)

ϕt (γ
i , t) ds

=
∫

γ i (·,t)
∂s(λ

iϕ(γ i , t)) − ϕ(γ i , t)(ki )2 ds

+
∫

γ i (·,t)
〈∇ϕ(γ i , t) | ki 〉 ds +

∫
γ i (·,t)

ϕt (γ
i , t) ds

= −
∫

γ i (·,t)
ϕ(γ i , t)(ki )2 ds +

∫
γ i (·,t)

〈∇ϕ(γ i , t) | ki 〉 ds

+
∫

γ i (·,t)
ϕt (γ

i , t) ds + λi (1, t)ϕ(Pi , t)−λi (0, t)ϕ(O(t), t).

Since λi (1, t) is zero, being zero the velocity v at the end points Pi , and since
the sum of λi is zero at the 3-point, adding these three equalities for i ∈ {1, 2, 3}
we obtain formula (2.11).

The formulas for the lengths are given by the same computation with
ϕ ≡ 1.
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Seeing the initial triod T0 simply as a subset of R
2, it can admit more than

a single parametrization of its curves making it a smooth triod, so there are
various flows arising by this theorem, associated to different parametrizations.
The following proposition shows that they must coincide geometrically.

Proposition 3.3. If T
1
0 = ∪3

i=1σ
i
0 and T

2
0 = ∪3

i=1ξ
i
0 are two smooth triods which

coincide as subset of R
2 and T

1
t , T

2
t are the relative flows given by Theorem 3.1 on

a common time interval [0, T ), then at every time t the triods T
1
t and T

2
t coincide as

sets.

Proof. Let γ i (x, t) and ηi (x, t) be the two smooth flows associated to
σ i = γ i (·, 0) and ξ i = ηi (·, 0), which parametrize the same triod, seen as a
subset of R

2.
We fix an index i ∈ {1, 2, 3}. Since σ i and ξ i are smooth regular

parametrization of the same curve of the initial triod, the map ϕi = (σ i )−1 ◦ξ i :
[0, 1] → [0, 1] is an orientation preserving, smooth diffeomorphisms of the
unit interval with itself, hence ϕi (0) = 0 and ϕi (1) = 1. Moreover, by the
compatibility conditions we have σ i

xx(1) = ξ i
xx(1) = (σ i ◦ ϕi )xx(1) = 0, hence

0 = σ i
xx(ϕ

i (1))|ϕi
x(1)|2 + σ i

x(ϕ
i (1))ϕi

xx(1) = σ i
x(ϕ

i (1))ϕi
xx(1) = σ i

x(1)ϕi
xx(1)

which implies that ϕi
xx(1) = 0. At the 3-point, we have

ξ i
xx(0)

|ξ i
x(0)|2 − σ i

xx(0)

|σ i
x(0)|2 = σ i

xx(ϕ
i (0))|ϕi

x(0)|2 + σ i
x(ϕ

i (0))ϕi
xx(0)

|σ i
x(ϕ

i (0))ϕi
x(0)|2 − σ i

xx(0)

|σ i
x(0)|2

= σ i
xx(0)|ϕi

x(0)|2 + σ i
x(0)ϕi

xx(0) − σ i
xx(0)|ϕi

x(0)|2
|σ i

x(0)ϕi
x(0)|2

= σ i
x(0)ϕi

xx(0)

|σ i
x(0)ϕi

x(0)|2 ,

hence, σ i
x (0)ϕi

xx (0)

|σ i
x (0)ϕi

x (0)|2 = σ
j

x (0)ϕ
j
xx (0)

|σ j
x (0)ϕ

j
x (0)|2

for every pair i, j ∈ {1, 2, 3}. This means that

ϕi
xx(0) = 0 since the tangents to the curves σ i and σ j are not parallel.

Now we look for three smooth functions ψ i : [0, 1] × [0, T ) → [0, 1]
satisfying the following parabolic system

(3.2)


ψ i

t (x, t) = ψ i
xx(x, t)

|γ i
x (ψ

i (x, t), t)|2|ψ i
x(x, t)|2

ψ i (0, t) = 0

ψ i (1, t) = 1

ψ i (x, 0) = ϕi (x)

for every (x, t) ∈ [0, 1] × [0, T ) and every index i ∈ {1, 2, 3}.
We see that the compatibility conditions of order 2 are satisfied by the

initial data, indeed, here these reduce only to ϕi
xx(0) = ϕi

xx(1) = 0.
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By standard methods (now the problem is scalar, see [32], [35]), being
ϕi smooth and regular (ϕi

x(x) �= 0 for every x ∈ [0, 1] since it is a diffeomor-
phisms), the functions γ i

x bounded from above and away from zero, and holding
the compatibility conditions of order 0, 1 and 2, this quasilinear problem has
a solution on some maximal time interval [0, T ′), with T ′ ≤ T , belonging to
C2+2α,1+α([0, 1] × [0, T ′′]) (for some α ∈ (0, 1/2)) for every time T ′′ ∈ (0, T ′).

It is now straightforward to see that the functions θ i (x, t) = γ i (ψ i (x, t), t)
coincide with ηi (x, t) at time t = 0 (indeed, ξ i = σ i ◦ ϕi ) and

∂θ i (x, t)

∂t
= ∂γ i (ψ i (x, t), t)

∂t
= γ i

t (ψ i (x, t), t) + γ i
x (ψ

i (x, t), t)ψ i
t (x, t)

= γ i
xx(ψ

i (x, t), t)

|γ i
x (ψ

i (x, t), t)|2 + γ i
x (ψ

i (x, t), t)
ψ i

xx(x, t)

|γ i
x (ψ

i (x, t), t)|2|ψ i
x(x, t)|2

= γ i
xx(ψ

i (x, t), t)|ψ i
x(x, t)|2 + γ i

x (ψ
i (x, t), t)ψ i

xx(x, t)

|γ i
x (ψ(x, t), t)|2|ψ i

x(x, t)|2

= (γ i (ψ i (x, t), t))xx

|(γ i (ψ i (x, t), t))x |2 = θ i
xx(x, t)

|θ i
x(x, t)|2 .

Then, since such functions θ i and ηi satisfy both system (3.1) and they take the
same initial data at time t = 0, they must coincide on [0, T ′), by the uniqueness
of the solution in C2+2α,1+α proved by Bronsard and Reitich in [11].

At the maximal time T ′ it has to happen that ψ i
x is no more bounded

away from zero or the C2+2α norm of ψ i (·, t) is not bounded from above, but
a simple computation shows that then the same holds for θ i hence also for ηi ,
which is smooth and regular on [0, T ).

This clearly implies that T ′ = T and that the triods T
1
t and T

2
t are the

same subset of R
2 for every time t in the interval [0, T ).

Remark 3.4. This proposition clearly sets positively the question about
the geometric uniqueness of the flow of a smooth triod. Actually, we do not
know if, at least in this special initial case, uniqueness holds also in the class
of smooth Brakke flows with equality.

Clearly, if a triod is geometrically smooth but not smooth, we can reparame-
trize it and apply Theorem 3.1 in order to get a smooth flow (which is a smooth
Brakke flow with equality).

Now in order to improve these results and to study the global existence and
regularity of the evolution in the next sections, we work out a priori estimates
for ki , λi and their derivatives.

Remark 3.5. Sometimes we will consider time depending functions, defined
as the maximum of a geometric quantity over the triods, in order to get estimates
by means of ODE’s and maximum principle arguments. Even if the evolution
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is smooth, such functions will be typically only Lipschitz, hence they can fail
to be differentiable at some times, so there will be a little misuse of notation
in writing a derivative that possibly does not exist at every time. However,
the arguments used, which are pointwise and apparently affected by the lack
of differentiability, still work also in this situation, as explained in details by
Hamilton in [21, Sections 3 and 4].

We fix some non standard notation for the computations in the sequel.
We denote with pσ (∂ j

s λ, ∂h
s k) a polynomial in λ, . . . , ∂ j

s λ and k, . . . , ∂h
s k

with constant coefficients, such that every monomial it contains is of the form

C
j∏

l=0

(∂ l
sλ)αl ·

h∏
l=0

(∂ l
sk)βl with

j∑
l=0

(l + 1)αl +
h∑

l=0

(l + 1)βl = σ ,

we will call σ the geometric order of pσ .
Moreover, if one of the two arguments of pσ does not appear, it means

that the polynomial does not contain it, for instance, pσ (∂h
s k) does not contain

neither λ nor its derivatives.
We denote with qσ (∂

j
t λ, ∂h

s k) a polynomial as before in λ, . . . , ∂
j

t λ and
k, . . . , ∂h

s k such that all its monomials are of the form

C
j∏

l=0

(∂ l
t λ)αl ·

h∏
l=0

(∂ l
sk)βl with

j∑
l=0

(2l + 1)αl +
h∑

l=0

(l + 1)βl = σ .

Finally, when we will write pσ (|∂ j
s λ|, |∂h

s k|) (or qσ (|∂ j
t λ|, |∂h

s k|)) we will mean
a finite sum of terms like

C
j∏

l=0

|∂ l
sλ|αl ·

h∏
l=0

|∂ l
sk|βl with

j∑
l=0

(l + 1)αl +
h∑

l=0

(l + 1)βl = σ ,

where C is a positive constant and the exponents αl, βl are non negative real
values (analogously for qσ ).

Clearly we have pσ (∂ j
s λ, ∂h

s k) ≤ pσ (|∂ j
s λ|, |∂h

s k|).
Remark 3.6. We advise the reader that in the following computations

these polynomials can vary from one line to another, by addition of similar
terms, what has to be kept in mind is that the coefficients and the number of
monomials they contains are independent of k, λ and their derivatives, since
they arise by the algorithmic construction of the polynomials.

We will often denote with C a generic constant which also can vary from
one passage to another.

We will make extensive use of Young inequality in the following form

ab ≤ εa p + C(ε, p, q)bq for a, b, ε < 0, p, q ∈ (1, ∞) and 1/p + 1/q = 1.
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Lemma 3.7. The following formulas hold

∂t∂
j

s k = ∂ j+2
s k + λ∂ j+1

s k + pj+3(∂
j

s k) for every j ∈ N,

∂ j
s k = ∂

j/2
t k + qj+1(∂

j/2−1
t λ, ∂ j−1

s k) if j ≥ 2 is even,(3.3)

∂ j
s k = ∂

( j−1)/2
t ks + qj+1(∂

( j−3)/2
t λ, ∂ j−1

s k) if j ≥ 1 is odd.

Proof. The case j = 0 of the first formula is equation (2.6). Suppose that
the formula holds for ( j − 1), using the commutation rule (23) we have

∂t∂
j

s k = ∂s∂t∂
j−1

s k + (k2 − λs)∂
j

s k

= ∂s[∂ j+1
s k + λ∂ j

s k + pj+2(∂
j−1

s k)] − λs∂
j

s k + pj+3(∂
j

s k)

= ∂ j+2
s k + λs∂

j
s k + λ∂ j+1

s k + pj+3(∂
j

s k) − λs∂
j

s k + pj+3(∂
j

s k)

= ∂ j+2
s k + λ∂ j+1

s k + pj+3(∂
j

s k)

which gives the inductive step.
The second formula also follows by induction. The case j = 2 is again

equation (2.6). If the case ( j − 2) holds, then by the first formula,

∂ j
s k = ∂t∂

j−2
s k − λ∂ j−1

s k + pj+1(∂
j−2

s k) = ∂t [∂
j/2−1

t k + qj−1(∂
j/2−2

t λ, ∂ j−3
s k)]

= ∂
j/2

t k + ∂tqj−1(∂
j/2−2

t λ, ∂ j−3
s k) .

Now, when we differentiate in t the term qj−1(∂
j/2−2

t λ, ∂ j−3
s k) we will get a

polynomial in λ, . . . , ∂
j/2−1

t λ, k, . . . ∂ j−1
s k and time derivatives of space deriva-

tives of k. Using the first formula we can express these latter as polynomials
in λ and space derivatives of k, up to the order ∂ j−1

s k. Moreover, it is easy to
check that the resulting polynomial is of the form qj+1(∂

j/2−1
t λ, ∂ j−1

s k), hence
the formula for j is proved.

The odd case is analogous.

Lemma 3.8. The following formulas hold

∂t∂
j

s λ = ∂ j+2
s λ − λ∂ j+1

s λ − 2k∂ j+1
s k + pj+3(∂

j
s λ, ∂ j

s k) for every j ∈ N,

∂ j
s λ = ∂

j/2
t λ + pj+1(∂

j−1
s λ, ∂ j−1

s k) if j ≥ 2 is even,

∂ j
s λ = ∂

( j−1)/2
t λs + pj+1(∂

j−1
s λ, ∂ j−1

s k) if j ≥ 1 is odd.

Proof. The case j = 0 of the first formula is equation (2.7), then the proof
follows as for k in the previous lemma.
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Remark 3.9. We state the following calculus rules which will be used
extensively in the sequel,

pα(∂ j
s λ, ∂h

s k) · pβ(∂ l
sλ, ∂m

s k) = pα+β(∂max{ j,l}
s λ, ∂max{h,m}

s k) ,

qα(∂
j

t λ, ∂h
s k) · qβ(∂ l

t λ, ∂m
s k) = qα+β(∂

max{ j,l}
t λ, ∂max{h,m}

s k) .

Since the time derivatives of k and λ and their space derivatives can be expressed
in terms of these latter, by means of Lemmas 3.7 and 3.8, we have

∂ l
spα(∂ j

s λ, ∂h
s k) = pα+l(∂

j+l
s λ, ∂h+l

s k) , ∂ l
t pα(∂ j

s λ, ∂h
s k) = pα+2l(∂

j+2l
s λ, ∂h+2l

s k)

∂ l
t qα(∂

j
t λ, ∂h

s k) = qα+2l(∂
j+l

t λ, ∂h+2l
s k) , qα(∂

j
t λ, ∂h

s k) = pα(∂2 j
s λ, ∂max{h,2 j−1}

s k).

Moreover, by relations (2.9), at the 3-point ∂
j

t λi = (S∂
j

t K)i , that is, the time
derivatives of λi are expressible as time derivatives of the functions ki . Then,
by using repeatedly such relation and the first formula of Lemma 3.7, we can
express these latter as space derivatives of ki . Hence, we have the relation

3∑
i=1

qσ (∂
j

t λi , ∂h
s ki )

∣∣∣∣
at the 3-point

= pσ (∂max{2 j,h}
s K)

∣∣∣∣
at the 3-point

with the meaning that this last polynomial contains also product of derivatives
of different ki ’s, because of the action of the linear operator S : R

3 → R
3.

We will often make use of this identity in the computations in the sequel
in the following form,

3∑
i=1

qσ (∂
j

t λi , ∂h
s ki )

∣∣∣∣
at the 3-point

≤ ‖pσ (|∂max{2 j,h}
s k|)‖L∞ .

Before proceeding we prove also a relation holding at the end points.

Lemma 3.10. At the three end points Pi there holds ∂ j
s ki = ∂ j

s λi = 0, for
every even j ∈ N.

Proof. The first case j = 0 simply follows from the fact that the velocity
v = λτ + kν is always zero at the three fixed end points Pi .

We argue by induction, we suppose that for every even natural l ≤ j − 2
we have ∂ l

ski = ∂ l
sλ

i = 0, then, by using the first equation in Lemma 3.7, we
get

∂ j
s ki = ∂t∂

j−2
s ki − λi∂ j−1

s ki − pj+1(∂
j−2

s ki )

at the points Pi .
We already know that λi = 0 and by the inductive hypothesis ∂ j−2

s ki = 0,
thus ∂t∂

j−2
s ki = 0. Since pj+1(∂

j−2
s ki ) is a sum of terms like C

∏ j−2
l=0 (∂ l

ski )αl

with
∑ j−2

l=0 (l + 1)αl = j + 1 which is odd, at least one of the terms of this
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sum has to be odd, hence at least for one index l, the product (l + 1)αl is odd.
It follows that at least for one even l the exponent αl is nonzero. Hence, at
least one even derivatives is present in every monomial of pj+1(∂

j−2
s ki ), which

contains only derivatives up to the order ( j − 2).
Again, by the inductive hypothesis we then conclude that at the end points

∂ j
s ki = 0.

We can deal with λi similarly, by means of the first equation of Lem-
ma 3.8.

Taking into account that the time derivative of the measure ds is given by
(λs − k2) ds and using the first relation of Lemma 3.7, we compute for j ∈ N

(3.4)

d

dt

∫
Tt

|∂ j
s k|2 ds = 2

∫
Tt

∂ j
s k ∂t∂

j
s k ds +

∫
Tt

|∂ j
s k|2(λs − k2) ds

= 2
∫

Tt

∂ j
s k ∂ j+2

s k + λ∂ j+1
s k ∂ j

s k + pj+3(∂
j

s k) ∂ j
s k ds

+
∫

Tt

|∂ j
s k|2(λs − k2) ds

= −2
∫

Tt

|∂ j+1
s k|2 ds +

∫
Tt

∂s(λ|∂ j
s k|2) ds

+
∫

Tt

p2 j+4(∂
j

s k) ds − 2
3∑

i=1

∂ j
s ki ∂ j+1

s ki
∣∣∣∣

at the 3-point

+ 2
3∑

i=1

∂ j
s ki ∂ j+1

s ki
∣∣∣∣

at the point Pi

= −2
∫

Tt

|∂ j+1
s k|2 ds +

∫
Tt

p2 j+4(∂
j

s k) ds

−
3∑

i=1

2∂ j
s ki ∂ j+1

s ki + λi |∂ j
s ki |2

∣∣∣∣
at the 3-point

where we integrated by parts a couple of times and we eliminated the contri-
butions given by the end points Pi by means of Lemma 3.10.

In the very special (and important as we will see) case j = 0 we get
explicitly

d

dt

∫
Tt

k2 ds = −2
∫

Tt

|ks |2 ds +
∫

Tt

k4 ds −
3∑

i=1

2ki ki
s + λi (ki )2

∣∣∣∣
at the 3-point

.

Then, recalling relation (2.10) with l, m =0, we have

3∑
i=1

ki ki
s + λi (ki )2

∣∣
at the 3-point = 0 ,
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and substituting in the last term above,

(3.5)
d

dt

∫
Tt

k2 ds = −2
∫

Tt

|ks |2 ds +
∫

Tt

k4 ds +
3∑

i=1

λi (ki )2
∣∣∣∣

at the 3-point

hence, we lowered the maximum order of the space derivatives of the curvature
in the 3-point term, particular now it is lower than the one of the “nice” negative
integral.

Now we are going to do the same for the general case, when j ≥ 2 is
even.

By means of formulas (3.3) we have

2∂ j
s k ∂ j+1

s k + λ|∂ j
s k|2

= 2[∂ j/2
t k + qj+1(∂

j/2−1
t λ, ∂ j−1

s k)] · [∂ j/2
t ks + qj+2(∂

j/2−1
t λ, ∂ j

s k)]

+ q2 j+3(λ, ∂ j
s k)

= 2[∂ j/2
t k + qj+1(∂

j/2−1
t λ, ∂ j−1

s k)] · [∂ j/2
t (ks + kλ) + qj+2(∂

j/2
t λ, ∂ j

s k)]

+ q2 j+3(λ, ∂ j
s k)

= 2∂
j/2

t k · ∂
j/2

t (ks + kλ) + ∂
j/2

t k · qj+2(∂
j/2

t λ, ∂ j
s k)

+ qj+1(∂
j/2−1

t λ, ∂ j−1
s k) · ∂

j/2
t (ks + kλ)

+ qj+1(∂
j/2−1

t λ, ∂ j−1
s k) · qj+2(∂

j/2
t λ, ∂ j

s k) + q2 j+3(λ, ∂ j
s k)

= 2∂
j/2

t k · ∂
j/2

t (ks + kλ) + qj+1(∂
j/2−1

t λ, ∂ j−1
s k) · ∂

j/2
t ks

+ q2 j+3(∂
j/2

t λ, ∂ j
s k) .

We now examine the term qj+1(∂
j/2−1

t λ, ∂ j−1
s k)·∂ j/2

t ks , which contains ( j +1)-th
space derivatives of k (after expansion of the j/2-th time derivative of ks).

By using the third relation of Lemma 3.7, it can be written as

qj+1(∂
j/2−1

t λ, ∂ j−1
s k) · ∂t [∂

j−1
s k + qj (∂

j/2−2
t λ, ∂ j−2

s k)]

= qj+1(∂
j/2−1

t λ, ∂ j−1
s k) · [∂t∂

j−1
s k + qj+2(∂

j/2−1
t λ, ∂ j

s k)]

= qj+1(∂
j/2−1

t λ, ∂ j−1
s k) · ∂t∂

j−1
s k + q2 j+3(∂

j/2−1
t λ, ∂ j

s k) ,

moreover, if we look at the polynomial qj+1(∂
j/2−1

t λ, ∂ j−1
s k), we can see that

among its monomials, only those of the form Aλ∂ j−1
s k or Bk∂ j−1

s k can contain
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the derivative ∂ j−1
s k (because of the geometric order of p2k+1). Hence,

qj+1(∂
j/2−1

t λ, ∂ j−1
s k) · ∂

j/2
t ks

= [qj+1(∂
j/2−1

t λ, ∂ j−2
s k) + Aλ∂ j−1

s k + Bk∂ j−1
s k] · ∂t∂

j−1
s k

+ q2 j+3(∂
j/2−1

t λ, ∂ j
s k)

= (Aλ∂ j−1
s k + Bk∂ j−1

s k) · ∂t∂
j−1

s k + q2 j+3(∂
j/2−1

t λ, ∂ j
s k)

+ ∂t [qj+1(∂
j/2−1

t λ, ∂ j−2
s k)∂ j−1

s k] − ∂tqj+1(∂
j/2−1

t λ, ∂ j−2
s k)∂ j−1

s k

= (Aλ + Bk)∂t (∂
j−1

s k/2)2 + ∂tq2 j+1(∂
j/2−1

t λ, ∂ j−1
s k) + q2 j+3(∂

j/2
t λ, ∂ j

s k)

= ∂t [(Aλ + Bk)(∂ j−1
s k/2)2] − (A∂tλ + B∂t k)(∂ j−1

s k/2)2

+ ∂tq2 j+1(∂
j/2−1

t λ, ∂ j−1
s k) + q2 j+3(∂

j/2
t λ, ∂ j

s k)

= ∂tq2 j+1(∂
j/2−1

t λ, ∂ j−1
s k) + q2 j+3(∂

j/2
t λ, ∂ j

s k) .

It follows that
3∑

i=1

2∂ j
s ki ∂ j+1

s ki + λi |∂ j
s ki |2λ

∣∣∣∣
at the 3-point

=
3∑

i=1

2∂
j/2

t ki · ∂
j/2

t (ki
s + kiλi )

+ ∂tq2 j+1(∂
j/2−1

t λi , ∂ j−1
s ki ) + q2 j+3(∂

j/2
t λi , ∂ j

s ki )

∣∣∣∣
at the 3-point

=
3∑

i=1

∂tq2 j+1(∂
j/2−1

t λi , ∂ j−1
s ki ) + q2 j+3(∂

j/2
t λi , ∂ j

s ki )

∣∣∣∣
at the 3-point

by relations (2.10).
Resuming, if j ≥ 2 is even, we have

(3.6)

d

dt

∫
Tt

|∂ j
s k|2 ds = −

∫
Tt

|∂ j+1
s k|2 ds +

∫
Tt

p2 j+4(∂
j

s k) ds

+
3∑

i=1

∂tq2 j+1(∂
j/2−1

t λi , ∂ j−1
s ki )

+ q2 j+3(∂
j/2

t λi , ∂ j
s ki )

∣∣∣∣
at the 3-point

.

Now, the key tool to estimate the terms∫
Tt

p2 j+4(∂
j

s k) ds and
3∑

i=1

q2 j+3(∂
j/2

t λi , ∂ j
s ki )

∣∣
at the 3-point

are the following Gagliardo-Nirenberg interpolation inequalities (see [2], [8], for
instance).
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Proposition 3.11. Let γ be a smooth regular curve in R
2 with finite length L. If

u is a smooth function defined on γ and m ≥ 1, p ∈ [2, +∞], we have the estimates

(3.7) ‖∂n
s u‖L p ≤ Cn,m,p‖∂m

s u‖σ

L2‖u‖1−σ

L2 + Bn,m,p

Lmσ
‖u‖L2

for every n ∈ {0, . . . , m − 1} where

σ = n + 1/2 − 1/p

m

and the constants Cn,m,p and Bn,m,p are independent of γ .

Remark 3.12. We put in evidence the particular case p = +∞,

(3.8) ‖∂n
s u‖L∞ ≤ Cn,m‖∂m

s u‖σ

L2‖u‖1−σ

L2 + Bn,m

Lmσ
‖u‖L2 with σ = n + 1/2

m
.

It clearly follows that for a family of curves with lengths equibounded from
below by some positive value, these inequalities hold with uniform constants.

Every monomial of p2 j+4(∂
j

s k) is of the form C
∏ j

l=0(∂
l
sk)αl with

∑ j
l=0(l +

1)αl = 2 j + 4, then we estimate its integral by means of Hölder inequality,

C
∫

Tt

j∏
l=0

(∂ l
sk)αl ds ≤ C

j∏
l=0

(∫
Tt

|∂ l
sk|αlβl

)1/βl

ds = C
j∏

l=0

‖∂ l
sk‖αl

Lαlβl

where the exponents βl satisfy
∑

1/βl = 1 and αlβl > 2 for every l ∈ {0, . . . , j}
such that αl �= 0. These conditions can be fulfilled choosing βl = 2 j+4

(l+1)αl
, then

αlβl = (2 j+4)/(l+1) > 2 since l ≤ j and
∑

1/βl = ∑ j
l=0(l+1)αl/(2 j+4) = 1.

Notice that the constant C depends only on the structure of the polynomial
p2 j+4(∂

j
s k), that is, only on j ∈ N.

Putting n = l, m = j + 1, p = αlβl and u = k in inequality (3.7) we get

‖∂ l
sk‖Lαlβl ≤ Cl

(
‖∂ j+1

s k‖σl
L2‖k‖1−σl

L2 + ‖k‖L2

)
with σl = l+1/2−1/(αlβl )

j+1 for every l ∈ {0, . . . , j} and the constants Cl depend
only on the lengths of the curves.

Hence, since the number of monomials of p2 j+4(∂
j

s k) depends only on
j ∈ N,

∫
Tt

p2 j+4(∂
j

s k) ds ≤ C
j∏

l=0

(
‖∂ j+1

s k‖L2 + ‖k‖L2

)σlαl ‖k‖(1−σl )αl
L2

≤ C
(
‖∂ j+1

s k‖L2 + ‖k‖L2

)∑ j
l=0 σlαl ‖k‖

∑ j
l=0(1−σl )αl

L2 .
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Now we have

j∑
l=0

σlαl =
j∑

l=0

αl
l + 1/2 − 1/(αlβl)

j + 1
=

j∑
l=0

(l + 1/2)αl − 1/βl

j + 1

= −1 + ∑ j
l=0(l + 1)αl − 1/2αl

j + 1
= 2 j + 3 − 1/2

∑ j
l=0 αl

j + 1

≤ 2 j + 3 − 1/2
∑ j

l=0 αl(l + 1)/( j + 1)

j + 1
= 2 j + 3 − (2 j + 4)/2( j + 1)

j + 1

= 2 j + 3 − 1 − 1/( j + 1)

j + 1
= 2 − 1

( j + 1)2
< 2

then, by Young inequality,

(
‖∂ j+1

s k‖L2 + ‖k‖L2

)∑ j
l=0 σlαl ‖k‖

∑ j
l=0(1−σl )αl

L2 ≤ ε
(
‖∂ j+1

s k‖L2 + ‖k‖L2

)2

+ C‖k‖
2

∑ j
l=0(1−σl )αl

2−
∑ j

l=0 σlαl

L2

and this last exponent is equal to

2

∑ j
l=0(1 − σl)αl

2 − ∑ j
l=0 σlαl

= 2

∑ j
l=0 αl − 2 j+3−1/2

∑ j
l=0 αl

j+1

2 − 2 j+3−1/2
∑ j

l=0 αl
j+1

= 2
( j + 1)

∑ j
l=0 αl − 2 j − 3 + 1/2

∑ j
l=0 αl

2 j + 2 − 2 j − 3 + 1/2
∑ j

l=0 αl

= 2
−2 j − 3 + ( j + 3/2)

∑ j
l=0 αl

−1 + 1/2
∑ j

l=0 αl

= 2(2 j + 3) .

Choosing a value ε > 0 small enough and controlling, via interpolation again,
the term ‖k‖2

L2 , we conclude

∫
Tt

p2 j+4(∂
j

s k) ds ≤ 1/4
∫

Tt

|∂ j+1
s k|2 ds + C

(∫
Tt

k2 ds
)2 j+3

+ C

where the constant C depends only on j ∈ N and the lengths of the curves of
the triod.

The term
∑3

i=1 q2 j+3(∂
j/2

t λi , ∂ j
s ki )

∣∣
at the 3-point can be estimated similarly.

Taking into account Remark 3.9, we have
∑3

i=1 q2 j+3(∂
j/2

t λi , ∂ j
s ki )

∣∣
at the 3-point ≤
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‖p2 j+3(|∂ j
s k|)‖L∞ and this latter can be controlled with a sum of terms like

C
∏ j

l=0 ‖∂ l
sk‖αl

L∞ with
∑ j

l=0(l + 1)αl = 2 j + 3.
Then, we use interpolation inequalities with p = +∞,

‖∂ l
sk‖L∞ ≤ Cl

(
‖∂ j+1

s k‖σl
L2‖k‖1−σl

L2 + ‖k‖L2

)
with σl = l+1/2

j+1 , hence

3∑
i=1

q2 j+3(∂
j/2

t λi , ∂ j
s ki )

∣∣∣∣
at the 3-point

≤C
j∏

l=0

(
‖∂ j+1

s k‖L2 + ‖k‖L2

)σlαl ‖k‖(1−σl )αl
L2

≤C
(
‖∂ j+1

s k‖L2 +‖k‖L2

) j∑
l=0

σlαl

‖k‖

j∑
l=0

(1−σl )αl

L2

and
j∑

l=0

σlαl =
j∑

l=0

αl
l + 1/2

j + 1
=

j∑
l=0

(l + 1/2)αl

j + 1

=
∑ j

l=0(l + 1)αl − 1/2αl

j + 1
= 2 j + 3 − 1/2

∑ j
l=0 αl

j + 1

≤ 2 j + 3 − 1/2
∑ j

l=0 αl(l + 1)/( j + 1)

j + 1
= 2 j + 3 − (2 j + 3)/2( j + 1)

j + 1

= 2 j + 3 − 1 − 1/2( j + 1)

j + 1
= 2 − 1

2( j + 1)2
< 2 .

As before, by Young inequality,(
‖∂ j+1

s k‖L2 + ‖k‖L2

)∑ j
l=0 σlαl ‖k‖

∑ j
l=0(1−σl )αl

L2 ≤ ε
(
‖∂ j+1

s k‖L2 + ‖k‖L2

)2

+ C‖k‖
2

∑ j
l=0(1−σl )αl

2−
∑ j

l=0 σlαl

L2

and the last exponent is again equal to 2(2 j + 3). Choosing here also a value
ε > 0 small enough, we get an estimate analogous to the previous one.

Hence, for every even j ≥ 2 we can finally write

(3.9)

d

dt

∫
Tt

|∂ j
s k|2 ds ≤ −1/2

∫
Tt

|∂ j+1
s k|2 ds + C

(∫
Tt

k2 ds
)2 j+3

+ C

+ ∂t

3∑
i=1

q2 j+1(∂
j/2−1

t λi , ∂ j−1
s ki )

∣∣∣∣
at the 3-point

≤ C
(∫

Tt

k2 ds
)2 j+3

+ C

+ ∂t

3∑
i=1

q2 j+1(∂
j/2−1

t λi , ∂ j−1
s ki )

∣∣∣∣
at the 3-point

.



MOTION BY CURVATURE OF PLANAR NETWORKS 263

Recalling the computation in the special case special case j = 0, this argument
gives the same final estimate without the the last term.

(3.10)
∣∣∣∣ d

dt

∫
Tt

k2 ds

∣∣∣∣ ≤ C
(∫

Tt

k2 ds
)3

+ C .

Integrating (3.9) in time on [0, t] and estimating we get

∫
Tt

|∂ j
s k|2 ds ≤

∫
T0

|∂ j
s k|2 ds + C

∫ t

0

(∫
Tξ

k2 ds

)2 j+3

dξ + Ct

+
3∑

i=1

q2 j+1(∂
j/2−1

t λi (0, t), ∂ j−1
s ki (0, t))

− q2 j+1(∂
j/2−1

t λi (0, 0), ∂ j−1
s ki (0, 0))

≤ C
∫ t

0

(∫
Tξ

k2 ds

)2 j+3

dξ + ‖p2 j+1(|∂ j−1
s k|)‖L∞ + Ct + C

where in the last passage we used as before Remark 3.9. The constant C
depends only on j ∈ N and the triod T0.

Interpolating again by means of inequalities (3.8) (we leave the details to
the reader), one gets

‖p2 j+1(|∂ j−1
s k|)‖L∞ ≤ 1/2‖∂ j

s k‖2
L2 + C‖k‖4 j+2

L2 .

Hence, putting all together, for every even j ∈ N.

∫
Tt

|∂ j
s k|2 ds ≤ C

∫ t

0

(∫
Tξ

k2 ds

)2 j+3

dξ + C
(∫

Tt

k2 ds
)2 j+1

+ Ct + C .

Passing from integral to L∞ estimates by using inequalities (3.8), we have the
following proposition.

Proposition 3.13. If the lengths of the three curves are bounded away from
zero and the L2 norm of k is bounded, uniformly on [0, T ), then the curvature of Tt

and all its space derivatives of are uniformly bounded in the same time interval by
some constants depending only on the L2 integrals of the space derivatives of k on
the initial triod T0.

Now in the hypotheses of this proposition we deal with λ and its derivatives.
At the 3-point

∑3
i=1(λ

i )2 = ∑3
i=1(k

i )2, hence the squared modulus of the
velocity v2 = |v|2 is uniformly bounded at O .

Then, since γ i
t (1, t) = vi (1, t) = 0 for every index i ∈ {1, 2, 3}, by the

maximum principle applied to the equation for v2,

∂tv
2 = (v2)ss − 2λ2

s − 2k2
s − λ(v2)s + 2v2k2
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which follows from equation (2.7)

∂tλ = λss − λλs − 2kks + λk2

and equation (2.6), we see that if v2 gets larger than its value at the 3-point,
then its maximum is taken in the interior of some curve of the triod so, as k2

is uniformly bounded,

∂tv
2
max ≤ 2v2

maxk2
max ≤ Cv2

max .

Integrating this linear differential inequality, we obtain that v and hence λ are
also uniformly bounded as k and its derivatives in the time interval [0, T ).

By Lemma 3.8 and computing like for k, we get

(3.11)

d

dt

∫
Tt

|∂ j
s λ|2 ds = −2

∫
Tt

|∂ j+1
s λ|2 ds − 2

∫
Tt

λ∂ j
s λ∂ j+1

s λ

+ 2k∂ j
s λ∂ j+1

s k ds +
∫

Tt

p2 j+4(∂
j

s λ, ∂ j
s k) ds

− 2
3∑

i=1

∂ j
s λi ∂ j+1

s λi
∣∣∣∣

at the 3-point

+ 2
3∑

i=1

∂ j
s λi ∂ j+1

s λi
∣∣∣∣

at the point Pi

≤ −
∫

Tt

|∂ j+1
s λ|2 ds +

∫
Tt

p2 j+4(∂
j

s λ, ∂ j
s k) ds

+
∫

Tt

|∂ j+1
s k|2 ds

− 2
3∑

i=1

∂ j
s λi ∂ j+1

s λi
∣∣∣∣

at the 3-point

≤ −
∫

Tt

|∂ j+1
s λ|2 ds +

∫
Tt

r2 j+4(|∂ j
s λ|) + C

− 2
3∑

i=1

∂ j
s λi ∂ j+1

s λi
∣∣∣∣

at the 3-point

where in the first passage we used Peter-Paul inequality ab ≤ εa2 + b2/4ε with
ε = 1/2, a = ∂ j+1

s λ and b = λ∂ j
s λ on the first term of the second integral,

and with ε = 1/2, a = ∂ j+1
s k and b = k∂ j

s λ on the second term of the second
integral. Then, we summed and absorbed the terms without ( j+1)-th derivatives
into p2 j+4(∂

j
s λ, ∂ j

s k).
In the second passage, using Young inequality, we “separated” in all the

monomials of p2 j+4(∂
j

s λ, ∂ j
s k) the derivatives of λ and k, controlling them with
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r2 j+4(|∂ j
s λ|) + r2 j+4(|∂ j

s k|), where r2 j+4 denotes a “polynomial” (similar to p

and q) with real exponents all greater or equal than 1.
Then we estimated the term r2 j+4(|∂ j

s k|) with some constant, as we know
that k and its space derivatives are bounded. Notice that the number of mono-
mials of p2 j+4(∂

j
s λ, ∂ j

s k) depends only on j ∈ N.
Finally, the contributions of the end points Pi vanish by Lemma 3.10, since

at least one of the two derivatives of λ is even.
We estimate by interpolation, exactly like for k, the term

∫
Tt

r2 j+4(|∂ j
s λ|) ds

with a small fraction of the “good” term
∫

Tt
|∂ j+1

s λ|2 ds and a possibly large

multiple of
(∫

Tt
λ2 ds

)2 j+3
, which is bounded by the argument above.

Hence, it only remains to control the 3-point term

−2
3∑

i=1

∂ j
s λi ∂ j+1

s λi
∣∣∣∣

at the 3-point
≤ C

3∑
i=1

|∂ j
s λi | |∂ j+1

s λi |
∣∣∣∣

at the 3-point
.

Now, if j ∈ N is odd, by the second formula of Lemma 3.8,

∂ j+1
s λi = ∂

( j+1)/2
t λi + pj+2(∂

j
s λi , ∂ j

s ki )

thus, recalling that |∂( j+1)/2
t λi | ∣∣ at the 3-point ≤ ‖pj+2(|∂ j+1

s k|)‖L∞ by Remark 3.9,

|∂ j
s λi | |∂ j+1

s λi |
∣∣∣∣

at the 3-point
≤ |∂ j

s λi |
(
|∂( j+1)/2

t λi | + |pj+2(∂
j

s λi , ∂ j
s ki )|

) ∣∣∣∣
at the 3-point

≤ ‖∂ j
s λ‖L∞‖pj+2(|∂ j+1

s k|)‖L∞ +‖p2 j+3(|∂ j
s λ|, |∂ j

s k|)‖L∞

≤ ‖∂ j
s λ‖

2 j+3
j+1

L∞ + ‖pj+2(|∂ j+1
s k|)‖

2 j+3
j+2

L∞

+ ‖p2 j+3(|∂ j
s λ|, |∂ j

s k|)‖L∞

≤ ‖r2 j+3(|∂ j
s λ|)‖L∞ + C + ‖p2 j+3(|∂ j

s λ|, |∂ j
s k|)‖L∞

≤ ‖r2 j+3(|∂ j
s λ|)‖L∞ + C + ‖r2 j+3(|∂ j

s λ|)
+ r2 j+3(|∂ j

s k|)‖L∞

≤ ‖r2 j+3(|∂ j
s λ|)‖L∞ + C

where we used Young inequality and the fact that ‖pj+2(|∂ j+1
s k|)‖L∞ is uni-

formly bounded.
Moreover, we separated, as before, the derivatives of λ and k in every mono-

mial of p2 j+3(∂
j

s λ, ∂ j
s k), hence estimating them with r2 j+3(|∂ j

s λ|) +r2 j+3(|∂ j
s k|).

Finally, we controlled the k-terms with some constants and we can now inter-
polate the λ-terms like we did for k, since these latter do not contain ( j +1)-th
space derivatives of λ.

Hence, coming back to computation (3.11), we conclude that for every odd
j ∈ N

d

dt

∫
Tt

|∂ j
s λ|2 ds ≤ C < +∞

for a constant C depending only on j ∈ N and T0.
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Like for k, since we know that ‖λ‖L2 is bounded, passing from integral to
L∞ estimates by means of inequalities (3.8), we obtain that also all the space
derivatives of λ are uniformly bounded in [0, T ).

Then, we can bound from above and positively from below the term |γx |
at the denominator in the evolution equation (2.2).

∂t log |γx(x, t)| = 〈γx | γxt 〉
|γx |2 = 〈τ | ∂s(λτ + kν)〉 = λs − k2 ≤ C < +∞

for a constant C independent of x ∈ [0, 1] and t ∈ [0, T ). This implies that
|γx | is bounded from above and away from zero, uniformly in space and time
as ∣∣∣log |γx(x, t)|

∣∣∣ ≤
∫ t

0

∣∣∣∂t log |γx(x, ξ)|
∣∣∣ dξ ≤ Ct ≤ CT < +∞ .

Since |γx | is uniformly bounded and ∂x = |γx |∂s , by using the evolution equa-
tion (2.2), it follows that all the mixed derivatives in x and t of γ i for every
i ∈ {1, 2, 3} are uniformly bounded in [0, 1] × [0, T ).

Proposition 3.14. If Tt is a smooth evolution of the initial triod T0 = ∪3
i=1σ

i

such that the lengths of the three curves are uniformly bounded away from zero and
the L2 norm of the curvature is uniformly bounded by some constants in the time
interval [0, T ), then

• all the derivatives in space and time of k and λ are uniformly bounded in
[0, 1] × [0, T ),

• all the derivatives in space and time of the curves γ i (x, t) are uniformly bounded
in [0, 1] × [0, T ),

• the quantities |γ i
x (x, t)| are uniformly bounded from above and away from zero

in [0, 1] × [0, T ).

All the bounds depend only on the uniform controls on k and the lengths of the
curves, and on the L∞ norms of the derivatives of the maps σ i composing the initial
triod T0.

Now, we work out a second family of estimates where everything is con-
trolled only by the L2 norm of the curvature and the inverses of the lengths of
the three curves at time zero.

As before we consider the smooth evolution Tt of a smooth triod T0 in
the time interval [0, T ).

Proposition 3.15. For every M > 0 there exists a time TM ∈ (0, T ) such that
if the L2 norm of the curvature and the inverses of the lengths of the three curves of
T0 are bounded by M, then the L2 norm of k and the inverses of the lengths of the
curves of Tt are smaller than 2M2 + 6M, for every time t ∈ [0, TM ].
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Proof. The evolution equations for the lengths of the three curves are given

by d Li (t)
dt = −λi (0, t) − ∫

γ i (·,t) k2 ds (Proposition 3.2), then recalling computa-
tion (3.5), we have

d

dt

(∫
Tt

k2 ds+
3∑

i=1

1

Li

)
≤ −2

∫
Tt

k2
s ds +

∫
Tt

k4 ds + C‖k‖3
L∞ −

3∑
i=1

1

(Li )2

d L

dt

= −2
∫

Tt

k2
s ds +

∫
Tt

k4 ds + C‖k‖3
L∞ +

3∑
i=1

λi (0, t) + ∫
γ i (·,t) k2 ds

(Li )2

≤ −2
∫

Tt

k2
s ds +

∫
Tt

k4 ds + C‖k‖3
L∞ + C

3∑
i=1

‖k‖L∞

(Li )2
+

3∑
i=1

∫
Tt

k2 ds

(Li )2

≤ −2
∫

Tt

k2
s ds +

∫
Tt

k4 ds + C‖k‖3
L∞ + C

(∫
Tt

k2 ds
)3

+ C
3∑

i=1

1

(Li )3

where we used Young inequality in the last passage.
Interpolating as before (and applying again Young inequality) but keeping

now in evidence the terms depending on Li in inequalities (3.7) and (3.8), we
obtain

d

dt

(∫
Tt

k2 ds +
3∑

i=1

1

Li

)
≤ −

∫
Tt

k2
s ds + C

(∫
Tt

k2 ds
)3

+ C
3∑

i=1

(∫
Tt

k2 ds
)2

Li

+ C
3∑

i=1

(∫
Tt

k2 ds
)3/2

(Li )3/2
+ C

3∑
i=1

1

(Li )3

≤ C
(∫

Tt

k2 ds
)3

+ C
3∑

i=1

1

(Li )3

≤ C

(∫
Tt

k2 ds +
3∑

i=1

1

Li

)3

with a universal constant C independent of the triods.
This means that the function f (t) = ∫

Tt
k2 ds + ∑3

i=1
1

Li (t)
satisfies the

differential inequality f ′ ≤ C f 3, hence, after integration the thesis follows.

By means of this proposition we can strengthen the conclusion of Propo-
sition 3.14.

Corollary 3.16. In the hypothesis of the previous proposition, in the time
interval [0, TM ] all the bounds in Proposition 3.14 depends only on the L2 norm of
the curvature and the lengths of the curves of T0 = ∪3

i=1σ
i and on the L∞ norms of

the derivatives of the maps σ i .
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Then, from now on we assume that the L2 norm of the curvature and the
inverses of the lengths of the three curves are bounded in the interval [0, TM ].

Before dealing with the general estimate, we work out a special case as
an example.

By means of computations (3.4), we obtain

d

dt

∫
Tt

k2 + tk2
s + t2k2

ss

2
ds = −2

∫
Tt

k2
s + tk2

ss + t2k2
sss

2
ds +

∫
Tt

k2
s + tk2

ss ds

+
∫

Tt

k4 + tp6(ks) + t2
p8(kss) ds

+
3∑

i=1

λi (ki )2 − t[2ki
ski

ss + λi (ki
s)

2]

− t2[2ki
sski

sss + λi (ki
ss)

2]/2
∣∣∣∣

at the 3-point

= −
∫

Tt

k2
s + tk2

ss + t2k2
sss ds

+
∫

Tt

k4 + tp6(ks) + t2
p8(kss) ds

+
3∑

i=1

λi (ki )2 − t[2ki
ski

ss + λi (ki
s)

2]

− t2[2ki
sski

sss + λi (ki
ss)

2]/2
∣∣∣∣

at the 3-point
.

Estimating, as we did before in order to get inequality (3.9), the terms coming
from the integrals of k2 and t2k2

ss (the even terms) we get

d

dt

∫
Tt

k2 + tk2
s + t2k2

ss/2 ds ≤−1/2
∫

Tt

k2
s + tk2

ss + t2k2
sss ds

+
∫

Tt

tp6(ks) ds − t
3∑

i=1

2ki
ski

ss + λi (ki
s)

2
∣∣∣∣

at the 3-point

+ C
(∫

Tt

k2 ds
)3

+ Ct2
(∫

Tt

k2 ds
)7

+ C(1 + t2)

+ t2∂t

3∑
i=1

q5(λ
i , ki

s)

∣∣∣∣
at the 3-point

.

The integral term
∫

Tt
tp6(ks) ds and the term −t

∑3
i=1 λi (ki

s)
2

∣∣∣∣
at the 3-point

, which

is of type tq5(λ
i , ki

s), can be estimated by means of interpolation inequalities
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like in the even derivative case with a small fraction of the term t
∫

Tt
k2

ss

and a possibly large multiple of t
(∫

Tt
k2 ds

)5
. The same holds for the term

−2t
∑3

i=1 q5(λ
i , ki

s)

∣∣∣∣
at the 3-point

arising by putting t2 inside the time derivative

of the last sum. Finally since the L2 norm of k is bounded by some constant
and t ≤ TM , we conclude

d

dt

∫
Tt

k2 + tk2
s + t2k2

ss/2 ds ≤ −1/4
∫

Tt

k2
s + tk2

ss + t2k2
sss ds + C

+ ∂t

3∑
i=1

t2
q5(λ

i , ki
s)

∣∣∣∣
at the 3-point

− 2t
3∑

i=1

ki
ski

ss

∣∣∣∣
at the 3-point

.

The last term is the only one which needs a special analysis, so we deal with
it in the general case.

Considering now j ∈ N even and following exactly the same line, if we
differentiate the function

∫
Tt

k2 + tk2
s + t2k2

ss

2!
+ · · · + t j |∂ j

s k|2
j!

ds ,

and we estimate as above, we obtain

(3.12)

d

dt

∫
Tt

k2 + tk2
s + t2k2

ss

2!
+ · · · + t j |∂ j

s k|2
j!

ds

≤ −ε

∫
Tt

k2
s + tk2

ss + t2k2
sss + · · · + t j |∂ j+1

s k|2 ds + C

+ ∂t

3∑
i=1

t2
q5(λ

i , ki
s)

+ t4
q9(∂tλ

i , ki
sss) + · · · + t j

q2 j+1(∂
j/2−1

t λi , ∂ j−1
s ki )

∣∣∣∣
at the 3-point

+ C
3∑

i=1

tki
ski

ss + t3ki
ssski

ssss + · · · + t j−1∂ j−1
s ki ∂ j

s ki
∣∣∣∣

at the 3-point

in the time interval [0, TM ], where ε > 0 and C are two constants depending
only on the L2 norm of the curvature and the inverses of the lengths of the
three curves of T0.
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We deal now with the terms
∑3

i=1 th−1∂h−1
s ki∂h

s ki

∣∣∣∣
at the 3-point

with h ∈
{2, . . . , j} even (notice that this family contains the term tki

ski
ss of the case

j = 2 above). By formulas (3.3) we have

∂h−1
s k · ∂h

s k

= [∂h/2−1
t ks + qh(∂

h/2−2
t λ, ∂h−2

s k)] · [∂h/2
t k + qh+1(∂

h/2−1
t λ, ∂h−1

s k)]

= [∂h/2−1
t (ks + λk) + qh(∂

h/2−1
t λ, ∂h−2

s k)] · [∂h/2
t k + qh+1(∂

h/2−1
t λ, ∂h−1

s k)]

= ∂
h/2−1
t (ks + λk) · ∂

h/2
t k + ∂

h/2−1
t (ks + λk) · qh+1(∂

h/2−1
t λ, ∂h−1

s k)

+ qh(∂
h/2−1
t λ, ∂h−2

s k) · qh+1(∂
h/2−1
t λ, ∂h−1

s k) + ∂
h/2
t k · qh(∂

h/2−1
t λ, ∂h−2

s k)

= ∂
h/2−1
t (ks + λk) · ∂

h/2
t k + q2h+1(∂

h/2−1
t λ, ∂h−1

s k)

+ ∂
h/2
t k · qh(∂

h/2−1
t λ, ∂h−2

s k)

= ∂
h/2−1
t (ks + λk) · ∂

h/2
t k + q2h+1(∂

h/2−1
t λ, ∂h−1

s k)

+ [∂h
s k + qh+1(∂

h/2−1
t λ, ∂h−1

s k)] · qh(∂
h/2−1
t λ, ∂h−2

s k)

= ∂
h/2−1
t (ks + λk) · ∂

h/2
t k + q2h+1(∂

h/2−1
t λ, ∂h−1

s k)

+ ∂h
s k · qh(∂

h/2−1
t λ, ∂h−2

s k)

and since we are summing at the 3-point, the first product is zero by rela-
tions (2.10) and, by Remark 3.9, we get

3∑
i=1

th−1∂h−1
s ki∂h

s ki
∣∣∣∣

at the 3-point
=

3∑
i=1

th−1
q2h+1(∂

h/2−1
t λi , ∂h−1

s ki )

+ th−1∂h
s ki · qh(∂

h/2−1
t λi , ∂h−2

s ki )

∣∣∣∣
at the 3-point

≤ th−1‖p2h+1(|∂h−1
s k|)‖L∞

+ th−1‖∂h
s k‖L∞‖ph(|∂h−2

s k|)‖L∞ .

The term th−1‖p2h+1(|∂h−1
s k|)‖L∞ is controlled as before by a small fraction of

the term th−1
∫

Tt
|∂h

s k|2 ds and a possibly large multiple of th−1 times some power
of the L2 norm of k (which is bounded), whereas th−1‖∂h

s k‖L∞‖ph(|∂h−2
s k|)‖L∞

is the critical term.
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Again by means of interpolation inequalities (3.8) we have

‖∂h
s k‖L∞ ≤ C‖∂h+1

s k‖1/2
L2 ‖∂h

s k‖1/2
L2 + C‖∂h

s k‖L2

≤ C
(
‖∂h+1

s k‖1/2
L2 + C‖∂h

s k‖1/2
L2

)
‖∂h

s k‖1/2
L2

‖ph(|∂h−2
s k|)‖L∞ ≤ C‖∂h+1

s k‖σ

L2‖k‖
∑h−2

l=0 αl−σ

L2 + C‖k‖h
L2 ≤ C‖∂h+1

s k‖σ

L2 + C

≤ C
(
‖∂h+1

s k‖2
L2 + C

)σ/2

‖∂h
s k‖L2 ≤ C‖∂h+1

s k‖h/(h+1)

L2 ‖k‖1/(h+1)

L2 + C‖k‖L2

≤ C‖∂h+1
s k‖L2 + C

with σ =
h−2∑
l=0

(l+1/2)αl

h+1 as every monomial of ph(|∂h−2
s k|) is less than C

h−2∏
l=0

|∂ l
sk|αl .

Hence, putting together the first and third inequalities above,

‖∂h
s k‖L∞ ≤ C

(
‖∂h+1

s k‖2
L2 + C‖∂h

s k‖2
L2

)1/4 ‖∂h
s k‖1/2

L2

≤ C
(
‖∂h+1

s k‖2
L2 + C

)1/4 ‖∂h
s k‖1/2

L2

and multiplying this last with the second we get

th−1‖∂h
s k‖L∞‖ph(|∂h−2

s k|)‖L∞

≤ Cth−1
(
‖∂h+1

s k‖2
L2 + C

)σ/2+1/4 ‖∂h
s k‖1/2

L2

= Cth−1
(∫

Tt

|∂h+1
s k|2 ds + C

)∑h−2
l=0 (l+1/2)αl

2(h+1)
+ 1

4
(∫

Tt

|∂h
s k|2 ds

)1/4

= C

(
th
∫

Tt
|∂h+1

s k|2 ds + Cth
)∑h−2

l=0 (l+1/2)αl
2(h+1)

+ 1
4
(

th−1
∫

Tt
|∂h

s k|2 ds
)1/4

t1−h · t
h

∑h−2
l=0 (l+1/2)αl

2(h+1)
+ h

4 · t
h−1

4

= C

(
th
∫

Tt
|∂h+1

s k|2 ds + Cth
)∑h−2

l=0 (l+1/2)αl
2(h+1)

+ 1
4
(

th−1
∫

Tt
|∂h

s k|2 ds
)1/4

t
3/4−h/2+h

∑h−2
l=0 (l+1/2)αl

2(h+1)

.

Now, applying Young inequality, if we elevate to
(∑h−2

l=0 (l+1/2)αl
2(h+1)

+ 1
4

)−1

the

first term at the numerator, to 4 the second, as
∑h−2

l=0 (l + 1)αl = h, it follows
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that the exponent which, at the end, goes on t at the denominator is

θh =
(

3/4 − h/2 + h

∑h−2
l=0 (l + 1/2)αl

2(h + 1)

)(
1 −1/4 −

∑h−2
l=0 (l + 1/2)αl

2(h + 1)
− 1/4

)−1

=
(

3/4 − h/2 + h
h − 1/2

∑h−2
l=0 αl

2(h + 1)

)(
1/2 − h − 1/2

∑h−2
l=0 αl

2(h + 1)

)−1

= 3h + 3 − 2h2 − 2h + 2h2 − h
∑h−2

l=0 αl

4(h + 1)
· 4(h + 1)

2h + 2 − 2h + ∑h−2
l=0 αl

= h + 3 − h
∑h−2

l=0 αl

2 + ∑h−2
l=0 αl

= 3h + 3

2 + ∑h−2
l=0 αl

− h

and since
∑h−2

l=0 αl ≥ ∑h−2
l=0 αl

l+1
h−1 = h

h−1 = 1 + 1/(h − 1), we have

θh ≤ 2h − 3

3h − 2
= 1 − h + 1

3h − 2
< 1 for every even h ≥ 2.

Thus,

3∑
i=1

th−1∂h−1
s ki∂h

s ki
∣∣∣∣

at the 3-point
≤εh/2

(
th
∫

Tt

|∂h+1
s k|2ds+th−1

∫
Tt

|∂h
s k|2ds+Cth

)
+ C/tθh

with θh < 1 and εh > 0 which can be chosen arbitrarily small.
We apply this argument for every even h from 2 to j , choosing accurately

the values εj > 0.
Hence, we can continue estimate (3.12) as follows,

d

dt

∫
Tt

k2 + tk2
s + t2k2

ss

2!
+ · · · + t j |∂ j

s k|2
j!

ds

≤ −ε/2
∫

Tt

k2
s + tk2

ss + t2k2
sss + · · · + t j |∂ j+1

s k|2 ds + C + C/tθ2 + · · · + C/tθj

+∂t

3∑
i=1

t2
q5(λ

i ,ki
s)+t4

q9(∂tλ
i ,ki

sss)+ · · · +t j
q2 j+1(∂

j/2−1
t λi ,∂ j−1

s ki )

∣∣∣∣
at the 3-point

≤ C + C/tθ

+∂t

3∑
i=1

t2
q5(λ

i ,ki
s)+t4

q9(∂tλ
i ,ki

sss)+ · · · +t j
q2 j+1(∂

j/2−1
t λi ,∂ j−1

s ki )

∣∣∣∣
at the 3-point

for some θ < 1.
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Integrating this inequality in time on [0, t] with t ≤ TM and taking into
account Remark 3.9, we get∫

Tt

k2 + tk2
s + t2k2

ss

2!
+ · · · + t j |∂ j

s k|2
j!

ds

≤
∫

T0

k2 ds + CTM + CT (1−θ)
M +

3∑
i=1

t2
q5(λ

i , ki
s)

+ t4
q9(∂tλ

i , ki
sss) + · · · + t j

q2 j+1(∂
j/2−1

t λi , ∂ j−1
s ki )

∣∣∣∣
at the 3-point

≤
∫

T0

k2 ds + C + t2‖p5(|ks |)‖L∞

+ t4‖p9(|ksss |)‖L∞ + · · · + t j‖p2 j+1(|∂ j−1
s k|)‖L∞ .

Now we absorb all the polynomial terms, after interpolating each one of them
between the corresponding “good” integral in the left member and some power
of the L2 norm of k, as we did in showing Proposition 3.13, hence we finally
obtain for every even j ∈ N,∫

Tt

k2 + tk2
s + t2k2

ss

2!
+ · · · + t j |∂ j

s k|2
j!

ds ≤ Cj

with t ∈ [0, TM ] and a constant Cj depending only on
∫

T0
k2 ds and the inverses

of the lengths of the three curves at time zero.
This family of inequalities clearly implies∫

Tt

|∂ j
s k|2 ds ≤ Cj j!

t j
for every even j ∈ N.

Then, passing as before from integral to L∞ estimates by means of in-
equalities (3.8), we have the following proposition.

Proposition 3.17. For every µ > 0 the curvature and all its space derivatives
of Tt are uniformly bounded in the time interval [µ, TM ] (where TM is given by
Proposition 3.15) by some constants depending only on µ, the L2 norm of k of T0
and the inverses of the lengths of the three curves at time zero.

By means of these a priori estimates we can now work out some results
about the flow and improve Theorem 3.1.

Theorem 3.18. If [0, T ) is the maximal time interval of existence of a smooth
solution Tt with T < +∞ of Problem (2.1), then

(1) either the inferior limit of the length of at least one curve of Tt goes to zero
when t → T ,

(2) or limt→T
∫

Tt
k2 ds = +∞.

Moreover, if the lengths of the three curves are uniformly bounded away from zero,
then the superior limit in (2) is a limit and there exists a positive constant C such
that

∫
Tt

k2 ds ≥ C/
√

T − t → +∞ for every t ∈ [0, T ).
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Proof. If the three lengths are uniformly bounded away from zero and the
L2 norm of k is bounded, by Proposition 3.14 and Ascoli-Arzelà Theorem, the
triods Tt converge in C∞ to a smooth triod TT as t → T . Then, applying
Theorem 3.1 to TT we could restart the flow obtaining a smooth evolution on a
longer time interval, hence contradicting the maximality of the interval [0, T ).

By means of differential inequality (3.10), we have

d

dt

∫
Tt

k2 ds ≤ C
(∫

Tt

k2 ds
)3

+ C ≤ C
(

1 +
∫

Tt

k2 ds
)3

,

which, after integration between t, r ∈ [0, T ) with t < r , gives
1(

1 + ∫
Tt

k2 ds
)2 − 1(

1 + ∫
Tr

k2 ds
)2 ≤ C(r − t) .

Then, if case (1) does not hold, we can choose a sequence of times rj → T
such that

∫
Trj

k2 ds → +∞. Putting r = rj in the inequality above and passing

to the limit we get
1(

1 + ∫
Tt

k2 ds
)2 ≤ C(T − t)

hence, ∫
Tt

k2 ds ≥ C√
T − t

− 1 ≥ C√
T − t

→ +∞ ,

for some positive constant C .

This theorem obviously implies the following corollary.

Corollary 3.19. If [0, T ) is the maximal time interval of existence of a smooth
solution Tt with T < +∞ and the three lengths are uniformly bounded away from
zero, then

(3.13) max
Tt

k2 ≥ C√
T − t

→ +∞ ,

as t → T .

Remark 3.20. In the case of the evolution γt of a single closed curve in
the plane there exist a constant C > 0 such that if at time T > 0 a singularity
develops, then

max
γt

k2 ≥ C

T − t
for every t ∈ [0, T ) (see [25]).

If this lower bound on the rate of blowing up of the curvature (which is
clearly stronger than the one in inequality (3.13)) holds also in the case of the
evolution of a triod is an open problem.

Proposition 3.21. For every M > 0 there exists a positive time TM such that
if the L2 norm of the curvature and the inverses of the lengths of the smooth triod
T0 are bounded by M, then the maximal time of existence T > 0 of the associated
solution of Problem (2.1) with initial data T0 is larger than TM .
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Proof. By Proposition 3.15 in the interval [0, min{TM , T }) the L2 norm
of k and the inverses of the lengths of the three curves of Tt are bounded by
2M2 + 6M .

Then, by Theorem 3.18, the value min{TM , T } cannot coincide with the
maximal time of existence, hence T > TM .

By means of Proposition 3.17 we can now work out an existence result
for an initial triod T0 which is neither smooth nor geometrically smooth, but it
is only C2 and satisfies the 120 degrees condition.

Theorem 3.22. If T0 is a C2 initial triod (not necessarily geometrically smooth)

then there exists a Brakke flow with equality Tt of T0 for some positive time interval
[0, T ).

Moreover, the triods Tt are geometrically smooth for every time t > 0 and the
curvatures ki belong to C∞([0, 1] × (0, T )), hence the flow is a smooth Brakke flow
with equality for every positive time.

Finally, the unit tangents τ i are continuous in [0, 1] × [0, T ) and the function∫
Tt

k2 ds is continuous on [0, T ).

Proof. We can approximate in W 2,2(0, 1) (hence in C1([0, 1])) the triod
T0 = ∪3

i=1σ
i with a family of smooth triods Tj , composed of C∞ curves

σ i
j → σ i , as j → ∞ with

dσ i
j (0)

dx = dσ i (0)
dx and

d2σ i
j (0)

dx2 = 0.

By the convergence in W 2,2 and in C1, the inverses of the lengths of
the initial curves, the integrals

∫
Tj

k2 + λ2 ds and |∂xσ
i
j (x)| (from above and

away from zero) for all the approximating triods are equibounded, thus Propo-
sition 3.21 assures the existence of a uniform interval [0, T ) of existence of
smooth evolutions given by the curves γ i

j (x, t) : [0, 1] × [0, T ) → �.
Now, by the same reason, Proposition 3.17 gives uniform estimates on

the L∞ norms of the curvature and of all its derivatives in every rectangle
[0, 1] × [µ, T ), with µ > 0.

We can then select a subsequence (not relabelled) such that the curves γ i
j ,

after reparametrization proportional to arclength, converge to some γ i (x, t) :
[0, 1] × [0, T ) → � (composing the triods Tt ),

• uniformly in [0, 1] × [0, T ),
• in C∞ in every rectangle [0, 1] × [µ, T ), with µ > 0.

Moreover, since all the approximating flows are composed of smooth triods and
the curvatures converge smoothly, when t > 0 the triods Tt are geometrically
smooth (see Remark 2.7).

It is then an exercise to see that the unit tangents τ i are continuous functions
also at t = 0, that is, on all the rectangle [0, 1]× [0, T ) (by the uniform control
on ‖k‖L2 and Sobolev embedding theorem). Notice that, the continuity of γ i

also implies that the measures H1mTt weakly� converge to H1mT0, where H1

is the Hausdorff one-dimensional measure.
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Now we show that Tt = ∪3
i=1γ

i is a Brakke flow with equality. By the
smoothness of the flow for every positive time, we have only to check the
derivative d

dt

∫
Tt

ϕ ds at t = 0.
For every smooth positive test function ϕ : � × [0, T ) → R the functional∫

T
ϕk2 ds is lower semicontinuous in the convergence of the triods with their unit

tangents (see [34], moreover, integrating on [0, t) inequality (3.10) (forgetting
the absolute value), for the approximating flows γ i

j , and passing to the limit,
we see that the function

∫
Tt

k2 ds is actually continuous at t = 0. Then, by a
standard argument, it follows that also the functions

∫
Tt

ϕ k2 ds are continuous
at t = 0, for every positive ϕ, hence for every smooth function ϕ with compact
support in �.

Analogously, also the terms
∫

Tt
〈∇ϕ | k〉 ds and

∫
Tt

ϕt ds are continuous at
t = 0, hence integrating equation (2.11), satisfied by the approximating flows,
on [0, t) and then passing to the limit we get∫

Tt

ϕ ds−
∫

T0

ϕ ds =−
∫ t

0

∫
Tξ

ϕ k2 ds dξ+
∫ t

0

∫
Tξ

〈∇ϕ | k〉 ds dξ+
∫ t

0

∫
Tξ

ϕt ds dξ

which clearly says, by the fundamental theorem of calculus, that the derivative
d
dt

∫
Tt

ϕ ds exists at t = 0 and that Tt is a Brakke flow with equality.

Remark 3.23.
(1) The relevance of this theorem is that the initial triod is not required to

satisfy any compatibility condition, but only to have angles of 120 degrees,
in particular, it is not necessary that the sum of the three curvatures at its
3-point is zero.

(2) It should be noticed that if the three initial curves are C∞, the flow γ i

is smooth till t = 0 far from the 3-point, that is, in a closed rectangle
included in [0, 1]× [0, T )\ {(0, 0)} we can locally reparametrize the curves
to get a smooth flow also at t = 0.
This follows from the local estimates for the motion by curvature (see [17],
for instance).

(3) As we said in the introduction, the next important question is what can
be said if the initial triod does not satisfy the 120 degrees condition. One
would hope to have a suitable definition of evolution (possibly weak) such
that the 120 degrees condition is satisfied instantaneously, that is, at every
positive time, like it happens here for the geometrical smoothness.

(4) The uniqueness of the limit γ i is an open problem as well as its dependence
on the approximating procedure.
Even more important is the geometric uniqueness of such a Brakke flow
with continuous unit tangents, forgetting the parametrizations and looking
at the triods as subsets of R

2.
Finally, if the initial triod is smooth (or geometrically smooth) this flow
should be a reparametrization of the smooth evolution given by Theorem 3.1
(see Proposition 3.3).
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(5) We do not know if every Brakke flow with equality starting from a C2

initial triod T0, which becomes immediately smooth (possibly requiring
also the continuity of the unit tangents), can be obtained in this way, even
when the initial triod T0 is smooth.
This problem is clearly related to the uniqueness of the smooth Brakke
flows with equality (maybe further restricting the candidates to a special
class with extra geometric properties). A positive answer would also allow
us to extend to them the analysis of the singularities carried on in the next
sections.

Remark 3.24. We point out that all this section can be extended to networks
of curves with many 3-points.

Indeed, an analog of the result of Bronsard and Reitich for such situation
(they also remark that) can be obtained generalizing the “algebraic” analysis in
their paper [11] in order to show the complementary conditions for the system 3.1
associated to the network. Then, all the estimates can be generalized simply
adding the contributions of all the 3-points and of every end point, since each
one of them has to satisfy the relations between k, λ and their derivatives
computed in Section 2 for a single triod.

In all the discussion of this section, we did not take care of the fact that
the triods have to remain in the domain � and of the condition of embed-
dedness, which are required in the formulation of Problem (2.1), actually, we
only concentrated on the analytic properties of the solution of the parabolic
system (3.1).

It will follow by the geometric results of the next section that since the
initial triod is embedded, if the lengths of three curves stay away from zero, then,
during the evolution, the triods do not develop self-intersections and “touch”
the boundary of � only with their end points.

In the rest of the paper we restrict ourselves only to the smooth flows given by
Theorem 3.1 and we will analyse the possible formation of singularities.

4. – Geometric properties of the flow

Let us consider a smooth evolution Tt in the time interval [0, T ) of an
initially embedded smooth triod T0 in the convex set �.

The first thing we want to show is that the triods cannot get out of �.

Proposition 4.1. The triods Tt intersect the boundary of � only at the end
points.

Moreover, for every positive time such intersections are transversal.

Proof. Even if some of the three curves of the initial triod are tangent to
∂� at the end points Pi , by the strong maximum principle, as � is convex,
the intersections become immediately transversal and stay so for every time.
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By continuity, the 3-point cannot hit the boundary at least for some time
T ′ > 0. Then, fixing a time t ∈ [0, T ′), even if the curve γ i (·, t) intersects the
boundary at some of its inner points, that is, γ i (x, t) ∈ ∂� with x �= {0, 1}, again
by the strong maximum principle and the convexity of � we can conclude that
for every subsequent time in the interval (t, T ′) there are no more intersections.

This argument clearly implies that if t0 > 0 is the “first time” when the
triods intersect the boundary with an inner point, this latter has to be the 3-point
O . The minimality of t0 is then easily contradicted by the convexity of �, the
120 degrees condition and the non zero length of the three curves of Tt0 .

Now we concentrate on the condition of embeddedness.
Given the smooth flow Tt = F(T, t), we take two points p = F(x, t)

and q = F(y, t) belonging to Tt and we define �p,q to be the geodesic curve
contained in Tt connecting p and q. Then we let Ap,q to be the area of the
open region Ap,q in R

2 enclosed by the segment [p, q] and the curve �p,q .
When the region Ap,q is not connected, we let Ap,q to be the sum of the areas
of its connected components.

We consider the function �t : T × T → R ∪ {+∞} as

�t (x, y) =


|p − q|2

Ap,q
if x �= y,

4
√

3 if x and y coincide with the 3-point O of T,

+∞ if x = y �= O

where p = F(x, t) and q = F(y, t).
Since Tt is smooth and the 120 degrees condition holds, it is easy to check

that �t is a lower semicontinuous function. Hence, by the compactness of T,
the following infimum is actually a minimum

(4.1) E(t) = inf
x,y∈T

�t (x, y)

for every t ∈ [0, T ).
Similar geometric quantities have already been applied in [23], [13] and

[26].
If the triod Tt has no self-intersections we have E(t) > 0, the converse is

clearly also true.
Moreover, E(t) ≤ �t (0, 0) = 4

√
3 always holds, thus when E(t) > 0

the two points (p, q) of a minimizing pair (x, y) can coincide if and only if
p = q = O .

Finally, since the evolution is smooth it is easy to see that the function
E : [0, T ) → R is continuous.

These properties set the question of the possible self-intersections of solu-
tions of Problem (2.1) that we let open in the previous section at the end of
the proof of Theorem 3.1 (the fact that the triods remain in � is shown by
Proposition 4.1). Indeed, if the initial triod T0 is embedded, we have E(0) > 0,
hence E(t) > 0 for some time.



MOTION BY CURVATURE OF PLANAR NETWORKS 279

Now we want to show something more, that is, in all the maximal interval
of existence of a smooth flow self-intersections cannot happen, in other words,
if E(0) > 0 then E(t) > 0 for every t ∈ [0, T ).

Since we are dealing with embedded triods, with a little abuse of notation,
we consider the function �t defined on Tt × Tt and we speak of a minimizing
pair for the couple of points (p, q) ∈ Tt × Tt instead of (x, y) ∈ T × T.

Lemma 4.2. Assume that 0 < E(t) < 4
√

3, then for any minimizing pair (p, q)

we have p �= q and neither p nor q coincides with the 3-point O of Tt .
Moreover, it is always possible to find a minimizing pair such thatAp,q is a single

connected region and the segment [p, q] meet the (one or two) curves containing p
and q only at these points and with transversal intersection.

Proof. We already saw that by the very definition of �t , the inequality
0 < E(t) < 4

√
3 implies p �= q. The proof that p and q can be chosen in order

that the region Ap,q is connected and the segment [p, q] does not intersect the
curves which contain the two points, goes like in [13, Lemma 2.1]).

We prove the first claim, assuming by contradiction that p = O ∈ Tt and
�t (O, q) = E(t). By the above, we can suppose that the segment [O, q] is
contained in in the sector between the curves γ 1 and γ 2, that q ∈ γ 1 and that
the region AO,q is bounded by such segment and the curve γ 1.

If the angle α ≥ 0 formed by [O, q] and τ 2(O, t) is smaller than 90
degrees it is easy to see that moving a little the point p along γ 2, the distance
|p − q| decreases while the area Ap,q increases, hence the ratio |O − q|2/AO,q

cannot be minimal.
Thus the width of the angle α has to be greater or equal than 90 degrees.
We consider then the points p(s) = γ 1(x(s), t) with arclength parameter

s ∈ [0, ε) (then p(0) = O and dp(0)

ds = τ 1(O, t)) and we compute the right
derivative at s = 0 of �t (p(s), q) (see the proof of Proposition 4.4),

d

ds
�t (p(s),q)

∣∣∣∣
s=0

= Ap(s),q
d
ds |p(s)−q|2−|p(s)−q|2 d

ds Ap(s),q

A2
p(s),q

∣∣∣∣
s=0

= −2Ap(0),q |p(0)−q| cos (120−α)+1/2|p(0)−q|3 sin (120−α)

A2
p(0),q

= |O − q|
2A2

O,q

[
−4AO,q cos (120 − α) + |O − q|2 sin (120 − α)

]
which has to be non negative by minimality.

Hence, it follows that 4AO,q cos (120 − α) ≤ |O − q|2 sin (120 − α) and

4 cot (120 − α) ≤ |O − q|2
AO,q

= �t(O, q) = E(t) .

Since π/2 ≤ α ≤ 2π/3 we have cot (120 − α) ≥ √
3, hence we conclude

E(t) ≥ 4
√

3 which is in contradiction with the initial hypothesis.
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Finally, as neither p nor q coincides with the 3-point, if [p, q] intersects
Tt tangentially at p or q, moving such point a little in the direction which
decreases the distance |p − q|, the area Ap,q is little changed, so a variation as
above gives a contradiction (see [13, Lemma 2.1]).

Remark 4.3. Looking at the proof of the connectedness in [13], it can
be proved also that if there is at least one minimizing pair such that both its
points are distinct from the end points Pi , then the same holds also for the
pair (p, q) with Ap,q connected whose existence is assured by this lemma.

Proposition 4.4. The function E(t) is monotone increasing in every time
interval where 0 < E(t) < 4

√
3 and for at least one minimizing pair (p, q) of �t

neither p nor q coincides with one of the end points Pi .

Proof. We assume that 0 < E(t) < 4
√

3 and that there exists a minimizing
pair (p, q) for �t such that the two points are both distinct from the end points
Pi , for every t in some interval of time. Since E(t) is a locally Lipschitz
function, to prove the statement it is then enough to show that d E(t)

dt > 0 for
every time t such that this derivative exists (which happens almost everywhere
in the interval).

Fixed a minimizing pair (p, q) at time t , satisfying the conclusions of
Lemma 4.2 and Remark 4.3, we choose a value ε > 0 smaller than the geodesic
distances of p and q from the 3-point O of Tt and between them, moreover
if p and q both belong to the same curve we can also suppose that q is the
closest to O .

By simplicity, we discuss the situation where the points p, q are like in
Figure 1, the computations in the other cases are analogous.

P 3

P 1 P 2

O

q

Ap,q

τ(p) α(p)
p

Ω

Fig. 1.
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Possibly taking a smaller ε > 0, we fix an arclength coordinate s ∈ (−ε, ε)

and a local parametrization p(s) of the curve containing in a neighborhood of
p = p(0), with the same orientation of the original one. Let η(s) = |p(s) − q|
and A(s) = Ap(s),q , since

E(t) = min
s∈(−ε,ε)

η2(s)

A(s)
= η2(0)

A(0)
,

if we differentiate in s we obtain

(4.2)
dη2(0)

ds
A(0) = d A(0)

ds
η2(0) .

As the intersection of the segment [p, q] with the triod is transversal, we have
an angle α(p) ∈ (0, π) determined by the unit tangent τ(p) and the vector
q − p. We compute

dη2(0)

ds
= −2〈τ(p) | q − p〉 = −2|p − q| cos α(p)

d A(0)

ds
= 1

2
|τ(p) ∧ (q − p)| = 1

2
〈ν(p) | q − p〉 = 1

2
|p − q| sin α(p)

Putting these derivatives in equation (4.2) and recalling that η2(0)/A(0) = E(t),
we get

(4.3) cot α(p) = −|p − q|2
4Ap,q

= − E(t)

4
.

Since 0 < E(t) < 4
√

3 we get −√
3 < cot α(p) < 0 which implies

π

2
< α(p) <

5

6
π .

The same argument clearly holds for the point q, hence defining α(q) ∈ (0, π)

to be the angle determined by the unit tangent τ(q) and the vector p − q, by
equation (4.3) it follows that α(p) = α(q) and we simply write α for both.

We consider now a different variation, moving at the same time the points
p and q, in a way that dp(s)

ds = τ(p(s)) and dq(s)
ds = τ(q(s)).

As above, letting η(s) = |p(s)− q(s)| and A(s) = Ap(s),q(s), by minimality
we have

(4.4)
dη2(0)

ds
A(0) = d A(0)

ds
η2(0) and

d2η2(0)

ds2
A(0) ≥ d2 A(0)

ds2
η2(0) .



282 C. MANTEGAZZA – M. NOVAGA – V. M. TORTORELLI

Computing as before,

dη2(0)

ds
= 2〈p − q | τ(p) − τ(q)〉

d A(0)

ds
= −4|p − q| cos α = −1

2
〈p − q | ν(p) + ν(q)〉

d2η2(0)

ds2
= |p − q| sin α = 2〈τ(p) − τ(q) | τ(p) − τ(q)〉

+ 2〈p − q | k(p)ν(p) − k(q)ν(q)〉
= 2|τ(p) − τ(q)|2 + 2〈p − q | k(p)ν(p) − k(q)ν(q)〉
= 8 cos2 α + 2〈p − q | k(p)ν(p) − k(q)ν(q)〉

d2 A(0)

ds2
= −1

2
〈τ(p) − τ(q) | ν(p) + ν(q)〉 + 1

2
〈p − q | k(p)τ (p) + k(q)τ (q)〉

= −1

2
〈τ(p) | ν(q)〉 + 1

2
〈τ(q) | ν(p)〉 + 1

2
〈p − q | k(p)τ (p) + k(q)τ (q)〉

= −2 sin α cos α − 1/2|p − q|(k(p) − k(q)) cos α .

Putting the last two relations in the second inequality of (4.4), we get

(8 cos2 α + 2〈p − q | k(p)ν(p) − k(q)ν(q)〉)Ap,q

≥ (−2 sin α cos α − 1/2|p − q|(k(p) − k(q)) cos α)|p − q|2

hence, keeping in mind that tan α = −4/E(t), by equation (4.3), we obtain

(4.5)

2Ap,q〈p − q | k(p)ν(p) − k(q)ν(q)〉 + 1/2|p − q|3(k(p) − k(q)) cos α

≥ −2 sin α cos α|p − q|2 − 8Ap,q cos2 α

= −2Ap,q cos2 α

(
tan α

|p − q|2
Ap,q

+ 4

)

= −2Ap,q cos2 α

(
− 4

E(t)
E(t) + 4

)
= 0 .

We consider now a time t0 such that the derivative d E(t0)

dt exists and we
compute it with the following standard trick,

d E(t0)

dt
= ∂

∂t
�t(p, q)

∣∣∣∣
t=t0

for any pair (p, q) such that p, q ∈ Tt0 and |p−q|2
Ap,q

= E(t0).
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Considering then a minimizing pair (p, q) for �t0 with all the previous
properties, by minimality, we are free to choose the “motion” of the points
p(t), q(t) “inside” the triods Tt in computing such partial derivative.

Since locally the triods are moving by curvature and we know that neither
p nor q coincides with the 3-point or the end points, we can find ε > 0 and
two smooth curves p(t), q(t) ∈ Tt for every t ∈ (t0 − ε, t0 + ε) such that

p(t0) = p and
dp(t)

dt
= k(p(t), t) ν(p(t), t) ,

q(t0) = q and
dq(t)

dt
= k(q(t), t) ν(q(t), t) .

Then,

(4.6)

d E(t0)

dt
= ∂

∂t
�t (p, q)

∣∣∣∣
t=t0

= 1

A2
p,q

(
Ap,q

d|p(t) − q(t)|2
dt

− |p − q|2 d Ap(t),q(t)

dt

)∣∣∣∣∣
t=t0

.

With a straightforward computation we get the following equalities,

d|p(t)−q(t)|2
dt

∣∣∣∣∣
t=t0

= 2〈p − q | k(p)ν(p) − k(q)ν(q)〉

d Ap(t),q(t)

dt

∣∣∣∣
t=t0

=
∫

�p,q

〈k(s)|ν�p,q 〉ds+1/2|p−q|〈ν[p,q]|k(p)ν(p)+k(q)ν(q)〉

= 2α − 5π/3 − 1/2|p − q|(k(p) − k(q)) cos α

where we wrote ν�p,q and ν[p,q] for the exterior unit normal to the region Ap,q ,
respectively at the points of the geodesic �p,q and of the segment [p, q].

Substituting these derivatives in equation (4.6) we get

d E(t0)

dt

= 1

A2
p,q

(
2Ap,q〈p − q | k(p)ν(p)−k(q)ν(q)〉+1/2 cos α|p − q|3(k(p) − k(q))

)
− |p − q|2

A2
p,q

(
2α − 5π

3

)
,

and, by equation (4.5), the first term in parentheses is non negative, hence

d E(t0)

dt
≥ −|p − q|2

A2
p,q

(
2α − 5π

3

)
.
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By equation (4.3) we have α = arctan(−4/E(t0)), hence the following inequality
holds

d E(t0)

dt
≥ 2E(t0)

Ap,q

(
arctan(4/E(t0)) − arctan(1/

√
3)
)

> 0 .

As the area Ap,q is bounded by the area of �, we conclude that for every t in
an interval such that the minimum of �t is taken by at least one pair of inner
points and the derivative of E(t) exists,

d E(t0)

dt
≥ 2C E(t0)

(
arctan(4/E(t0)) − arctan(1/

√
3)
)

for the time independent constant C = 1/Area(�) > 0.

Remark 4.5. All this analysis can be extended step by step to a network
with many 3-points but without loops, that is, a tree. The presence of loops
complicates the analysis of the minimality properties, because of the possible
presence of more than one geodesic in Tt between the two points p and q.

We now show that on all [0, T ) we have E(t) > 0.

Theorem 4.6. If � is bounded and strictly convex, there exists a constant C > 0
depending only on T0 such that E(t) > C > 0 for every t ∈ [0, T ).

Hence, the triods Tt remain embedded in all the maximal interval of existence
of the flow.

Proof. We define three flows of networks of curves H
1
t , H

2
t , H

3
t in the

interval [0, T ). The network H
i
t is obtained as the set theoretic union of Tt

with its symmetric image T
i
t with respect to the point Pi .

As the triods Tt are contained in the convex � which is strictly convex,
this operation does not introduces self-intersections and since, by Lemma 3.10
all the even derivatives of k and λ are zero at the end points Pi , each one of
H

1
t , H

2
t , H

3
t is a smooth flow by curvature of a centrally symmetric network,

which is a tree and it is composed of five curves, two 3-points and four fixed
end points.

We define for these networks the functions E1,E2,E3 : [0, T )→R, analogous
to the function E : [0, T )→R of Tt and we set �(t) = min{E1(t), E2(t), E3(t)}
which clearly turns out to be a locally Lipschitz function on [0, T ) satisfying
�(t) ≤ Ei (t) ≤ E(t) for every time t and index i ∈ {1, 2, 3}, since every
H

i
t contains a copy of Tt (actually two copies). Moreover, as there are no

self-intersections by construction, �(0) > 0.
Showing that for every time �(t) > 0, we prove the theorem.
We consider a time t ∈ [0, T ) such that the time derivatives of � and of

all the Ei exist (almost everywhere), then for every index i ∈ {1, 2, 3} such that

Ei (t) = �(t) we must have d Ei (t)
dt = d�(t)

dt .
Extending the previous analysis to the flow H

i
t , which is a tree hence

Remark 4.5 applies, if the minimum Ei (t) = �(t) is taken by at least one
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pair of inner points (notice that Pi became an inner point for H
i
t ), then this

derivative is positive.
If every minimizing pair (p, q) is constituted by two end points then, by

our construction, the squared distance |p − q|2 is bounded from below and
Ei (t) = �(t) > C > 0 for some uniform constant C > 0 independent of
t ∈ [0, T ), determined by T0.

The same holds if one is an end point of Tt , different from Pi , and the
other is a point of T

i
t and viceversa (Hi

t is centrally symmetric).
In the last case, when (p, q) is composed of an inner point and an end

point of H
i
t , both in the same copy of Tt , if we consider the same pair and

associated region, contained in the other two networks, in at least one of them
the two points are both inner, for instance this happens in the network, say H

j
t ,

if the end point of H
i
t in the pair is a copy of P j . Hence, we found an inner

minimizing pair of H
j
t , that is E j (t) = Ei (t) = �(t), which implies, by the

previous discussion, that d Ei (t)
dt > 0 so d�(t)

dt > 0.
We conclude that if �(t) is under some constant C > 0 on [0, T ) then it

is increasing. Since �(0) > 0 this argument gives a uniform bound from below
on �(t) on [0, T ), hence on E(t).

Remark 4.7. The reason why we put the strict convexity of � in the
hypothesis is that, in the very special situation such that the three end points
Pi stay on a line and one of them is the middle point of the segment determined
by the other two, then the symmetry operation with respect to this middle point
produces an intersection between Tt and its image at the other two end points,
hence the argument above cannot be applied since two loops have formed.

All the results of this section, in particular the previous one can be general-
ized to networks of curves with many 3-points which are trees, that is, without
loops in a strictly convex set �.

5. – Blow up and self-similar solutions

As before we suppose to have a smooth embedded solution Tt of Prob-
lem (2.1) in a bounded and strictly convex � ⊂ R

2 on a maximal time interval
[0, T ). Moreover, we assume that there is a constant δ > 0 which uniformly
bounds from below the lengths Li (t) of the three curves of Tt .

By Theorem 3.18 and Corollary 3.19 the maximum of the modulus of the
curvature and its L2 norm go to +∞, as t → T .

As it is standard, we divide the possible singularities in two cases (recall
Remark 3.20) according to the rate of blow up of the curvature.

We say that we have a Type I singularity (or a fast singularity) if there
exists a constant C such that

(5.1) max
Tt

k2 ≤ C

T − t
for every t ∈ [0, T ).
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In the case inequality (5.1) does not hold for any constant C we say that
the singularity is of Type II (or a slow singularity).

Blowing up in a proper way the evolving triods around a Type I singularity,
we obtain as possible limits an unbounded and embedded triod without end
points or an unbounded and embedded curve with at most one end point,
moving by curvature simply shrinking homothetically.

In the standard case of the evolution of a closed curve in the plane, it is
possible to do a blow up of a Type II singularity obtaining a translating solution
of the motion by curvature which has to be a straight line or the grim reaper
(see [5], [22]). In our situation dealing with triods, we are not able at the
moment to get the same conclusion, but we can anyway hope to exclude the
presence of Type II singularities, analysing the possible blow up.

In the rest of this section we classify the embedded triods without end
points (see Remark 1.4) shrinking homothetically by curvature and, since they
could become relevant, we classify also the translating ones.

Definition 5.1. We say that a family of unbounded triods without end
points is a smooth flow by curvature in R

2 if locally, in space and time, it can
be parametrized by some maps giving a smooth flow as in Definition 2.4 (but
with the end points free to move).

5.1. – Classification of homothetic flows of triods

We can clearly suppose that the origin of R
2 is the center of homothety.

By a straightforward computation, it can be seen that the curves γ in R
2

which are homothetically shrinking around the origin of R
2 under the curvature

flow satisfy the equation k = −λ〈x | ν〉, for some positive constant λ, at every
point x ∈ γ .

Then, by a rescaling, we can suppose that k = −〈x | ν〉, that is λ = 1.

Lemma 5.2. If a closed, unbounded and embedded triod T in R
2 without end

points satisfies k = −〈x | ν〉 at every point x ∈ T, then the 3-point coincides with
the origin of R

2 and the three curves of the triod are halflines forming angles of 120
degrees.

Proof. By the work of Abresch and Langer [1], since the three curves of
the triod satisfy the equation above, they can be only halflines, pieces of circles
or pieces of a special family of curves (curves of Abresch and Langer) described
in [1], which are bounded, periodic and with transversal self-intersections. Since
the triod has no end points, if an edge is a piece of one of these curves or of
a circle, following this edge in the direction opposite to the 3-point one would
get a self-intersection which is not present, hence, these two possibilities have
to be excluded.

Then, the three curves are halflines meeting with angles of 120 degrees
and, by means of the equation above, it follows immediately that the 3-point
has to coincide with the origin of R

2.
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By the same argument used in this proof we can also get the following
two lemmas that we will need in the next section.

Lemma 5.3. If a closed, unbounded and embedded curve γ without end points
satisfies k = −〈x | ν〉 at every point x ∈ γ , then the curve is a straight line through
the origin of R

2.

Lemma 5.4. If a closed, unbounded and embedded curve γ with only one end
satisfies k = −〈x | ν〉 at every point x ∈ γ , then the curve is a halfline.

These lemmas implies the following classification result.

Proposition 5.5. If Tt is a flow of unbounded triods (curves) without end
points (with one or without end points) shrinking homothetically during the motion
by curvature, then Tt is composed of three halflines forming three angles of 120
degrees (one halfline or a straight line), hence it is not moving at all (k ≡ 0).

5.2. – Classification of translating flows of triods

The curves γ in R
2 which move by translation with constant velocity

w ∈ R
2, for the curvature flow satisfy the equation k = 〈w | ν〉 at every point

(observe that this equation is translation invariant).

Definition 5.6. The grim reaper relative to the vector e1 is the graph of
the function x = − log(cos y) in R

2 when y varies in the interval (−π/2, π/2).
The grim reaper relative to a non zero vector w ∈ R

2 is obtained rotating
and dilating the grim reaper relative to e1, in a way to make this latter coincide
with w.

Remark 5.7. Notice that the grim reaper relative to w is a smooth convex
curve asymptotic to two straight lines in R

2 parallel to such vector.

Lemma 5.8. If a closed, unbounded and embedded triod T in R
2 without end

points satisfies k = 〈w | ν〉 at every point, with w �= 0, then its curves are halflines
parallel to w or translated copies of pieces of the grim reaper relative to w (see
Figure 2), meeting at the 3-point with angles of 120 degrees (it clearly follows that
at most one curve is a halfline).

e1

y =π/2

y =−π/2

�

Fig. 2. The grim reaper relative to e1.
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Fig. 3. Some examples of translating triods.

Proof. At every inner point of the curves composing the triod, differen-
tiating in arclength the equation above we get ks = −k〈w | τ 〉, hence, if the
curvature is zero at some point, it has to be zero on all the curve, so this latter
is a halfline parallel to w.

If k is non zero, then differentiating again we obtain kss = −ks〈w | τ 〉 −
k2〈w | ν〉 = k2

s /k − k3 which is the equation of a grim reaper. Integrating such
equation we get the thesis.

With the same arguments we can also prove the following lemmas.

Lemma 5.9. If a closed, unbounded and embedded curve γ in R
2 without end

points satisfies k = 〈w | ν〉 at every point, then it is either a straight line parallel to
the vector w or a translated copy of the grim reaper relative to w.

Lemma 5.10. If a closed, unbounded and embedded curve γ with only one end
satisfies k = 〈w | ν〉 at every point, then it is either a halfline parallel to the vector
w or a translated copy of a piece of the grim reaper relative to w.

Hence, we conclude as above.

Proposition 5.11. If Tt is a flow of unbounded triods (curves)without end points
(without or with only one end point) translating during the motion by curvature, then
every Tt is one of the sets of Lemma 5.8 (5.9 or 5.10).

6. – Type I singularities

In this section we study the Type I singularities of a smooth flow of triods
Tt , described by a map F : T × [0, T ) → � (see after Definition 2.5), in a
bounded and strictly convex � ⊂ R

2, on a maximal time interval [0, T ).
We remark that in this section, we will often consider the triods as subsets

of R
2, without mentioning �.
By the Type I assumption, there exists a constant C > 0 such that

(6.1) lim
t→T

max
Tt

k2 = +∞ and k2(p, t) ≤ C

T − t
for every p ∈ T and t ∈ [0, T ).
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Lemma 6.1. One of the following three (mutually non exclusive) possibilities
holds:

(1) There is an index i ∈ {1, 2, 3} and a sequence of times tj ↗ T such that

[ki (O, tj )]
2 ≥ C

T − tj

for some positive constant C.
(2) We have the estimate

max
Tt

k2 = o(1)

T − t
as t → T .

(3) The maximum of k2 is definitely not taken at the point O and

max
Tt

k2 ≥ 1

2(T − t)

for every t larger than some t0 ∈ [0, T ).

Proof. We consider the non negative, locally Lipschitz functions f (t) =
maxTt k2 and g(t) = (T − t) maxTt k2.

If we are not in the first case, limt→T (T − t)[ki (O, t)]2 = 0 for every index
i ∈ {1, 2, 3}. Setting gO(t) = maxi∈{1,2,3}(T − t)[ki (O, t)]2, if g(t) > gO(t) then
the maximum of k2 at time t is taken in the interior of one of the three curves
(k is zero at the three end points).

If g > gO does not hold definitely, there exists a time t0 such that gO(t) <

1/4 for every t > t0 and another time t1 > t0 such that g(t1) = gO(t1) < 1/4.
Then, following Huisken [25], at every time t such that g(t) > gO(t) by

the parabolic maximum principle the function f (t) = maxTt k2 satisfies the
differential inequality

(6.2)
d

dt
f (t) ≤ 2 max

Tt
k4 = 2 f 2(t)

and the function g(t),

d

dt
g(t) ≤ 2(T − t) max

Tt
k4 − max

Tt
k2 = (2g − 1) f (t) .

If J is the set of times t ∈ [t1, T ) such that g(t) = gO(t) < 1/4, then in
[t1, T ) \ J , which is a union of open intervals, the function g is decreasing, by
a simple ODE’s argument. It follows that g(t) ≤ gO(sup(J ∩ [0, t])) and since
we supposed that limt→T sup(J ∩ [0, t]) = T , we conclude limt→T g(t) = 0.
This means that we are in the second case.

If instead g > gO definitely, then after some time the maximum of k2 is
always taken at some inner points, hence inequality (6.2) holds and since f goes
to +∞ as t → T , by integration we get the bound from below (Huisken [25])

max
Tt

k2 ≥ 1

2(T − t)

for every t larger than some t0, that is, we are in the third case.
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In the second situation above we can get something more.

Lemma 6.2. If the curvature of the triods satisfies

max
Tt

k2 = o(1)

T − t
.

then there exists an index i ∈ {1, 2, 3} and a sequence of times tj ↗ T such that

k2(p, t) ≤ [ki (O, tj )]
2 for every t ≤ tj , p ∈ T and [ki (O, tj )]

2 ↗ +∞ .

Proof. We start studying the non decreasing hull f̃ (t) = supξ∈[0,t] f (ξ) of
the function f (t) = maxTt k2 = ε(t)/(T − t), with limt→T ε(t) = 0. Clearly
f̃ (t) ≥ f (t), hence also f̃ goes to +∞ as t → T .

We notice that since f is locally Lipschitz, the same hold for f̃ , moreover
the derivative of this latter, which exists at almost every time t ∈ [0, T ), is zero
or coincides with the derivative of f , if this happen f̃ (t) = f (t) also holds.

We saw in inequality (6.2) that when the maximum of k2 is taken at some
points different from O , then f ′ ≤ 2 f 2, so under the same hypothesis, it also
holds f̃ ′ ≤ f ′ ≤ 2 f 2 ≤ 2 f̃ 2.

Let us consider the set J = {t ∈ [0, T ) | f̃ (t) = maxi∈{1,2,3}[ki (O, t)]2}, if a
value t does not belong to J then either the maximum of k2 is taken at some
points different from O or f (t) < f̃ (t) and the derivative of f̃ at t is zero. In
both cases the inequality f̃ ′ ≤ 2 f̃ 2 holds at every time such that the derivatives
of f and f̃ exist (almost everywhere).

If T is not a limit point of J , then definitely f̃ ′ ≤ 2 f̃ 2 almost everywhere,
integrating then the distributional derivative of 1/ f̃ , we obtain, as in the previous
lemma for f , the bound from below f̃ (t) ≥ 1

2(T −t) .

This gives a contradiction since it implies that definitely f̃ > f , hence f̃
would be constant against the fact that f (t) goes to +∞ as t → T .

Thus, we can assume that there exists an index i ∈ {1, 2, 3} and a sequence
of times tj ↗ T belonging to J , hence satisfying f̃ (tj ) = [ki (O, tj )]2. It follows,
by construction, that

k2(p, t) ≤ [ki (O, tj )]
2 for every t ≤ tj and p ∈ T,

and [ki (O, tj )]2 ↗ +∞.

We will deal with the first and the last case of Lemma 6.1 by means of the
rescaling procedure of Huisken [25], adapting the line of Stone in [37], [38] to
our situation. By means of an argument of Ilmanen in [28, Lemma 8] and [29,
Section 3], we will show in Proposition 6.18 that the second case also cannot
happen.

We start with the analogue in our situation of Huisken’s monotonicity for-
mula for mean curvature flow (see [25]).
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Let x0 ∈ R
2 and define the backward heat kernel relative to (x0, T ) as

ρx0(x, t) = e
− |x−x0|2

4(T −t)
√

4π(T − t)
.

Lemma 6.3. For every t ∈ [0, T ) and i ∈ {1, 2, 3} the following identity holds

d

dt

∫
γ i (·,t)

ρx0(x, t) ds = −
∫

γ i (·,t)

∣∣∣∣∣ k + (x − x0)
⊥

2(T − t)

∣∣∣∣∣
2

ρx0(x, t) ds

+
〈

Pi − x0

2(T − t)

∣∣∣∣ τ i (1, t)

〉
ρx0(Pi , t)

+
〈

γ i (0, t) − x0

2(T − t)

∣∣∣∣ τ i (0, t)

〉
ρx0(γ

i (0, t), t)

+ λi (0, t)ρx0(γ
i (0, t), t) .

Proof. The proof goes like in [25, Theorem 3.1] with the extra boundary
terms coming from the application of the first variation formula (see [34]).

By such formula, for every C1 vector field X we have∫
γ i (·,t)

div� X ds = −
∫

γ i (·,t)
〈X | k〉 ds+〈X (γ i (1, t)) |τ i (1, t)〉−〈X (γ i (0, t))|τ i (0, t)〉

where div� means tangential divergence (see [34]), and following Huisken [25],

d

dt

∫
γ i (·,t)

ρx0ds =
∫

γ i (·,t)
ρx0 div�v ds +

∫
γ i (·,t)

〈∇ρx0 | v 〉 + ∂ρx0

∂t
ds

= −
∫

γ i (·,t)
ρx0k2−div�(ρx0λτ)ds +

∫
γ i (·,t)

〈∇⊥ρx0 | v 〉 + ∂ρx0

∂t
ds

= −
∫

γ i (·,t)
ρx0

{
k2 − 1

2(T − t)
+ 〈x − x0 | k 〉

2(T − t)
+ |x − x0|2

4(T − t)2

}
ds

− λi (0, t)ρx0(γ
i (0, t), t)

= −
∫

γ i (·,t)

∣∣∣∣ k + x − x0

2(T − t)

∣∣∣∣2 ρx0 ds − λi (0, t)ρx0(γ
i (0, t), t)

+
∫

γ i (·,t)

ρx0

2(T − t)
+ 〈x − x0 | k 〉

2(T − t)
ρx0 ds

since λi (1, t) = 0.
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Now we use again the first variation formula with the field X (x) = (x −
x0)ρx0(x, t)/2(T − t) whose tangential divergence is given explicitly by∑2

l=1 ∇�
j

(
(xl − xl

0)ρx0(x, t)
)

2(T − t)
= 〈x − x0 | ∇�ρx0(x, t)〉 + ∑2

j=1〈ej |e�
j 〉ρx0(x, t)

2(T − t)

= ρx0(x, t)

2(T − t)
− |(x − x0)

�|2
4(T − t)2

ρx0(x, t)

then,∫
γ i (·,t)

div� X ds = −
∫

γ i (·,t)
〈x − x0 | k 〉

2(T − t)
ρx0 ds

+ 〈Pi − x0 |τ i (1, t)〉ρx0(Pi , t) − 〈γ i (0, t) − x0 |τ i (0, t)〉ρx0(γ
i (0, t), t)

2(T − t)

=
∫

γ i (·,t)

ρx0

2(T − t)
− |(x − x0)

�|2
4(T − t)2

ρx0 ds .

Hence,

d

dt

∫
γ i (·,t)

ρx0 ds = −
∫

γ i (·,t)

∣∣∣∣ k + x − x0

2(T − t)

∣∣∣∣2 ρx0 ds − λi (0, t)ρx0(γ
i (0, t), t)

+ 〈Pi − x0 |τ i (1, t)〉ρx0(Pi , t) − 〈γ i (0, t) − x0 |τ i (0, t)〉ρx0(γ
i (0, t), t)

2(T − t)

+
∫

γ i (·,t)
|(x − x0)

�|2
4(T − t)2

ρx0 ds

= −
∫

γ i (·,t)

∣∣∣∣∣ k + (x − x0)
⊥

2(T − t)

∣∣∣∣∣
2

ρx0 ds − λi (0, t)ρx0(γ
i (0, t), t)

+ 〈Pi − x0 |τ i (1, t)〉ρx0(Pi , t) − 〈γ i (0, t) − x0 |τ i (0, t)〉ρx0(γ
i (0, t), t)

2(T − t)

and reordering the terms we get the claimed identity.

Proposition 6.4 (Monotonicity formula). For every t ∈ [0, T ) the following
identity holds

(6.3)

d

dt

∫
Tt

ρx0(x, t) ds = −
∫

Tt

∣∣∣∣∣ k + (x − x0)
⊥

2(T − t)

∣∣∣∣∣
2

ρx0(x, t) ds

+
3∑

i=1

〈
Pi − x0

2(T − t)

∣∣∣∣ τ i (1, t)

〉
ρx0(Pi , t) .
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Integrating between t1 and t2 with 0 ≤ t1 ≤ t2 < T we get

(6.4)

∫ t2

t1

∫
Tt

∣∣∣∣∣ k + (x − x0)
⊥

2(T − t)

∣∣∣∣∣
2

ρx0(x, t) ds dt

=
∫

Tt1

ρx0(x, t1) ds −
∫

Tt2

ρx0(x, t2) ds

+
3∑

i=1

∫ t2

t1

〈
Pi − x0

2(T − t)

∣∣∣∣ τ i (1, t)

〉
ρx0(Pi , t) dt .

Proof. We simply add the contributions for the three curves given by Lemma
6.3, recalling that γ i (0, t)= O and

∑3
i=1 τ i (0, t)=∑3

i=1 λi (0, t)=0.

Lemma 6.5. Setting |Pi − x0| = di , for every index i ∈ {1, 2, 3} the following
estimate holds∣∣∣∣∣
∫ T

t

〈
Pi − x0

2(T − ξ)

∣∣∣∣ τ i (1, ξ)

〉
ρx0(Pi , ξ) dξ

∣∣∣∣∣ ≤ 1√
2π

+∞∫
di /

√
2(T −t)

e−y2/2 dy ≤ 1/2 .

Then, for every x0 ∈ R
2,

lim
t→T

3∑
i=1

∫ T

t

〈
Pi − x0

2(T − ξ)

∣∣∣∣ τ i (1, ξ)

〉
ρx0(Pi , ξ) dξ = 0 .

Proof. If di > 0, we estimate∣∣∣∣∣
∫ T

t

〈
Pi − x0

2(T − ξ)

∣∣∣∣ τ i (1, ξ)

〉
ρx0(Pi , ξ) dξ

∣∣∣∣∣
≤
∫ T

t

∣∣∣∣∣
〈

Pi − x0

2(T − ξ)

∣∣∣∣ τ i (1, ξ)

〉∣∣∣∣∣ ρx0(Pi , ξ) dξ

≤ 1√
2π

∫ T

t

di

[2(T − ξ)]3/2
e
− [di ]2

4(T −ξ) dξ

= 1√
2π

+∞∫
di /

√
2(T −t)

e−y2/2 dy

≤ 1√
2π

∫ +∞

0
e−y2/2 dy = 1/2

where we could change variable y = di/
√

2(T − ξ) since di > 0.
Since the integral on [0, +∞) is finite, looking at the third line we have

also that

lim
t→T

∣∣∣∣∣
∫ T

t

〈
Pi − x0

2(T − ξ)

∣∣∣∣ τ i (1, ξ)

〉
ρx0(Pi , ξ) dξ

∣∣∣∣∣ = 0 .

In the special case di = 0, that is, x0 coincides with the end point Pi , the
corresponding integral is zero for every t ∈ [0, T ), so the thesis follows.
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Proposition 6.6. For every x0 ∈ R
2 the limit limt→T

∫
Tt

ρx0(x, t) ds there
exists.

Proof. Fixed x0 ∈ R
2 we look at the function b : [0, T ) → R

b(t) =
∫ T

t

3∑
i=1

〈
Pi − x0

2(T − ξ)

∣∣∣∣ τ i (1, ξ)

〉
ρx0(Pi , ξ) dξ .

As Lemma 6.5 says that b is bounded and limt→T b(t) = 0, the monotonicity
formula (6.3) implies that the limit of the statement there exists.

Now, we introduce the the rescaling procedure of Huisken [25].
Fixed x0 ∈ R

2, let F̃x0 : T × [−1/2 log T, +∞) → R
2 be the map

F̃x0(p, t) = F(p, t) − x0√
2(T − t)

t(t) = −1

2
log (T − t)

then, the rescaled triods are given by

T̃x0,t = Tt − x0√
2(T − t)

and they evolve according to the equation

∂

∂t
F̃x0(p, t) = ṽ(p, t) + F̃x0(p, t)

where

ṽ(p, t) = v(p, t (t))√
2(T − t (t))

= k̃ + λ̃ = k̃ν + λ̃τ and t (t) = T − e−2t .

Notice that we did not put the “tilde” over the unit tangent and normal, since
they remain the same in the rescaling.

We will often write Õ(t) = F̃x0(O, t) for the 3-point of the rescaled triod
T̃x0,t, when there is no ambiguity on the point x0.

The rescaled curvature evolves according to the following equation,

(65) ∂tk̃ = k̃σσ + k̃σ λ̃ + k̃3 − k̃

which can be obtained as in Section 3 by means of the commutation law

(66) ∂t∂σ = ∂σ ∂t + (k̃2 − λ̃σ − 1)∂σ ,

where we denoted with σ the arclength parameter for T̃x0,t.
By a straightforward computation ([25], [38, Lemma 2.3]) we have the

following rescaled version of the monotonicity formula.
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Proposition 6.7 (Rescaled Monotonicity Formula). Let x0 ∈ R
2 and set

ρ̃(x) = e− |x |2
2

For every t ∈ [−1/2 log T, +∞) the following identity holds

(6.7)

d

dt

∫
T̃x0,t

ρ̃(x) dσ = −
∫

T̃x0,t

| k̃ + x⊥|2ρ̃(x) dσ

+
3∑

i=1

〈
P̃ i

x0,t

∣∣∣ τ i (1, t (t))
〉

ρ̃(P̃ i
x0,t)

where P̃i
x0,t = Pi −x0√

2(T −t (t))
. Integrating between t1 and t2 with −1/2 log T ≤ t1 ≤

t2 < +∞ we get

(6.8)

∫
t2

t1

∫
T̃x0,t

| k̃ + x⊥|2ρ̃(x) dσ dt =
∫

T̃x0,t1

ρ̃(x) dσ −
∫

T̃x0,t2

ρ̃(x) dσ

+
3∑

i=1

∫
t2

t1

〈
P̃ i

x0,t

∣∣∣τ i (1, t (t))
〉

ρ̃(P̃ i
x0,t)dt .

Then, we have the analog of Lemma 6.5 whose proof follows in the same
way, substituting the rescaled quantities.

Lemma 6.8. For every index i ∈ {1, 2, 3} the following estimate holds

∣∣∣∣∫ +∞

t

〈
P̃ i

x0,ξ

∣∣∣ τ i (1, t (ξ))
〉

ρ̃(P̃ i
x0,ξ ) dξ

∣∣∣∣ ≤ √
π/2 .

Then, for every x0 ∈ R
2,

lim
t→+∞

3∑
i=1

∫ +∞

t

〈
P̃ i

x0,ξ

∣∣∣ τ i (1, t (ξ))
〉

ρ̃(P̃ i
x0,ξ ) dξ = 0 .

We need the following lemmas in order to study the possible limits of the
rescaled triods.

Lemma 6.9. Under the Type I hypothesis (6.1) there exists limt→T F(O, t) =
Ô ∈ R

2.
The 3-point F̃x0(O, t) of the rescaled triods either it is uniformly bounded or it

goes to infinity as t → +∞, according to the fact that x0 = Ô or not.
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Proof. Since at the 3-point we have
∑3

i=1(λ
i )2 = ∑3

i=1(k
i )2 ≤ C/(T − t)

we have also |v(O, t)|2 ≤ C/(T − t) for some constant C > 0 independent of
t ∈ [0, T ). Then we get

|F(O, t1) − F(O, t2)| =
∣∣∣∣∣
∫ t2

t1

∂ F

∂t
dt

∣∣∣∣∣
≤
∫ t2

t1

|v(O, t)| dt ≤
∫ t2

t1

√
C

T − t
dt ≤ 2

√
C(T − t1)

for every 0 ≤ t1 ≤ t2 < T . Hence, the limit limt→T F(O, t) = Ô there exists
and

(6.9) |F(O, t) − Ô | ≤ 2
√

C(T − t)

for every t .
Considering then the 3-points F̃Ô(O, t) of the triods T̃Ô,t

, we have

|F̃Ô(O, t)| = |F(O, t) − Ô|√
2(T − t)

≤ 2
√

C(T − t)√
2(T − t)

=
√

2C

hence, if x0 = Ô then the 3-point always belongs to the ball B√
2C .

By the same inequality (6.9) it follows that if x0 �= Ô then the 3-points of
the rescaled triods go to infinity as t → +∞.

Lemma 6.10. The curvature k̃ of the rescaled triods T̃x0,t is uniformly bounded
in space and time. Moreover, for every ball BR centered at the origin of R

2, we
have the following estimates with a constant CR independent of x0 ∈ R

2 and t ∈
[−1/2 log T, +∞)

H1(T̃x0,t ∩ BR) ≤ CR .

Proof. The maximum of the curvature of every rescaled triod is bounded
by a uniform constant, by the assumption (6.1) on the blow up rate of the
curvature.

Moreover, using the rescaled monotonicity formula (6.7) we get∫
T̃x0,t

ρ̃ dσ =
∫

T̃x0,−1/2 log T

ρ̃ dσ −
t∫

−1/2 log T

∫
T̃x0,ξ

| k̃ + x⊥|2ρ̃ dσ dξ

+
3∑

i=1

t∫
−1/2 log T

〈
P̃ i

x0,ξ

∣∣∣ τ i (1, t (ξ))
〉

ρ̃(P̃ i
x0,ξ ) dξ ≤ C

where the last estimate follows from Lemma 6.8.
Hence, since ρ̃ ≥ e−R2/2 in every ball BR centered at the origin of R

2, we
have a uniform bound H1(T̃x0,t ∩ BR) ≤ CR for some constants CR independent
of t and x0.
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Definition 6.11. We say that a sequence of triods converges in the Cr
loc

topology if, after reparametrizing the curves composing the triods in arclength,
they converge in Cr in every compact of R

2.
The definition of convergence in W n,p

loc is analogous.

Lemma 6.12. The function (see Section 4)

E(T) = inf
p,q∈T

p �=q

|p − q|2
Ap,q

,

defined on the class of C2 triods without self-intersections (bounded or unbounded
and with or without end points), is upper semicontinuous with respect to the C2

loc
convergence.

Moreover, E is dilation and translation invariant.
Hence, every C2

loc limit of rescaled triods satisfies E > C > 0 where the
uniform positive constant C is given by Theorem 4.6. Thus, such limit has no
self-intersections.

Proof. The proof is straightforward.

Lemma 6.13. For every x0 ∈ R
2 and every sequence of rescaled times tj → ∞

there exists a subsequence tjl such that the triods T̃x0,tjl
converge in the C1

loc topology
to a limit set T∞ which, if non empty, is a curve or a triod with at most one end point
and without self-intersections.

Moreover, the Radon measuresH1mT̃x0,tjl
weakly� converge in R

2 to the Radon

measure H1mT∞.

Proof. Reparametrizing the triods in arclength, we have curves with uni-
formly bounded first and second derivatives, moreover, by Lemma 6.10, for every
ball BR centered at the origin of R

2 we have a uniform bound H1(T̃x0,t ∩ BR) ≤
CR for some constants CR independent of t.

Then, by standard compactness arguments (see [25], [31], 34]), the sequence
T̃x0,tj of reparametrized triods has a subsequence T̃x0,tjl

weakly� converging in

W 2,∞
loc , then in the C1

loc topology to a (possibly empty) set T∞ which, if x0 is
distinct from all the Pi , has no end points since they go to infinity during the
rescaled flow. If x0 = Pi , the set T∞ has a single end point at the origin of R

2.
In both cases the 3-point could be present or not, if it is present then the

angles are of 120 degrees by the convergence of the curves in C1
loc. The only

“strange” situation is if x0 = P1, for instance, and liml→∞ Õ(tjl ) = 0, which is
in contradiction with the fact that the three lengths are uniformly bounded away
from zero, indeed in this situation the curve between P1 and the 3-point has
to collapse otherwise embeddedness, which we are going to show now, is lost.

The limit set, which we suppose non empty, has no self-intersections by
Lemma 6.12.

Finally, the embeddedness of the limit and the C1 convergence in every
compact imply that the Radon measures H1mT̃x0,tjl

weakly� converge in R
2 to

the Radon measure H1mT∞.
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Lemma 6.14. If the 3-point of the rescaled triod T̃x0,t does not belong to the ball
B2R(z) ⊂ R

2 with radius 2R and center z ∈ R
2, then there exist constants δR > 0

and DR, independent of the points z, x0 ∈ R
2 and the time t ∈ [−1/2 log T, +∞),

such that k̃σ , k̃σσ and k̃t for the family
{
T̃x0,r

∣∣ r ∈ [t, t+δR]
}

are uniformly bounded
by DR in the smaller ball BR(z).

Proof. By the control on the curvature, the velocity of the 3-point is
bounded by a uniform constant, hence, for some δR > 0 in the time interval
[t − δR, t + δR] the 3-point cannot enter in the ball B3R/2(z).

Then, as the 3-points are far from the ball, by the uniform bound on the
curvature of all the rescaled triods, repeating the interior estimates of Ecker and
Huisken in [17] (see also [16, Section 2]) for the rescaled flow and recalling
the evolution equation for the rescaled curvature ∂tk̃ = k̃σσ + η̃k̃σ + k̃3 − k̃, we
get the thesis, possibly choosing a smaller δR > 0.

Remark 6.15. The same conclusion clearly holds for a family of triods
moving by curvature (not rescaled) if we have a uniform bound on the curvature.

Proposition 6.16. For every x0 ∈ R
2 and every sequence of rescaled times

tj → ∞ there exists a subsequence tjl such that the triods T̃x0,tjl
converge in the

C2
loc topology to a limit set T∞ which, if non empty, is one of the following:

• a triod composed of three halflines originating from 0 ∈ R
2,

• a halfline from 0 ∈ R
2,

• a straight line from 0 ∈ R
2.

Moreover, the Radon measures H1mT̃x0,tjl
weakly� converge in R

2 to the Radon

measure H1mT∞.

Proof. By Lemma 6.13, we have to show that, supposing the C1
loc-limit

T∞ = liml→∞ T̃x0,tjl
non empty, it is among the ones of the statement.

Putting t1 = −1/2 log T and sending t2 to +∞ in the rescaled monotonicity
formula (6.8), by Lemma 6.5 we get

+∞∫
−1/2 log T

∫
T̃x0,t

| k̃ + x⊥|2ρ̃ dσ dt < +∞ ,

hence, extracting from the sequence of times tjl a subsequence (not relabelled)
with tjl+1 > tjl + 1/ l, we see that there exists an increasing sequence rjl such
that tjl ≤ rjl ≤ tjl + 1/ l and on a subsequence of the rjl (again not relabelled)
we have

lim
l→∞

∫
T̃x0,rjl

| k̃ + x⊥|2ρ̃ dσ 1 = 0 .
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Reapplying Lemma 6.13, we can assume that also the triods T̃x0,rjl
converges

to some limit T∞ in W 2,∞
loc (possibly empty), and since the integral above

is lower semicontinuous in this convergence (see [34]), the limit T∞ satisfies
k̃ + x⊥ = 0, distributionally. The limit set is composed of curves in W 2,∞

loc but
from the relation k̃ + x⊥ = 0 it follows that k̃ is continuous, since the curves
are C1

loc.
Such limit set is a triod or a curve and the end point is present or not

according to the choice of the point x0.
As the relation above implies k̃ = −〈x | ν〉 at every point x ∈ T∞, the

classification Lemmas 5.2, 5.3, 5.4 show that in any case the curvature of the
limit set is zero everywhere and that T∞ is among the sets of the statement.
Indeed, when such limit is an halfline, we have necessarily that the point x0
coincides with one of the fixed end points of the triods, hence the limit halfline
starts from the origin of R

2.
We show now that T∞ = T∞ and that the convergence is in the C2

loc
topology, proving the proposition.

We consider a point y ∈ T∞ such that the distance dist(y, T∞) > 0. If
we denote with yt = F̃x0(pt, t) the point of minimum distance from y in the
rescaled triod T̃x0,t and we look at the function f (t) = dist(y, T̃x0,t) = |y − yt|
we have (with the usual remarks about differentiability),

d f (t)

dt
=

〈
y − yt

∣∣∣ ∂ F̃x0 (pt,t)

∂t

〉
|y − yt|

=
〈

y − yt

∣∣∣ ṽ(pt, t) + F̃x0(pt, t)
〉

|y − yt| ≤ C |k̃| + |F̃x0(pt, t)|

where we substituted the velocity with the curvature since, if yt is in the
interior, the vector (y − yt) is orthogonal to T̃x0,t by minimality, if yt is an
end point then ṽ(pt, t) = 0, finally if yt is the 3-point, by the usual relation∑3

i=1(λ̃
i )2 = ∑3

i=1(k̃
i )2, the velocity is controlled by a constant multiple of the

curvature.
Since k̃ is uniformly bounded and the triangular inequality gives |F̃x0(pt,t)|=

|yt| ≤ |y| + |y − yt| ≤ C + f (t), we conclude

d f (t)

dt
≤ f (t) + C .

Integrating this differential inequality on the interval [tjl , rjl ] we get

f (rjl ) ≤ erjl
−tjl ( f (tjl ) + C) − C ≤ e1/ l f (tjl ) + C(e1/ l − 1)

so, if l →∞, since we know that liml→∞ f (tjl )=0 we have also liml→∞ f (rjl )=
0, thus y ∈ T∞.
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This clearly implies that T∞ cannot be empty, then, inverting the roles of the
two limit sets and repeating this argument we conclude that they must coincide.

Now we show the C2
loc convergence.

If the limit set T∞ is a straight line, by the C1 convergence in every ball
BR and the uniform bound on the curvature k̃, we can apply Lemma 6.14 to
get a uniform bound on the norm ‖k̃σ‖L∞(BR ) for all the triods T̃x0,tjl

, hence

the C2
loc convergence follows.

With the same argument we have a uniform bound on k̃σ in the subset
Bn R \ B2R , for every n ∈ N greater than 2, in the case that the 3-point of T̃x0,t

definitely belongs to the ball BR (see Lemma 6.9), or the limit T∞ is a halfline
from the origin of R

2.
Then, we work out a local version of the estimates leading to Proposi-

tion 3.17 in order to deal with these two situations. By means of equations (6.5)
and (6.6) we have

∂tk̃ = k̃σσ + k̃σ λ̃ + k̃3 − k̃

∂tk̃σ = k̃σσσ + k̃σσ λ̃ + 4k̃2k̃σ − 2k̃σ

∂tk̃σσ = k̃σσσσ + λ̃k̃σσσ + 5k̃2k̃σσ + 8k̃k̃2
σ − 3k̃σσ

hence, for every smooth function ϕ : R
2 × [0, δ] → [0, 1] with compact support

we compute,
d

dt

∫
T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)

ϕ2 dσ = −
∫

T̃x0,t

(
k̃2
σ + tk̃2

σσ + t
2k̃2

σσσ

)
ϕ2 dσ

− ϕ2(Õ, t)

3∑
i=1

2k̃k̃σ + 2tk̃σ k̃σσ + t
2k̃σσ k̃σσσ

∣∣∣∣
at the 3-point

+
∫

T̃x0,t

(
2k̃k̃σ + 2tk̃σ k̃σσ + t

2k̃σσ k̃σσσ

)
λ̃ϕ2 dσ

+
∫

T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)(

ϕ2λ̃σ + 2ϕ〈∇ϕ | τ 〉λ̃
)

dσ

+
∫

T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)(

1 − k̃2
)

ϕ2 dσ

+ 2
∫

T̃x0,t

[
k̃4 − k̃2 + t

(
4k̃2k̃2

σ − 2k̃2
σ

)
+ t2

2

(
8k̃k̃2

σ k̃σσ − 3k̃2
σσ

)]
ϕ2 dσ

+
∫

T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)(

〈∇ϕ2 | k̃〉 + 2ϕϕt

)
dσ

where we already forgot the end points contributions, by Lemma 3.10.
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After integrating by parts the terms containing λ̃, if 〈∇ϕ2 | k̃〉+2ϕϕt is non
positive for t ∈ [0, δ] and taking into account that k̃ is bounded, we get

d

dt

∫
T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)

ϕ2 dσ

≤ −
∫

T̃x0,t

(
k̃2
σ + tk̃2

σσ + t
2k̃2

σσσ

)
ϕ2 dσ

− ϕ2(Õ, t)

3∑
i=1

2k̃k̃σ + 2tk̃σ k̃σσ + t
2k̃σσ k̃σσσ

∣∣∣∣
at the 3-point

− ϕ2(Õ, t)

3∑
i=1

k̃2λ̃ + tk̃2
σ λ̃ + t

2k̃2
σσ λ̃/2

∣∣∣∣
at the 3-point

+ C
∫

T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)

ϕ2 dσ

+ 2
∫

T̃x0,t

[
k̃4 − k̃2 + t

(
4k̃2k̃2

σ − 2k̃2
σ

)
+ t2

2

(
8k̃k̃2

σ k̃σσ − 3k̃2
σσ

)]
ϕ2 dσ .

In doing this we choose a function ϕ as follows. If the 3-point of the rescaled
triods is bounded, according to Lemma 6.9, and it is definitely contained in
the ball of radius R, supposing that the curvature is uniformly bounded
by some constant C > 0, we set ϕ(x, t) = √

h(ψ(x) − Ct‖∇ψ‖L∞) choos-
ing a radially monotone and symmetric smooth function ψ : R

2 → [0, 1],
with compact support, such that ψ |B2R = 1 and ψ |

R2\B3R
= 0 and a smooth in-

creasing function h : R → [0, 1] such that h(z) = 0 if z ≤ 0 and
h(z) = 1 for z ≥ 1. Then, for δ > 0 small enough, depending only on
‖∇ψ‖L∞ and C , the function ϕ satisfies the requirements above and possi-
bly choosing a smaller value δ > 0, there holds ϕ ≥ 1/2 on B2R for every
t ∈ [0, δ].

Since by Lemma 6.9 the 3-point of the rescaled triods is definitely inside
or outside the ball BR we can consider ϕ2(Õ, t) constantly equal to one or
zero.

Hence, if the 3-point is present, we are dealing with the case where T∞ is
an unbounded triod, so, by the C1

loc convergence, the lengths of the curves in
the ball B2R are bounded from below by R and we can treat the 3-point term
as before in proving Proposition 3.17. Then, denoting with I the boundary
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term, we get

d

dt

∫
T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)

ϕ2 dσ ≤ −
∫

T̃x0,t

(
k̃2
σ + tk̃2

σσ + t
2k̃2

σσσ

)
ϕ2 dσ + I

+ C
∫

T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)

ϕ2 dσ

+ 2
∫

T̃x0,t

[
k̃4 − k̃2 + t

(
4k̃2k̃2

σ − 2k̃2
σ

)
+ t2

2

(
8k̃k̃2

σ k̃σσ − 3k̃2
σσ

)]
ϕ2 dσ

≤ −
∫

T̃x0,t

(
k̃2
σ + tk̃2

σσ + t
2k̃2

σσσ

)
ϕ2 dσ +I+C+C

∫
T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)

ϕ2 dσ

+ C
∫

T̃x0,t

(
tk̃2

σ + t
2k̃2

σ k̃σσ

)
ϕ2 dσ

≤ −
∫

T̃x0,t

(
k̃2
σ + tk̃2

σσ + t
2k̃2

σσσ

)
ϕ2 dσ +I+C+C

∫
T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)

ϕ2 dσ

+ C
∫

T̃x0,t

(
tk̃2

σ + t
2k̃2

σσ + t
2k̃4

σ

)
ϕ2 dσ

and choosing δ < 1 such that δC < 1/2, it follows

d

dt

∫
T̃x0,t

(
k̃2+tk̃2

σ +t
2k̃2

σσ /2
)

ϕ2 dσ ≤ −1/2
∫

T̃x0,t

(
k̃2
σ + tk̃2

σσ + t
2k̃2

σσσ

)
ϕ2 dσ +I

+ C + C
∫

T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)

ϕ2 dσ

+ C
∫

T̃x0,t

t
2k̃4

σϕ2 dσ .

We break the last term into∫
T̃x0,t

t
2k̃4

σϕ2 dσ =
∫

T̃x0,t∩BR

t
2k̃4

σϕ2 dσ +
∫

T̃x0,t∩(B3R\BR )

t
2k̃4

σϕ2 dσ

=
∫

T̃x0,t∩BR

t
2k̃4

σ dσ +
∫

T̃x0,t∩(B3R\BR )

t
2k̃4

σϕ2 dσ

as ϕ is zero outside the ball B3R .
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The second integral is bounded since, by the argument based on the interior
estimates of Ecker and Huisken, discussed previously, k̃σ is uniformly bounded
for T̃x0,t ∩ (B3R \ BR).

The first integral is controlled by interpolating between a possibly large mul-
tiple of

∫
T̃x0,t∩BR

t2k̃2 dσ , which is bounded, and a small fraction of
∫

T̃x0,t∩BR

t2k̃2
σσσ dσ

which is less than
∫

T̃x0,t

t2k̃2
σσσϕ2 dσ .

Hence, we conclude (in the case T∞ is a halfline the 3-point contribution
is not present)

d

dt

∫
T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)

ϕ2dσ ≤+C
∫

T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)

ϕ2 dσ + C

−
3∑

i=1

2k̃k̃σ + 2tk̃σ k̃σσ +t
2k̃σσ k̃σσσ

∣∣∣∣
at the 3-point

−
3∑

i=1

2k̃2λ̃ + tk̃2
σ λ̃ + t

2k̃2
σσ λ̃/2

∣∣∣∣
at the 3-point

and dealing with the 3-point terms as in Section 3 we finally get∫
T̃x0,t

(
k̃2 + tk̃2

σ + t
2k̃2

σσ /2
)

ϕ2 dσ ≤ C

for every t ∈ [0, δ], with uniform constants δ and C . Reparametrizing the flow
in time, in such a way that tjl converges to δ, we have∫

T̃x0,tjl
∩BR

k̃2
σ dσ ≤ C/δ

for every l ∈ N.
Then, since ‖k̃σ‖L2(BR ) and k̃ are uniformly bounded, we can finally extract

a subsequence of triods converging in the C2
loc topology to T∞.

By means of this proposition we can exclude the first case of Lemma 6.1.

Proposition 6.18. Type I singularities such that for an index i ∈ {1, 2, 3} there
exists a sequence of times tj → T satisfying

[ki (O, tj )]
2 ≥ C

T − tj

for some positive constant C, are not present.
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Proof. We have seen in Lemma 6.9 that limt→T F(O, t) = Ô .
Considering the triods T̃Ô,tj

, where tj = t(tj ), by Proposition 6.16 we can

extract a subsequence (not relabelled) C2 converging in the ball of radius
√

2C
to a limit set with zero curvature, moreover this limit is not empty because the
3-point F̃Ô(O, tj ) belongs to such ball for every j ∈ N, again by Lemma 6.9.

We have now a contradiction because at these points

[k̃i (O, tj )]
2 = 2(T − tj )[k

i (O, tj )]
2 ≥ 2(T − tj )

C

T − tj
= 2C > 0 ,

hence, as the convergence is in the C2 topology, the curvature of the limit
cannot be zero.

Following Ilmanen, we deal now with the second case of Lemma 6.1.

Proposition 6.18. There are no Type I singularities such that

max
Tt

k2 = ε(t)

T − t

and ε : [0, T ) → R goes to zero as t → T .

Proof. By means of Lemma 6.2 we know that there exists an index i ∈
{1, 2, 3} and a sequence of times tj ↗ T such that

k2(p, t) ≤ [ki (O, tj )]
2 for every t ≤ tj , p ∈ T and [ki (O, tj )]

2 ↗ +∞ .

By Lemma 6.9, the limit limt→T F(O, t) = Ô exists and repeating the compu-
tation in its proof we get

|F(O, t) − Ô | ≤ 2
√

C(T − t)ε(t)

for every t ∈ [0, T ).
We can suppose that Ô = 0 ∈ R

2 and we consider the sequence of positive
values αj = maxTtj

|k| ↗ +∞, then we rescale the triods Tt as follows, let

T
j
t = αj (Ttj +t/α2

j
) for t ∈ [−tjα

2
j , (T − tj )α

2
j ).

We see that −tjα
2
j → −∞ and, possibly passing to a subsequence, we can

assume that (T −tj )α
2
j ↘ 0. Then, notice that, for every j ∈ N large enough, the

rescaled triods T
j
t still move by curvature with end points αj Pi for t ∈ [−1, 0].

Moreover if O j (t) is the 3-point of T
j
t , we have

(6.10)

|O j (t)| = αj |F(O, tj + t/α2
j )|

≤ αj 2
√

C(T − tj − t/α2
j )ε(tj + t/α2

j )

= 2
√

C[(T − tj )α
2
j − t]ε(tj + t/α2

j )
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which goes to zero when j → ∞ uniformly for t ∈ [−1, 0], since [(T − tj )α
2
j −

t] → −t and ε(tj + t/α2
j ) → 0.

We set εj = ε(tj ) ≥ 0 and we denote with

ρj (x, t) = e
− |x |2

4(εj −t)√
4π(εj − t)

,

the Huisken’s backward heat kernel relative to (0, εj ) ∈ R
2 × R.

Computing as in [28, Lemma 8] and [29, Section 3] we show that a
subsequence of the flows T

j
t converges to a curvature flow T

∞
t

on [−1, 0]
which is homothetic.∫ 0

−1

∫
T

j
t

∣∣∣∣∣ k + x⊥

2(εj − t)

∣∣∣∣∣
2

ρj (x, t) dσ dt

=
∫ 0

−1

∫
T

tj +t/α2
j

αj

∣∣∣∣∣ k

αj
+ αj y⊥

2(εj − t)

∣∣∣∣∣
2

e
−

α2
j |y|2

4(εj −t)√
4π(εj − t)

ds dt

=
∫ tj

tj −1/α2
j

α2
j

∫
Tt

αj

∣∣∣∣∣ k

αj
+ αj y⊥

2(T − t)α2
j

∣∣∣∣∣
2

e
−

α2
j |y|2

4(T −t)α2
j√

4π(T − t)α2
j

ds dt

=
∫ tj

tj −1/α2
j

∫
Tt

∣∣∣∣∣ k + y⊥

2(T − t)

∣∣∣∣∣
2

ρ0(y, t) ds dt

where ρ0 is the backward heat kernel relative to (0, T ) ∈ R
2 × R.

By the integrated monotonicity formula (6.4), this last term is equal to∫
T

tj −1/α2
j

ρ0(y, tj −1/α2
j )ds−

∫
Ttj

ρ0(y, tj ) ds+
3∑

i=1

∫ tj

tj −1/α2
j

〈
Pi | τ i (1, t)

〉
2(T − t)

ρ0(Pi , t) dt

and this last expression goes to zero when j → ∞, by Lemma 6.6 and 6.5.
Thus, for almost every t ∈ [−1, 0] we have that

(6.11) lim
j→∞

∫
T

j
t

∣∣∣∣∣ k + x⊥

2(εj − t)

∣∣∣∣∣
2

ρj (x, t) dσ = 0 .

Now, all the flows T
j
t have uniformly bounded curvature for t ∈ [−1, 0] since

by construction,

max
T

j
t

k2 = α−2
j max

T
tj +tα2

j

k2 ≤ α−2
j max

Ttj

k2 = α−2
j [ki (O, tj )]

2 = 1
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hence, repeating the local length estimate of Lemma 6.10 and the convergence
argument in the proof of Proposition 6.16 (interior estimates of Ecker and
Huisken plus the special treatment of the 3-point terms, see Remark 6.15), we
can extract a subsequence of the flows converging in the C2

loc topology to a
curvature flow of triods T

∞
t

in [−, 1, 0] which, by limit (6.11) must satisfy∫
T

∞
t

∣∣∣ k − x⊥/2t

∣∣∣2 ρj (x, t) dσ = 0

for almost every t ∈ [−1, 0]. By Lemma 5.2, it follows that for every t ∈ [−1, 0],
every triod T

∞
t

is composed of three halflines by the origin of R
2 and it has

zero curvature.
Looking in particular at T

∞
0 which is the limit in the C2 topology of the

triods αj Ttj , we finally have a contradiction since these latter have at least one
squared curvature equal to one at their 3-points (which converge to the origin)
by the initial choice of the sequence tj ↗ T .

The rest of the section is concerned with the last case of Lemma 6.1, so,
from now on, we suppose that the maximum of the curvature is not taken at the
3-point and that limt→T (T − t)k2(O, t) = 0, otherwise we are in the first case.
Since in this case we have no bound on the tangential velocity at a maximum
point of the curvature, we modify our function F to keep it under control.

Let θ i : [0, 1] × [0, T ) → [0, 1] be the smooth solutions of the following
ODE’s,

∂θ i (x, t)

∂t
= λi (0, t)(1 − x) − λi (θ i (x, t), t)

|γ i
x (θ

i (x, t), t)|
with the initial conditions θ i (x, 0) = x . These functions are well defined on
the interval [0, T ) since the curves γ i and all their derivatives are smooth and
γ i

x �= 0, moreover θ i (0, t) = 0, θ i (1, t) = 1 are barrier solutions, as λi (1, t) = 0.
Defining naturally, via θ i , a function θ : T × [0, T ) → T, the function

G(p, t) = F(θ(p, t), t) satisfies

∂G(p, t)

∂t
= k + λ + Fp

∂θ

∂t
= k + λτ + Fp

|Fp| (λ(O, t)(1 − x(p)) − λ)

= k(G(p, t)) + λ(O, t)(1 − x(p))τ (G(p, t))

where x(p) denotes the value in the interval [0, 1] such that for a certain index
i ∈ {1, 2, 3}, F(p, t) = γ i (x(p), t).

Notice that, by construction, G(O, t) = F(O, t) and G(Pi , t) = F(Pi , t).
From now on in all the rest of this section we will refer all the quantities τ , ν,

k, λ, etc... to the new parametrization of the flow G, that is, for instance k(p, t) is
the curvature of the triod Tt at the point G(p, t) and so on.

Denoting with w(p, t) the new velocity of the point G(p, t) ∈ Tt and with
η(p, t) = η(p, t)τ (p, t) its tangential part, that is, w = k + η, we have

η(p, t) = η(p, t)τ (p, t) = λ(O, t)(1 − x(p))τ (p, t) ,

then clearly ηi (O, t) = λi (O, t) and η(Pi , t) = 0.
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By assumption (6.1) and the relations between k and λ at the 3-point, the
new velocity w(p, t) = k(p, t)+λ(O, t)(1− x(p))τ (p, t) is uniformly bounded
by C/

√
T − t .

The evolution equation for the curvature has to be modified in

∂t k = kss + ηks + k3

and the commutation law as follows,

∂t∂s = ∂s∂t + (k2 − ηs)∂s .

Rescaling G, like we did before for F , we define the map G̃x0 : T ×
[−1/2 log T, +∞) → R

2 as

G̃x0(p, t) = G(p, t) − x0√
2(T − t)

t(t) = −1

2
log (T − t) .

Notice that the rescaled triods are not changed

T̃x0,t = Tt − x0√
2(T − t)

but now they evolve according to the equation

∂

∂t
G̃x0(p, t) = w̃(p, t) + G̃x0(p, t)

where w̃(p, t) is the rescaled velocity given by

w̃(p, t) = w(p, t (t))√
2(T − t (t))

= k̃ + λ̃(O, t (t))(1 − x(p))τ = k̃ν + η̃τ .

The rescaled curvature evolves according to the following equation,

(6.12) ∂tk̃ = k̃σσ + η̃k̃σ + k̃3 − k̃

and the commutation law is

∂t∂σ = ∂σ ∂t + (k̃2 − η̃σ − 1)∂σ .

We call pt �= O a point in T where the curvature achieves its maximum,
so by hypothesis

1

2(T − t)
≤ k2(pt , t) ≤ C

2(T − t)
.

We define the map ̂: T → R
2 as follows

p̂ = lim
t→T

G(p, t)
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for every p ∈ T. Such limit exists for every p ∈ T since, for every 0 ≤ t1 ≤
t2 < T , we have

|G(p, t1) − G(p, t2)| =
∣∣∣∣∣
∫ t2

t1

∂G

∂t
dt

∣∣∣∣∣
≤
∫ t2

t1

|w(p, t)| dt ≤
∫ t2

t1

√
C

T − t
dt ≤ 2

√
C(T − t1)

and then

(6.13) |G(p, t) − p̂ | ≤ 2
√

C(T − t)

for every t . Notice that the definition of Ô coincides with the one in Lemma 6.9,
since G(O, t) = F(O, t).

Lemma 6.19.
(1) The map ̂: T → R

2 is continuous.
(2) For every p ∈ T all the triods T̃ p̂,t

intersect the closed ball B√
2C centered

at the origin of R
2, indeed, G̃ p̂(p, t) belongs to such ball for every t ∈

[−1/2 log T, +∞).
(3) The point Ô is different from P1, P2, P3 (which coincide respectively with P̂1,

P̂2, P̂3).

Proof.
(1) Since all the maps G(·, t) are continuous and inequality (6.13) says that

they converge uniformly as t → T , the map ̂: T → R
2 is also continuous.

(2) By inequality (6.13), we have

|G̃ p̂(p, t)| = |G(p, t (t)) − p̂|√
2(T − t (t))

≤ 2
√

C(T − t (t))√
2(T − t (t))

=
√

2C

and the second statement is proved.
(3) The point Ô cannot coincides with any of the end points Pi , let us say

P1, otherwise, rescaling the triods around such end point, by Proposi-
tion 6.16 we can find a subsequence of the rescaled triods converging in
the C2

loc topology to a halfline from the origin of R
2, but Lemma 6.9 says

that since Ô = P1 the 3-point cannot disappear in the limit, which is a
contradiction.

Following Stone [37], we define the function �(p, t) as

�(p, tj ) =
∫

Ttj

ρ p̂ ds = 1√
2π

∫
T̃

p̂,tj

ρ̃ dσ

for every p ∈ T and the limiting heat density as the limit for t → T of

�̂(p) = lim
t→T

�(p, t) ,

if it exists.
Notice that since p �→ p̂ is continuous, all the maps p �→ �(p, t) are also

continuous, for every t ∈ [0, T )
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Proposition 6.20. The limit �̂(p) exists and it is finite for every p ∈ T,
moreover, �̂(p) can take only the values 1/2, 1, 3/2.

Proof. As in Lemma 6.6, we define the function b : T × [0, T ) → R as
follows,

(6.14) b(p, t) =
∫ T

t

3∑
i=1

〈
Pi − p̂

2(T − ξ)

∣∣∣∣ τ i (1, ξ)

〉
ρ p̂(Pi , ξ) dξ

then Lemma 6.5 says that b is bounded and for every p ∈ T we have
limt→T b(p, t) = 0. The monotonicity formula (6.3) can be rewritten as

d

dt

(
�(p, t) + b(p, t)

) = −
∫

Tt

∣∣∣∣∣ k + (x − p̂ )⊥

2(T − t)

∣∣∣∣∣
2

ρ p̂ ds ≤ 0 ,

hence, being non increasing and bounded from below, the functions
(
�(·, t) +

b(·, t)
)

pointwise converge on all T when t → T . Since we have seen that
b(·, t) also pointwise converge to zero everywhere, the limit �̂(p) exists for
every p.

We consider now, by means of Proposition 6.16, a sequence of times tj ↗ T
such that the rescaled triods T̃ p̂,tj

converge in the C2
loc topology to some zero

curvature set T∞.
Taking into account that k̃ is uniformly bounded, we compute

d

dt

∫
T̃

p̂,t

e−|x | dσ =
∫

T̃
p̂,t

e−|x |
(

1 − k̃2 − 〈x | k̃ + x〉
|x |

)
dσ

≤
∫

T̃
p̂,t

e−|x | (C − |x |) dσ

≤ C
∫

T̃
p̂,t

∩BC+1

e−|x | dσ −
∫

T̃
p̂,t

\BC+1

e−|x | dσ

≤ (C + 1)

∫
T̃

p̂,t
∩BC+1

e−|x | dσ −
∫

T̃
p̂,t

e−|x | dσ .

This means that if
d

dt

∫
T̃

p̂,t

e−|x | dσ ≥ 0

then ∫
T̃

p̂,t

e−|x | dσ ≤ (C + 1)

∫
T̃

p̂,t
∩BC+1

e−|x | dσ
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which clearly implies that for every t ∈ [−1/2 log(T − t), +∞)∫
T̃

p̂,t

e−|x | dσ ≤ (C + 1)

∫
T̃

p̂,t
∩BC+1

e−|x | dσ

≤ (C + 1)

∫
T̃

p̂,t
∩BC+1

e
C2−|x |2

2 dσ

= (C + 1)eC2/2
∫

T̃
p̂,t

∩BC+1

e− |x |2
2 dσ

= (C + 1)eC2/2

√
2π

�(p, t (t)) ≤ D

where the constant D does not depend on t, since we have seen that �(p, t)
converges as t → T .

Now, we subdivide T̃ p̂,tj
into annular pieces T̃

n
p̂,tj

for n ∈ N, as follows:

T̃
0
p̂,tj

= T̃ p̂,tj
∩ B1 T̃

n
p̂,tj

= {x ∈ T̃ p̂,tj
| 2n−1 ≤ |x | < 2n} for every n ≥ 1.

By the computations above
∫

T̃
p̂,tj

e−|x | dσ is bounded independently of j ∈ N,

then trivially

H1(T̃n
p̂,t

) ≤ e(2n)

∫
T̃

n
p̂,t

e−|x | dσ ≤ Ae(2n) ,

hence, for every n ≥ 1 we have∫
T̃

n
p̂,t

e− |x |2
2 dσ ≤ e− 1

2 (2n−1)2 Ae(2n) = Ae(2n−22n−3) .

Now, for every ε > 0 we can find a number n0 ∈ N such that
∞∑

n=n0

Ae(2n−22n−3) ≤
ε, that is, if R ≥ 2n0−1, ∫

T̃
p̂,t

\BR

e− |x |2
2 dσ ≤ ε

for every t ∈ [−1/2 log(T − t), +∞). Since we have

�(p, tj ) =
∫

Ttj

ρ p̂ ds = 1√
2π

∫
T̃

p̂,tj

ρ̃ dσ
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we get ∣∣∣∣∣∣∣∣∣∣
�(p, tj ) − 1√

2π

∫
T̃

p̂,tj
∩BR

ρ̃ dσ

∣∣∣∣∣∣∣∣∣∣
≤ 1√

2π

∫
T̃

p̂,tj
\BR

ρ̃ dσ ≤ ε√
2π

.

Since �(p, tj ) converges to �̂(p) and the measures H1mT̃ p̂,tj
go to H1mT∞,

by Proposition 6.16, we obtain∣∣∣∣∣∣∣�̂(p) − 1√
2π

∫
T∞∩BR

ρ̃ dσ

∣∣∣∣∣∣∣ ≤ ε√
2π

and sending R to +∞,∣∣∣∣�̂(p) − 1√
2π

∫
T∞

ρ̃ dσ

∣∣∣∣ ≤ ε√
2π

,

hence, by the arbitrariness of ε,

�̂(p) = 1√
2π

∫
T∞

ρ̃ dσ .

As T∞ is one of the sets of Proposition 6.16, the claim follows from the fact
that

∫ +∞
0 e−y2/2 dy = √

π/2.

We consider the following three parts of T,

W − =
{

p ∈ T

∣∣∣∣ �̂(p) = 1/2
}

W =
{

p ∈ T

∣∣∣∣ �̂(p) = 1
}

W + =
{

p ∈ T

∣∣∣∣ �̂(p) = 3/2
}

.

Since by Lemma 6.19 the point Ô is distinct from P1, P2 and P3 (which
respectively coincide with P̂1, P̂2 and P̂3), if p̂ is different from all the Pi

and Ô , taking into account Proposition 6.16, every C2
loc converging subsequence

of the rescaled triods T̃ p̂,t
must go to a straight line, as the 3-point and the

end points go to infinity (recall Lemma 6.9). Hence �̂(p) = 1.
If p̂ = P1, for instance, then �̂(p) = �̂(P1) which is equal to 1/2 since

the 3-point of the rescaled triods goes to infinity and the end point P1 is fixed,
hence the limit is a halfline from the origin of R

2.
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Finally, with the same argument (now the three end points go to infinity)
if p̂ = Ô then �̂(p) = 3/2.

We get then the following equalities

W − =
{

p ∈ T

∣∣∣∣ p̂ ∈ {Pi }
}

W =
{

p ∈ T

∣∣∣∣ p̂ /∈ {Pi , Ô}
}

W + =
{

p ∈ T

∣∣∣∣ p̂ = Ô
}

moreover, notice that they are non empty with W −, W + closed and W open
in T, as the map p �→ p̂ is continuous.

Fixed x0 ∈ R
2, if limt→T

| p̂t −x0|2
T −t < +∞ (we recall that pt ∈ T is a

maximum point of k2 at time t ∈ [0, T )) we can find a sequence of points
pj = ptj ∈ T such that | p̂j − x0|2 ≤ 2D(T − tj ), for some constant D.

Rescaling around x0 like in the proof of Proposition 6.17, we see that the
limit triod is not empty because the point G̃x0(pj , tj ) belongs to the closed ball
of radius

√
2C + √

D, indeed

|G̃x0(pj , tj )| = |G(pj , tj ) − x0|√
2(T − tj )

≤ |G(pj , tj ) − p̂j |√
2(T − tj )

+ | p̂j − x0|√
2(T − tj )

≤ 2
√

C(T − tj )√
2(T − tj )

+
√

2D(T − tj )√
2(T − tj )

=
√

2C +
√

D ,

by Lemma 6.19. Moreover,

k̃2(pj , tj )
2 = 2(T − tj )k

2(pj , tj )
2 = 2(T − tj ) max

Ttj

k2 ≥ 2(T − tj )
1

2(T − tj )
= 1 ,

by our initial assumption, hence, we can exclude this situation as we did in
Proposition 6.17.

Thus, we can assume that for every x0 ∈ R
2

(6.15) lim
t→T

| p̂t − x0|2
T − t

= +∞ ,

in particular for x0 ∈ {Pi , Ô}. This implies that the points pt belong definitely
to the set W , that is, �̂(pt ) = 1.
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We consider then a sequence of times tj ↗ T , such that the sequence of
points pj = ptj ∈ T converges to some p ∈ T. By construction, maxTtj

k2 =
k2(pj , tj ), moreover we can suppose that all the points pj belong to the
same curve of T and to the set W , that is, �̂(pj ) is constantly equal to
1. By the uniform continuity of the map G, we have G(pj , tj ) → p̂ and
p̂j → p̂ .

Assumption (6.15) says also that for every radius R > 0 there exists an
index j0 ∈ N such that all the sets T̃ p̂j ,tj

∩ B3R do not contain neither the

3-point nor the three end points, for every j ≥ j0. Indeed,

|G̃ p̂j
(O, tj )| = |G(O, tj ) − p̂j |√

2(T − tj )
≥ | p̂j − Ô|√

2(T − tj )
− |G(O, tj ) − Ô|√

2(T − tj )

≥ | p̂j − Ô|√
2(T − tj )

− 2
√

C(T − tj )√
2(T − tj )

≥ | p̂j − Ô|√
2(T − tj )

−
√

2C

which goes to +∞ as j → ∞. The argument is the same for the three end
points Pi .

Lemma 6.21. For every ε > 0 there exists an open neighborhood Uε of W − in
T and a time tε such that �(p, t) ≤ 1 + ε for every p ∈ Uε and t ∈ [tε, T ).

Proof. Suppose, by contradiction, that tj ↗ T , pj = ptj → p ∈ W −

and �(pj , tj ) > 1 + ε for every j ∈ N. Then, we can also assume that
p̂ = P1 hence, d2

j , d3
j > C for a positive constant C and d1

j → 0, where
di

j = |Pi − p̂j |.
Since on W − the functions b(·, t) are locally constant, hence continuous,

and by Lemma 6.5 they converge uniformly to zero in W − which is compact,
by Dini’s Theorem, the functions �(·, t), restricted to W −, converge uniformly
to 1/2. Hence, fixing ε > 0, we can find a time tε and an open neigh-
borhood Uε of W − such that �(p, tε) ≤ 1/2 + ε/2 for every p ∈ Uε and
�(p, t) ≤ 1/2 + ε for every p ∈ W − and t ≥ tε. Moreover, we can choose tε
such that

1√
2π

+∞∫
C/

√
2(T −tε)

e−y2/2 dy ≤ ε/4 .

If now pj ∈ Uε \ W − and tε ≤ tj < T we estimate �(pj , tj ) with equation (6.4)
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as follows,

�(pj , tj ) = �(pj , tε) + (
�(pj , tj ) − �(pj , tε)

)
≤ 1/2 + ε/2 +

3∑
i=1

∣∣∣∣∣
∫ tj

tε

〈
Pi − p̂j

2(T − ξ)

∣∣∣∣ τ i (1, ξ)

〉
ρ p̂j

(Pi , ξ) dξ

∣∣∣∣∣
≤ 1/2 + ε/2 +

3∑
i=1

1√
2π

+∞∫
di

j /
√

2(T −tε)

e−y2/2 dy

≤ 1/2 + ε/2 + 1√
2π

+∞∫
0

e−y2/2 dy +
3∑

i=2

1√
2π

+∞∫
di

j /
√

2(T −tε)

e−y2/2 dy

≤ 1 + ε/2 + 2√
2π

+∞∫
C/

√
2(T −tε)

e−y2/2 dy

≤ 1 + ε .

Since pj ∈W − and tj ≥ tε imply �(pj , tj )≤ 1
2 +ε, we have a contradiction.

We are now ready to exclude the last case of Lemma 6.1.

Proposition 6.22. There are no Type I singularities such that the third case of
Lemma 6.1holds.

Proof. After the previous discussion, we have three situations to consider.

The case �̂(p) = 1.
The points pj and p stay in the open set W , as �̂(p) = 1, hence we can

find a closed interval I in W containing p, so definitely the sequence pj .
Recalling the definition of the function b(·, t) in formula (6.14), it is easy

to see that, since for every point q ∈ W we have q̂ �∈ {Pi }, it follows that
b(·, t) is continuous on W for every t ∈ [0, T ).

As the functions �(·, t) + b(·, t) converge monotonically on the compact
I to the constant function 1 when t → T , by the monotonicity formula (6.3),
by applying Dini’s Theorem such convergence is uniform. This implies that

lim
j→∞

�(pj , tj ) + b(pj , tj ) = 1

and coming back to the integrated monotonicity formula (6.4) we have

lim
j→∞

∫ T

tj

∫
Tt

∣∣∣∣∣ k + (x − p̂j )
⊥

2(T − t)

∣∣∣∣∣
2

ρ p̂j
ds dt = 0 .
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Passing to the rescaled version (6.8) we get

lim
j→∞

∫ +∞

tj

∫
T̃

p̂j ,t

| k̃ + x⊥|2ρ̃ dσ dt = 0 .

Since we know that there exists an index j0 ∈ N such that the 3-point is
outside the ball B√

8C , by Lemma 6.14 we have that k̃σ and k̃t for the family{
T̃ p̂j ,r

∣∣ j > j0 and r ∈ [tj , tj +δ√
2C ]

}
are uniformly bounded by a constant DR

in the ball B√
2C (notice that this is true because the constant DR is independent

of x0 in Lemma 6.14). Hence, considering a value δ > 0 smaller than the
constant δ√

2C with δD√
2C < 1/2, possibly passing to a subsequence, there

exist times rj ∈ [tj , tj + δ] such that

(6.16) lim
j→∞

∫
T̃

p̂j ,rj

| k̃ + x⊥|2ρ̃ dσ = 0 .

By the choice of δ < δ√
2C and Lemma 6.10, we can assume that the two

sequences of rescaled triods T̃ p̂j ,tj
and T̃ p̂j ,rj

both converge in the C2 topology

in the ball B√
2C . Moreover, by limit (6.16) and Lemma 5.2, the sequence T̃ p̂j ,rj

converges to a straight line passing through the origin in the ball B√
2C , hence

with zero curvature.
The points G̃ p̂j

(pj , rj ) ∈ T̃ p̂j ,rj
all belong to the closed ball B√

2C , according

to Lemma 6.19, then, as k̃2(pj , tj ) ≥ 1, we have

k̃2(pj , rj ) ≥ k̃2(pj , tj ) − (rj − tj )|∂tk̃
2(pj , ξ)| ≥ 1 − δD√

2C ≥ 1/2

for some ξ ∈ (tj , rj ).
Since the convergence of the rescaled triods is in the C2 topology in B√

2C ,
such estimate from below is clearly in contradiction with the fact that the limit
triod has zero curvature, proving the thesis in this case.

The case �̂(p) = 1/2.
We suppose that p̂ = P1 hence, by continuity, p̂j → P1.
By the rescaled version of the monotonicity formula we have

1√
2π

∫ +∞

tj

∫
T̃

p̂j ,t

| k̃ + x⊥|2ρ̃ dσ dt= �(pj , tj ) − �̂(pj )

+
∫ T

tj

3∑
i=1

〈
Pi − p̂j

2(T −t)

∣∣∣∣ τ i (1, t)

〉
ρ p̂j

(Pi , t) dt

≤�(pj , tj ) −1 + 1√
2π

3∑
i=1

+∞∫
di

j /
√

2(T −tj )

e−y2/2 dy

where we applied Lemma 6.5 and we substituted �̂(pj ) = 1.
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Taking ε > 0, since pj → p ∈ W − and tj → T , by Lemma 6.21 we have
�(pj , tj ) ≤ 1 + ε if j ∈ N is large enough, hence

∫ +∞

tj

∫
T̃

p̂j ,t

| k̃ + x⊥|2ρ̃ dσ dt ≤ ε + 1√
2π

3∑
i=1

+∞∫
di

j /
√

2(T −tj )

e−y2/2 dy .

Now, using the hypothesis that limj→∞
di

j√
2(T −tj )

= +∞, we obtain

lim
j→∞

∫ +∞

tj

∫
T̃

p̂j ,t

| k̃ + x⊥|2ρ̃ dσ dt = 0 ,

then we conclude like in the previous case.

The case �̂(p) = 3/2.
We consider the evolution of only two curves of the triods Tt , one of them

containing all the points pj , let us say the ones given by the curves γ 1 and
γ 2. Thus, we restrict the map G to the set V composed of these two curves
of T and we call Vt the evolving sets in R

2. The monotonicity formula in this
situation reads

(6.17)

d

dt

∫
Vt

ρx0(x, t) ds = −
∫

Vt

∣∣∣∣∣ k + (x − x0)
⊥

2(T − t)

∣∣∣∣∣
2

ρx0(x, t) ds

+
2∑

i=1

〈
Pi − x0

2(T − t)

∣∣∣∣ τ i (1, t)

〉
ρx0(Pi , t)

−
〈

O − x0

2(T − t)

∣∣∣∣ τ 3(0, t)
〉

ρx0(O, t)

− λ3(0, t)ρx0(O, t) .

Indeed, it can be obtained by adding the contributions of the two curves γ 1

and γ 2 given by Lemma 6.3, recalling that γ 1(0, t) = γ 2(0, t) = G(O, t) and∑3
i=1 τ i (0, t) = ∑3

i=1 λi (0, t) = 0.
We define the functions �V(·, t) analogous to �(·, t) but relative to the

sets Vt .
For every q ∈ V, if tj is any sequence of times going to T , the rescaled

triods T̃q̂,tj
locally converge in C2

loc (up to a subsequence) to a subset of

the limit of the triods T̃q̂,tj
which can be composed of a straight line or

one or two halflines from the origin of R
2. Hence, it follows that �̂V(q) =

limt→T �V(q, tj ) = �̂(q) if q �∈ W + and �̂V(q) = 1 if q̂ = Ô .
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Rescaling everything as before, equation (6.17) becomes

1√
2π

∫
t
∗

t

∫
Ṽ

p̂,ξ

| k̃ + x⊥|2ρ̃ dσ dξ = �V(p, t) − �V(p, t∗)

+
∫ t∗

t

2∑
i=1

〈
Pi − p̂

2(T − ξ)

∣∣∣∣ τ i (1, ξ)

〉
ρ p̂(Pi , ξ) dξ

−
∫ t∗

t

〈
O − p̂

2(T − ξ)

∣∣∣∣ τ 3(0, ξ)

〉
ρ p̂(O, ξ) dξ

−
∫ t∗

t
λi (0, ξ) ρ p̂(O, ξ) dξ .

Since when t∗ → T , �V(p, t∗) → �̂V(p) and the integral

1√
2π

∫
t
∗

t

∫
Ṽ

p̂,ξ

| k̃ + x⊥|2ρ̃ dσ dξ

is non decreasing and bounded above by the analogous integral for the complete
triod, the function

bV(p, t) =
∫ T

t

2∑
i=1

〈
Pi − p̂

2(T − ξ)

∣∣∣∣ τ i (1, ξ)

〉
ρ p̂(Pi , ξ) dξ

−
∫ T

t

[〈
O − p̂

2(T − ξ)

∣∣∣∣ τ 3(0, ξ)

〉
+ λi (0, ξ)

]
ρ p̂(O, ξ) dξ

is well defined, moreover limt→T bV(p, t) = 0.
Restricted to a closed interval around O ∈ V contained in the set V∩ (W ∪

W +), all the functions bV(·, t) are continuous, at least for t close enough to
T , otherwise we could find a sequence of times tl ↗ T and points ql → q ∈
V ∩ (W ∪ W +) such that

|G(O, tl) − q̂l |
2(T − tl)

→ 0

which would imply

|Ô − q̂l |
2(T − tl)

≤ |Ô − G(O, tl)|
2(T − tl)

+ |G(O, tl) − q̂l |
2(T − tl)

→
√

2C

as l → ∞, clearly in contradiction with assumption (6.15).
Reasoning as before, the continuous functions �V(·, t) + bV(·, t)|V∩(W∪W+)

converge monotonically to the function �̂V, which is constantly equal to 1 on a
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compact interval around p ∈ V. Hence, by Dini’s Theorem, such convergence
is uniform and

1√
2π

∫ ∞

tj

∫
Ṽ

p̂j ,t

| k̃ + x⊥|2ρ̃ dσ dt = �V(pj , tj ) + bV(pj , tj ) − �̂V(pj )

= �V(pj , tj ) + bV(pj , tj ) − 1

implies

lim
j→∞

∫ +∞

tj

∫
Ṽ

p̂j ,t

| k̃ + x⊥|2ρ̃ dσ dt = 0 .

Then we conclude again with the same argument of the previous cases, looking
at the curvature of the limit set in the ball B√

2C .

Collecting together Propositions 6.17, 6.18, 6.22 we conclude this section
with the following theorem.

Theorem 6.23. Type I singularities cannot develop during the smooth flow Tt

of an embedded triod in a bounded and strictly convex domain � ⊂ R
2 if the lengths

of the three curves are uniformly bounded away from zero.

Remark 6.24. All this section, if the results on the function E discussed
in Section 4 (in particular Theorem 4.6) hold for some network of curves with
many 3-points, can be extended. The reason is that if we assume a uniform
bound from below on the lengths of all the curves of such a network, in every
blow up argument all but at most one of the 3-points go to infinity and vanish
in the limit (the same for the family of end points).

The situation changes dramatically without the control on the lengths, for
instance in Proposition 6.16 one should consider as possible limits also all the
unbounded networks composed of straight segments and curves of Abresch and
Langer (see Lemma 5.2) forming 120 degrees at the 3-points.

7. – Type II singularities

We suppose to be in the Type II singularity case, that is,

limt→T (T − t) max
Tt

k2 = +∞ .

We employ Hamilton’s trick to get an eternal solution to the mean curvature
flow.

Let us choose a sequence of times tn ∈ [0, T − 1/n] and points pn ∈ T

such that

(7.1) k2(pn, tn)(T − 1/n − tn) = max
t∈[0,T −1/n]

p∈T

k2(p, t)(T − 1/n − t) .
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As the curvature blows up as t → T , we can choose a (not relabelled) non
decreasing subsequence tn converging to T , moreover, the curvature squared
k2(pn, tn) goes monotonically to +∞ and we have

k2(pn, tn)tn → +∞ , k2(pn, tn)(T − 1/n − tn) → +∞ .

The first limit is obvious, about the second, by assumption (7.1), for every M >

0 there exists t < T and p ∈ T such that k2(p, t)(T − t) > 2M , then choosing
n ∈ N large enough such that 1/n < T − t and k2(p, t)(T − t − 1/n) > M we
get

k2(pn, tn)(T − 1/n − tn) ≥ k2(p, t)(T − t − 1/n) > M .

Since k2(pn, tn)(T − 1/n − tn) is an increasing sequence and M was arbitrary,

lim
n→∞ k2(pn, tn)(T − 1/n − tn) = +∞ .

We rescale now the triods as follows: let Fn : T× [−k2(pn, tn)tn, k2(pn, tn)(T −
1/n − tn)] → R

2 be the evolution given by

Fn(p, t) = k(pn, tn)[F(p, t/k2(pn, tn) + tn) − F(pn, tn)]

and T
n
t

= Fn(T, t).

• Fn(pn, 0) = 0, kn(pn, 0) = 1;
• for every ε > 0 and ω > 0 there exists n such that maxT

n
t

k2 ≤ 1 + ε for
every n ≥ n and t ∈ [−k2(pn, tn)tn, ω].

Indeed (the first point is immediate), by the choice of the pair (pn, tn) we get

k2
n(p, t) = [k(pn, tn)]

−2k2(p, t/k2(pn, tn) + tn)

≤ [k(pn, tn)]
−2k2(pn, tn)

T − 1/n − tn
T − 1/n − tn − t/k2(pn, tn)

= k2(pn, tn)(T − 1/n − tn)

k2(pn, tn)(T − 1/n − tn) − t
,

if t ∈ [−k2(pn, tn)tn, k2(pn, tn)(T − 1/n − tn)].
The claim follows as k2(pn, tn)(T − 1/n − tn) → +∞.

Proposition 7.1. The family of flows Fn converges in the C2
loc topology to an

evolution by curvature of unbounded triods T
∞
t

(or curves, or curves with a single
end point) without self-intersections, in the time interval (−∞, +∞). Such a flow
is called eternal.

Moreover, the modulus of the curvature is uniformly bounded in space and time
and it takes its absolute maximum, which is 1, at time t = 0 at the origin of R

2.
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Proof. By the previous discussion, on every bounded interval of time, the
evolutions Fn have uniformly bounded curvature, hence, reasoning like in the
previous section (interior estimates of Ecker and Huisken and treatment of the
3-point terms as in the proof of Proposition 6.16), we have a uniform local
bound also on kσ for the family of rescaled flows.

Passing to the limit in the C2
loc topology we then get the flow T

∞
t

which
clearly satisfies the claimed properties on the curvature, again by the computation
above.

Finally, the limit flow is embedded by Lemma 6.12.

Remark 7.2. It can be shown that such a limit flow is actually smooth
(see Definition 5.1), Indeed, we know by standard estimates that it is smooth
far from the 3-point and, being the curves C2,α by the uniform local estimate
of kσ , we can apply (locally around the 3-point) a version of the small time
existence and uniqueness Theorem 3.1, substituting the boundary conditions
regarding the fixed end points with the smooth motion of three chosen points
of the triods T

∞
t

.

In the case of the evolution of a closed curve in the plane, it is possible
to show that the limit flow arising from the analogous of this proposition is
a translating unbounded curve. This conclusion is reached in two steps: first,
one shows that at every time in (−∞, +∞) the limit is a convex curve, then,
by means of the Harnack estimate proved by Hamilton in [22], it follows that
it is a translating flow by curvature.

In our situation convexity means that the curvature is never zero. Un-
fortunately, the presence of the 3-point makes troublesome the extension of
these results to the evolution of triods and we can only state the following two
conjectures.

Conjecture 7.3. If the curvature is zero at some point of the triod (or
curve) T

∞
t

, then it is zero along all the curve containing such a point (every-
where).

Conjecture 7.4. The triods (or curves) T
∞
t

move by translation.

If this last conjecture is true, we can exclude Type II singularities, indeed,
it would follows that T

∞
t

is one of the sets of Lemmas 5.8, 5.9 or 5.10, hence,
considering a pair of points p, q on two curves of the triods with opposite
convexity such that the segment [p, q] is orthogonal to the velocity vector
w ∈ R

2 and sending them both to infinity, we can see that E(T∞
t

) = 0, which
is in contradiction with Lemma 6.12 (where the function E is defined). Indeed,
the distance [p, q] is bounded by a constant (the three curves are pieces of the
same grim reaper) and the area Ap,q diverges.

The same argument works if the limit T
∞
t

is a single curve, noticing that
in this case such a curve cannot have an end point, because otherwise the
curvature would be zero there (such point comes from an end point of Tt ),
hence the equation k = 〈w | ν〉 would imply that the curve is a static halfline
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parallel to w, so with null curvature, contradicting Proposition 7.1 which says
that the curvature cannot be identically zero.

Remark 7.5. The same argument, but with a different geometric quantity,
is used by Huisken in [26] to exclude Type II singularities during the motion
of a single curve.

Proposition 7.6. If Conjecture 7.4 is true then Type II singularities cannot
develop during the smooth flow Tt of an embedded triod in a bounded and strictly
convex domain � ⊂ R

2.

Hamilton’s proof that a convex blow up of a Type II singularity (in the
standard smooth case) is translating, is heavily based on the maximum principle
which, as we said, is difficult to apply in the case of triods. So, it could happen
that only Conjecture 7.3 can be proved and one could possibly exclude Type
II singularities without actually show that the limit flow T

∞
t

is translating. For
instance, if the curvature is always or never zero on each curve of a smooth
triod, then its three curves have asymptotic tangents (indeed, they are all convex
but some of them in the opposite way, by the fact that the sum of the curvatures
at the 3-point is zero), hence in order to apply the previous argument based on
the function E , it would be enough to show that two of these limit tangents,
belonging to curves with opposite convexity, coincide.

Conjecture 7.7. The flow Tt of an embedded triod in a bounded and
strictly convex domain � ⊂ R

2, such that the lengths of the three curves are
uniformly bounded away from zero, does not develop singularities at all.

8. – Open problems

The main problem left open in the paper is Conjecture 7.4, whose validity
would imply Conjectures 7.7 and 2.10, indeed, if the flow is defined for ev-
ery positive time, we can show the convergence of the triods to the minimal
connection between the three end points Pi .

As the total length of the triods decreases, we have the estimate

∫ +∞

0

∫
Tt

k2 ds dt ≤
3∑

i=1

Li (0) < +∞ ,

then, supposing that for a sequence of times tj ↗ +∞ we have
∫

Ttj
k2 ds ≥ δ,

for some δ > 0, and the lengths are uniformly bounded away from zero, by
inequality (3.10) we get that

∫
Tt

k2 ds ≥ δ/2 for every t belonging to a uniform
time interval around every tj . This is clearly in contradiction with the previous
estimate.



322 C. MANTEGAZZA – M. NOVAGA – V. M. TORTORELLI

Hence, as limt→+∞
∫

Tt
k2 ds = 0, by Proposition 3.17, all the derivatives

of the curvature are uniformly bounded. By the usual convergence arguments,
this implies that (possibly after reparametrization) the triods converge in the
C∞ topology to a limit triod with zero curvature, which is clearly the minimal
connection between the three end points (Steiner configuration).

Other questions in the paper that we would like to set are concerned with
the extension of the results to all the networks, possibly with loops, with only
3-points (no 4-points or higher order points), in particular, proving an analogous
of Theorem 4.6. This would also make superfluous the requirement that the
ambient set � ⊂ R

2 is strictly convex.
Finally, we conclude by listing some, naturally arising, research directions.

(1) The problem of the representation/uniqueness of Brakke flows (smooth/with
equality) of triods (or networks), discussed in Remark 3.23.

(2) The problem of the existence/uniqueness of a flow for an initial triod not
satisfying the 120 degrees condition at the 3-point (see the introduction and
Remark 3.23).

(3) The study of the singularities such that the curvature blows up but the
lengths are not bounded away from zero. Such analysis requires new esti-
mates and the classification of homothetic and translating networks moving
by curvature.

(4) The “definitory” problem of the motion of the multi-points and the analysis
of the collapsing situations with change of topology (see the introduction
and the papers by De Giorgi [15] and Caraballo [12]).
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