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Local and Canonical Heights of Subvarieties

WALTER GUBLER

Abstract. Classical results of Weil, Néron and Tate are generalized to local heights
of subvarieties with respect to hermitian pseudo-divisors. The local heights are
well-defined if the intersection of supports is empty. In the archimedean case,
the metrics are hermitian and the local heights are defined by a refined version of
the ∗-product of Gillet-Soulé developped on compact varieties without assuming
regularity. In the non-archimedean case, the local heights are intersection numbers
using methods from rigid and formal geometry to handle non-discrete valuations.
To include canonical metrics of line bundles algebraically equivalent to 0, a local
Chow cohomology is introduced on formal models over the valuation ring. Using
Tate’s limit argument, canonical local heights of subvarieties on an abelian variety
are obtained with respect to any pseudo-divisors. By integration over an M-field,
we deduce corresponding results for global heights of subvarieties.

Mathematics Subject Classification (2000): 14G40 (primary), 11G50, 14G22
(secondary).

1. – Introduction

In diophantine geometry, one of the most important problems is to control
the number of rational points. A basic tool to prove finiteness statements or
to describe the distribution of infinitely many points is the height. Weil [We]
pointed out that heights may be decomposed into a sum of local heights and
most of the properties already occur locally. For a meromorphic section s of a
metrized line bundle, the local height of a point P with respect to the place v is
given by λdiv(s)(P, v) = − log ‖s(P)‖v . For a complete variety, Weil’s theorem
says that local (resp. global) heights are determined by the divisor (resp. its
rational equivalence class) up to bounded functions. Néron [Ne] has noticed that
on an abelian variety or with respect to divisors algebraically equivalent to 0,
there are canonical local heights, determined by the divisor up to an additive
constant. The ambiguity disappears for the global Néron-Tate heights.

Nesterenko and Philippon [Ph1] define the height of a subvariety Y of Pn

over a number field K as the height of the Chow form. Faltings [Fa2] gave a
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new definition of heights of subvarieties using the arithmetic intersection theory
of Gillet-Soulé [GS2]. Faltings’ height is the arithmetic analogue of the degree
in algebraic geometry, it is defined as an arithmetic intersection number with
t + 1 arithmetic divisors d̂iv(si ) for generic global sections si of OPn (1).

On an abelian variety A over K , there is also a Néron-Tate height of t-
dimensional cycles with respect to L0, . . . , Lt ∈ Pic(A). For L0 = . . . = Lt

even and projective normal, it was introduced in [Ph2]. In [Gu1], Weil’s theorem
was generalized to heights of subvarieties and with Tate’s limit argument, the
Néron-Tate height was obtained for L0, . . . , Lt even. On the other hand, if one
line bundle is odd, then the Néron-Tate height is a special case of the height
pairing of Beilinson [Bei] and Bloch [Bl]. This gives also canonical heights on
a smooth variety over K if at least one line bundle is algebraically equivalent
to 0.

Gillet-Soulé [GS1] proved an arithmetic Hilbert-Samuel formula and Bost-
Gillet-Soulé [BoGS] gave an arithmetic Bézout theorem for the height of subva-
rieties. A beautiful application of heights of subvarieties is Zhang’s proof [Zh3]
of the Bogomolov conjecture. This was generalized by Moriwaki [Mor] from
number fields to finitely generated fields over Q.

Using Faltings’ definition, the local height of a t-dimensional subvariety Y
is given by the ∗-product of the [log ‖si‖−2] on Y in the archimedean case and by
the intersection number of the div(si ) on a model of Y in the case of a discrete
valuation. For a non-archimedean absolute value on any field K , the valuation
ring K ◦ is not noetherian and hence the intersection theory on models over K ◦
from algebraic geometry is not available. Then one has to work on admissible
formal K ◦-models X using the theory of Bosch-Lütkebohmert (cf. [BL2], [BL3])
initiated by Raynaud. Using valuations, an intersection theory with Cartier
divisors on X was given in [Gu3] leading to the desired local heights in the
non-archimedean case.

Classically, one has considered heights of points over number fields or
function fields. It was pointed out by Vojta [Vo] that there are striking similar-
ities of the height of points to the characteristic function in Nevanlinna theory
leading to far reaching conjectures.

In [Gu2], the notion of M-fields was introduced including all these cases
and also the finitely generated fields over Q considered by Moriwaki [Mor]. By
integrating local heights over M , global heights of subvarieties were obtained
satisfying Weil’s theorem leading to a generalization of the first main theorem
of Nevanlinna theory to higher dimensions.

In the present article, a first goal is to define local heights with respect to
pseudo-divisors. Let X be a proper scheme over a field K with an absolute
value. Local heights are invariant under base change, so we may assume without
loss of generality that K is complete and algebraically closed. A pseudo-divisor
on X is a triple D = (L , Y, s) where L is a line bundle, Y is a closed subset
of X and s is a nowhere vanishing section of L|X\Y (cf. [Fu], 2.2). The concept
of pseudo-divisors has two advantages over Cartier divisors. First, every line
bundle gives rise to a pseudo-divisor and second, the pull-back of pseudo-
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divisors is always well-defined. In the complex case, Section 2 treats a refined
∗-product of hermitian pseudo-divisors with Green currents for cycles on X
without any smoothness assumptions on X . In Section 3, this leads to a local
height with respect to hermitian pseudo-divisors D̂0, . . . , D̂t , well-defined on
t-dimensional cycles Z of X with |D0| ∩ . . . ∩ |Dt | ∩ |Z | = ∅. Previously, only
Cartier divisors were considered and to apply arithmetic intersection theory, one
had to assume that X is smooth and that all partial intersections formed with
subsets of D0, . . . , Dt , Z are proper.

For a non-trivial non-archimedean complete absolute value on K with val-
uation ring K ◦, we study generically proper intersections with Cartier divisors
on admissible formal K ◦-models in Section 4. For algebraic generic fibre, Sec-
tion 5 gives a refined intersection theory leading to the same conclusions for
local heights as in the complex case.

The main part of the article is dedicated to develop a theory of canoni-
cal local heights of cycles with similar properties as in the zero-dimensional
case. There are two cases where they occur, first if one line bundle is alge-
braically equivalent to 0 and second if one deals with abelian varieties. For an
archimedean absolute value, it is well known that the canonical metrics are the
smooth hermitian metrics with harmonic curvature form.

For a non-archimedean complete absolute value, the canonical metrics on
line bundles algebraically equivalent to 0 can not be interpreted in terms of
formal K ◦-models of the line bundle (cf. Example 7.20). In Section 6, we
develop a local Chow cohomology theory on admissible formal models over K ◦
in the style of Fulton ([Fu], Chapter 17). These groups formalize the refined
intersection theoretic properties of Chern classes. To get rid of particular K ◦-
models, the projective limit over all admissible formal K ◦-models is considered
giving rise to a local Arakelov-Chow group in the style of non-archimedean
Arakelov theory of Bloch-Gillet-Soulé [BlGS] and corresponding local Arakelov-
Chow cohomology groups. Every formal K ◦-model of a line bundle L gives rise
to a so-called formal metric on L determing completely the divisoral operation
on the local Arakelov-Chow groups. Section 7 handles admissible metrics which
are locally equal to the tensor product of positive real powers of formal metrics.
For a divisor D on a complete variety with an admissible metric on O(D), we
can define the proper intersection product D̂.α in the local Arakelov-Chow group
only for α without vertical components of codimension ≥ 1 in the special fibres
because there is no reduction of D̂ to the special fibres. If X is a semistable
curve, this is just enough to get a local Arakelov-Chow cohomology class.

In Section 8, we introduce admissible first Chern classes in the Arakelov-
Chow cohomology groups which may be seen as cohomological generalizations
of K ◦-models of L and include also the above local Arakelov-Chow cohomology
classes on semistable curves. They give rise to associated metrics on L called
cohomological metrics. In Section 9, a theory of local heights with respect to
such admissible first Arakelov-Chern classes is given and it is shown that the
dependence of local heights on the admissible first Arakelov-Chern classes is
given by the associated metrics. For a line bundle algebraically equivalent to 0,
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we get our desired canonical local heights by noting that a canonical metric is
cohomological.

Section 10 extends the theory of local heights allowing uniforming limits
under semipositivity assumptions. By Tate’s limit argument, we get canonical
local heights also on abelian varieties agreeing with the above for odd line
bundles. In Section 11, global heights of subvarieties Y over an M-field K are
obtained by integrating local heights of Y over M . If the product formula is
satisfied, then the dependence of global heights on pseudo-divisors D0, . . . , Dt

is given by the isomorphism classes of O(D0), . . . , O(Dt ). If one line bundle is
algebraically equivalent to zero or if the underlying space is an abelian variety,
then we get global canonical heights including all previously considered cases.

Acknowledgements. I would like to thank G. Wüstholz and J. Kramer
for their encouragement and W. Lütkebohmert for providing me with references
to the literature. This work is based on the author’s habilitation thesis and was
partially supported by the Schweizerische Nationalfonds.

2. – Refined ∗-product with hermitian pseudo-divisors

In this section, we consider complex compact algebraic varieties X, X ′, . . .
endowed with its analytic structures. By the GAGA-principle, all closed analytic
subsets, cycles, morphisms, line bundles and sections are algebraic.

2.1. First, we introduce differential forms on singular spaces as in Bloom-
Herrera [BH]. Locally, an open subset U of X is a closed analytic subset
of an open complex ball. Smooth differential forms on U are locally given
by restriction of smooth forms defined on such balls. They are identified if
they agree on Ureg. We denote the space of smooth differential forms on U by
A∗(U ). Pull-back with respect to morphisms and d, dc are defined on A∗(U ) by
extending the forms locally to a ball as above and then using the constructions
for complex manifolds.

2.2. A current of dimension r on X is a linear functional T on Ar (X) given
locally by a current TB on an open ball B as above such that TB(ω) = T (ω|X∩B)

for every compactly supported ω ∈ Ar (B). The space of currents is denoted by
D∗(X) graded by dimension. Bigrading, differentiation and push-forward, the
current of integration δY over an irreducible closed analytic subset Y (extended
linearly to cycles) and the current [η] associated to an integrable form η are
defined as in the smooth case. For details, we refer to [Ki].

Definition 2.3. A Green current for a cycle Z of dimension t is gZ ∈
Dt+1,t+1(X) with

ddcgZ = [ωZ ] − δZ
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for a smooth differential form ωZ on X . By linearity, we extend the definition
to all cycles.

Example 2.4. Let L be a holomorphic line bundle on X with a smooth
hermitian metric ‖ ‖. Then L = (L , ‖ ‖) will be called a hermitian line bundle.
We call a meromorphic section s of L invertible, if there is an open dense
subset U of X such that s restricts to a nowhere vanishing holomorphic section
of L on U . The Poincaré-Lelong equation gives

ddc[log ‖s‖−2] = [c1(L)] − δdiv(s)

with c1(L) the Chern form of L and δdiv(s) the current of integration over the
Weil divisor associated to the Cartier divisor div(s) (cf. [GH], p. 388, and use
resolution of singularities).

Definition 2.5. A hermitian pseudo-divisor D̂ on X is a triple (L, Y, s)
where L is a hermitian line bundle on X , Y is a closed analytic subset of X and
s is a nowhere vanishing section of L on X \Y . Then D := (O(D), |D|, sd) :=
(L , Y, s) is a pseudo-divisor on X . Two hermitian pseudo-divisors on X will
be identified if the support |D| is the same and if there is an isometry between
the hermitian line bundles mapping one section to the other.

The sum and the pull-back of hermitian pseudo-divisors are defined by

D̂+ Ê := (O(D)⊗O(E), |D|∪|E |, sD ⊗sE) , ϕ∗ D̂ := (ϕ∗O(D), ϕ−1|D|, ϕ∗sD).

Proposition 2.6. If ϕ : X ′ → X is a morphism and gZ ′ is a Green currrent for
a cycle Z ′ on X ′ such that ϕ∗[ωZ ′] is the current associated to a smooth differential
form on X (e.g. this holds if X and ϕ are smooth), then ϕ∗(gZ ′) is a Green current
for ϕ∗(Z ′).

Proof. This follows from ddcϕ∗(gZ ′) = ϕ∗(ddcgZ ′) = ϕ∗[ωZ ′] − ϕ∗δZ ′ and
ϕ∗δZ ′ = δϕ∗(Z ′). If ϕ and X are smooth, then integration along the fibres shows
that ϕ∗[ωZ ′] is smooth.

Example 2.7. Let Y be an irreducible closed subvariety of X and let
f ∈ K (Y )×. We view div( f ) as a cycle on X using i : Y ↪→ X . By
Example 2.4 and Proposition 2.6, i∗[log | f |−2] is a Green current for div( f )

on X also denoted by [log | f |−2].
A K1-chain f = ∑

fW on X is a formal sum of fW ∈ K (W )× where W
ranges over all irreducible closed subvarieties of X and fW �= 1 only for
finitely many fW . By linearity, we define the cycle div(f) with Green current
[log |f|−2]. For a morphism ϕ : X → X ′, we have ϕ∗[log |f|] = [log |ϕ∗f|] where
ϕ∗f := ∑

NK (W )/K (ϕW )( fW ). To prove it, we may restrict to the finite generically
étale case where the norm is the sum over the fibre points (cf. [GS2], 3.6).

Definition 2.8. Let D̂ = (L, |D|, s) be a hermitian pseudo-divisor and let
gZ be a Green current for the cycle Z on X . In the definition of the ∗-product

D̂ ∗ gZ := D̂ ∧ δZ + c1(L) ∧ gZ ,
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the second summand is the current η �→ gZ (c1(L) ∧ η). To define the first
summand, by linearity, we may assume Z prime. If |Z | �⊂ |D|, then let
sZ := s|Z and if Z ⊂ |D|, then we choose any non-zero meromorphic section
sZ of L|Z . We set (D̂ ∧ δZ )(η) := ∫

Z log ‖sZ‖−2η.

Remark 2.9. The currents D̂ ∗ δZ and D̂ ∧ gZ are defined up to [log |f|−2]
for K1-chains f on |D| ∩ |Z |. If |D| intersects |Z | properly, then they are
well-defined currents.

If L is a hermitian line bundle with an invertible meromorphic section s,
then we write log ‖s‖−2 instead of the associated pseudo-divisor (L, | div(s)|, s).
Then for X smooth and div(s) intersecting Z properly, log ‖s‖−2 ∗ gZ is the
∗-product of Gillet-Soulé [GS2].

Proposition 2.10. D̂ ∗ gZ is a Green current for a cycle representing D.Z ∈
C H(|D| ∩ |Z |).

Proof. Note first that ddc(c1(L) ∧ gZ ) = [c1(L) ∧ ωZ ] − c1(L) ∧ δZ . Thus
it is enough to show

ddc(D̂ ∧ δZ ) = c1(L) ∧ δZ − δZ ′

for a representative Z ′ of D.Z ∈ C H(|D| ∩ |Z |). We may assume Z prime.
Then the claim follows from the Poincaré-Lelong equation for sZ on Z and
with Z ′ the Weil divisor of sZ .

Proposition 2.11. Let ϕ : X ′ → X be a morphism, let D̂ be a hermitian
pseudo-divisor on X and let gZ ′ be a Green current for a cycle Z ′ on X ′ such that
ϕ∗[ωZ ′] is a smooth differential form on X. Then up to K1-chains on |D| ∩ ϕ(|Z ′|),
we have the projection formula

ϕ∗(ϕ∗ D̂ ∗ gZ ′) = D̂ ∗ ϕ∗gZ ′ .

Proof. Let D̂ = (L, Y, s). The obvious identity ϕ∗(c1(ϕ
∗L) ∧ gZ ′) =

c1(L) ∧ ϕ∗gZ ′ of currents on X shows that it is enough to prove

(1) ϕ∗(ϕ∗ D̂ ∧ δZ ′) = D̂ ∧ δϕ∗ Z ′

up to [log |f|−2] for a K1-chain f on |D| ∩ ϕ(|Z ′|). We may assume Z ′ prime,
Z ′ = X ′, ϕ surjective and Y �= X . We have to prove ϕ∗[log ϕ∗‖s‖−2] =
deg ϕ · [log ‖s‖−2]. The equidimensional case is clear from integration along the
fibres because ϕ is generically smooth. If dim(X ′) > dim(X), the formula is
obvious since the degree is 0 by definition.

2.12. Note that (1) holds without assuming that ϕ∗[ωZ ′] is the current associated
to a smooth differential form on X . We introduce an equivalence S ≡ T between
currents on X if S − T may be written as a sum of a d- and a dc-boundary.
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Proposition 2.13. Let D̂, Ê be hermitian pseudo-divisors and let gZ be a Green
current for a cycle Z on X. Up to K1-chains on |D| ∩ |E | ∩ |Z |, we have

D̂ ∗ (Ê ∗ gZ ) ≡ Ê ∗ (D̂ ∗ gZ ).

Proof. Let D̂ = (L, |D|, s) and Ê = (L ′, |E |, s ′). It is enough to show

(2) D̂ ∧ δE .Z + c1(L) ∧ (Ê ∧ δZ ) ≡ Ê ∧ δD.Z + c1(L ′) ∧ (D̂ ∧ δZ )

up to K1-chains on |D|∩ |E |∩ |Z | choosing the appropriate representatives D.Z
and E .Z from Proposition 2.10. To prove (2), we may assume Z prime. Using
the notation of Definition 2.8, (2) is the push-forward of the commutativity law

log ‖sZ‖−2 ∗ [log ‖s ′
Z‖−2] ≡ log ‖s ′

Z‖−2 ∗ [log ‖sZ‖−2]

with respect to Z
i

↪→ X . So we may assume Z = X and that D, D′ are Cartier
divisors.

Let π : X ′ → X be a birational morphism of irreducible compact algebraic
varieties. Then we have π∗[log π∗‖s‖−2] = log ‖s‖−2, π∗[c1(π

∗L)] = [c1(L)].
By projection formula, it is enough to prove commutativity on X ′. With Hi-
ronaka’s resolution of singularities and Chow’s lemma, we reduce to a smooth
projective variety where either the intersection of D and D′ is proper or D = D′.
The first case follows from the commutativity law of the ∗-product for loga-
rithmic Green forms ([GS2], Corollary 2.2.9) and the latter case is trivial.

Proposition 2.14. Let gZ be a Green current and D̂ be a hermitian pseudo-
divisor on X.

(a) If f is an invertible meromorphic function on X, then log | f |−2 ∗ gZ =
[log |h|−2] for a suitable K1-chain h on |Z |.

(b) If f is a K1-chain on a closed subvariety Y of X, then there is a K1-chain h on
|D| ∩ |Y | with D̂ ∗ [log |f|−2] ≡ [log |h|−2].

Proof. Claim (a) is trivial and (b) follows from (a) and commutativity.

Remark 2.15. The refined ∗-product can not be extended to reduced com-
plex spaces. The problem is that a holomorphic line bundle restricted to an
irreducible closed analytic subset may have no invertible meromorphic section.
This cruicial property holds however on irreducible compact complex Moishe-
zon spaces ([Moi], Theorem 4) and all results of this section remain valid. For
the proof of Proposition 2.13, one uses that a complex Moishezon space is
birationally covered by an irreducible compact algebraic variety ([Moi], Theo-
rem 7).

The refined ∗-product may also be generalized to non-compact complex
algebraic varieties if one considers only algebraic objects and proper push-
forwards. The proofs remain the same.
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3. – Local heights on complex algebraic varieties

Let X, X ′ be a complex compact algebraic varieties endowed with the
complex analytic structures (or more generally complex Moishezon spaces using
Remark 2.15).

3.1. Let i : Z → X be the embedding of a prime cycle. On Z , 0 may be
viewed as a Green current 0Z for Z with ωZ = 1. For hermitian pseudo-divisors
D̂1, . . . , D̂k on X , we define

D̂1 ∗ · · · ∗ D̂k ∧ δZ := i∗(i∗ D̂1 ∗ · · · ∗ i∗ D̂k ∗ 0Z )

as a current on X , well-defined up to K1-chains on |D1|∩ · · ·∩ |Dk |∩ |Z |. If Z
is an arbitrary cycle, then we proceed by linearity.

Note that the pseudo-divisors act from the left, hence there is no associa-
tivity law but the products have to be read from the right. The following is
our substitute for associativity.

Proposition 3.2. For a Green current gZ , we have up to K1-chains on |D1| ∩
· · · ∩ |Dk | ∩ |Z | :

D̂1 ∗ · · · ∗ D̂k ∗ gZ = D̂1 ∗ · · · ∗ D̂k ∧ δZ + c1(O(D1)) ∧ · · · ∧ c1(O(Dk)) ∧ gZ .

Proof. The proof follows easily by using induction on k, applying Propo-
sition 2.10 to D̂k ∗ gZ and then proceeding on Z . We leave the details to the
reader.

Definition 3.3. Let D̂0, . . . , D̂t be hermitian pseudo-divisors and let Z
be a cycle on X of dimension t . We say that the local height λ(Z) of Z with
respect to D̂0, . . . , D̂t is well-defined if |D0| ∩ · · · ∩ |Dt | ∩ |Z | = ∅ and we set

λ(Z) := λD̂0,... ,D̂t
(Z) := (D̂0 ∗ · · · ∗ D̂t ∧ δZ )(1/2).

Proposition 3.4. The local height is multilinear and symmetric in the variables
D̂0, . . . , D̂t , and linear in Z , under the hypothesis that all terms are well-defined.

This follows from Section 2. From Proposition 3.2, we also obtain:

Proposition 3.5. Let Z be a prime cycle with |D0| ∩ · · · ∩ |Dt | ∩ |Z | = ∅. For
Dt , let st,Z be as in 2.8 with Weil-divisor considered as a cycle Y on X. We have
the induction formula

λD̂0,... ,D̂t
(Z) = λD̂0,... ,D̂t−1

(Y ) −
∫

Z
log ‖st,Z‖ · c1(O(D0)) ∧ · · · ∧ c1(O(Dt−1)).

Proposition 3.6. For a morphism ϕ : X ′ → X, hermitian pseudo-divisors
D̂0, . . . , D̂t on X and a t-dimensional cycle Z ′ on X ′ with |D0|∩· · ·∩|Dt |∩ϕ(|Z ′|) =
∅, we have functoriality

λϕ∗ D̂0,... ,ϕ∗ D̂t
(Z ′) = λD̂0,... ,D̂t

(ϕ∗Z ′).
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Proof. We proceed by induction on t . The claim is obvious for t = 0. To
prove the claim for t ≥ 1, we may assume Z ′ prime, Z ′ = X ′ and ϕ surjective.
By Proposition 3.5, we have

λϕ∗ D̂0,... ,ϕ∗ D̂t
(Z ′) = λϕ∗ D̂0,... ,ϕ∗ D̂t−1

(Y ′)

−
∫

Z ′
log ‖ϕ∗st,X‖ · c1(ϕ

∗O(D0)) ∧ · · · ∧ c1(ϕ
∗O(Dt−1))

where Y ′ is the Weil divisor associated to ϕ∗st,X . By induction hypothesis
applied to Y ′, by projection formula and by the transformation formula of
integrals, this is equal to

λD̂0,... ,D̂t−1
(div(st,X )) −

∫
ϕ∗ Z ′

log ‖st,X‖ · c1(O(D0)) ∧ · · · ∧ c1(O(Dt−1)).

By induction formula again, we get the claim.

Proposition 3.7. Let D̂0, . . . , D̂t be hermitian pseudo-divisors on X such
that the local height λ(Z) of the t-dimensional cycle Z is well-defined. We assume
c1(O(D0)) = 0. Let Y be a representative of D1 . . . Dt .Z ∈ C H0(|D1| ∩ · · · ∩
|Dt | ∩ |Z |). Then λ(Z) = − log ‖sD0(Y )‖ where the right hand side is defined by
linearity in the components of Y .

Proof. Let s0 := sD0 . First, we check that log ‖s0(Y )‖ is well-defined.
Since λ(Z) is well-defined, we get |D0|∩ |Y | = ∅, i.e. log ‖s0(Y )‖ makes sense.
If Y ′ is another representative of D1 . . . Dt .Z , then there is a K1-chain f on
|D1| ∩ · · · ∩ |Dt | ∩ |Z | with div(f) = Y − Y ′, thus

log ‖s0(Y
′)‖ − log ‖s0(Y )‖ = (D̂0 ∧ δdiv(f))

(
1

2

)
= (D̂0 ∗ [log |f|−2])

(
1

2

)
.

By Proposition 2.14, the ∗-product is from a K1-chain on |D0| ∩ · · · ∩ |Dt | ∩
|Z | = ∅, hence we have log ‖s0(Y )‖ = log ‖s0(Y ′)‖ proving independence of
the representative.

To prove the formula for λ(Z), we may assume Z prime and Z = X . We
may assume that Y has the Green current gY := D̂1 ∗ · · · ∗ D̂t ∗ 0Z . Then the
claim follows from

λ(Z) = (D̂0 ∗ gY )

(
1

2

)
= (D̂0 ∧ δY )

(
1

2

)
= − log ‖s0,Z (Y )‖.

Proposition 3.8. Let λ(Z) be the local height with respect to the hermitian
pseudo-divisors D̂0, . . . , D̂t . Replacing the metric ‖ ‖ on O(D0) by another smooth
hermitian metric ‖ ‖′, we get the local height λ′(Z). Then ρ := log(‖sD0‖′/‖sD0‖
extends to a C∞-function on X and

λ(Z) − λ′(Z) =
∫

Z
ρ · c1(O(D1)) ∧ · · · ∧ c1(O(Dt )).
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Proof. This follows from Proposition 3.4 and induction formula 3.5.

Definition 3.9. Let L be a hermitian line bundle on X . For compact
manifolds, the notion of semipositive curvature form is well-known. For singular
varieties, the metric is said to have semipositive curvature form if for every
smooth variety X ′ and every morphism ϕ : X ′ → X , the hermitian line bundle
ϕ∗L has semipositive curvature form. This will be used in Section 10.

4. – Operations of divisors on admissible formal schemes

Let K be an algebraically closed field with a non-trivial non-archimedean
complete absolute value | | and valuation ring K ◦. The basic reference for
rigid analytic varieties is [BGR] and for admissible formal schemes is [BL2],
[BL3]. For intersection products of Cartier divisors on rigid analytic varieties
or admissible formal schemes, we refer to [Gu3].

4.1. We recall facts from formal geometry (cf. [Gu3] for details). There is a
functor X �→ Xf-an from the category of admissible formal schemes over K ◦ to
the category of formal analytic varieties and a functor from the latter category
to the category of rigid analytic varieties. The composition of these functors is
called the generic fibre Xan. The special fibre X̃ is a scheme locally of finite
type over the residue field K̃ . For a formal analytic variety Y, the reduction Ỹ

is a reduced scheme locally of finite type over K̃ . There is a natural finite
morphism i : (Xf-an)∼ → X̃. Let Y be a closed analytic subvariety of Xan.
There is a unique admissible closed subscheme Ȳ of X with generic fibre Y .

There is also a functor Y �→ Yf-sch from the category of formal analytic
varieties to the category of admissible formal schemes over K ◦ given locally
by SpfA �→ SpfA◦ for a K -affinoid algebra A with A◦ := {a ∈ A | |a|sup ≤ 1}.
This induces an equivalence of the category of reduced formal analytic varieties
to the category of admissible formal schemes with reduced special fibre, and
then i is an isomorphism. This will be frequently used to switch from the
admissible to the formal analytic point of view.

Example 4.2. Let X be a scheme flat and locally of finite type over K ◦. We
claim that the formal completion Xf-sch along the special fibre (more precisely
with respect to the ideal 〈π〉 for π ∈ K ◦, |π | < 1) is an admissible formal
scheme over K ◦. Locally, the scheme X is isomorphic to SpecA for a flat K ◦-
algebra of finite type. Then the completion Â of A with respect to the 〈π〉-adic
topology is an admissible K ◦-algebra (use [BL2], Proposition 1.1, Lemma 1.6).
The formal completion Xf-sch is locally given by Spec Â proving that Xf-sch is
admissible. Note that (Xf-sch)an is an analytic subdomain of (X⊗K◦ K )an whose
points are the K ◦-integral points of X. The special fibres of X and Xf-sch are
the same.
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4.3. Let X be an admissible formal scheme over K ◦ and let G be a subgroup
of R containing log |K ×|. The group of cycles on X̃ with coefficients in G
is denoted by Z(X̃, G). The group of cycles on X is defined by Z(X, G) :=
Z(Xan) ⊕ Z(X̃, G) and graded by relative dimension over SpfK ◦. Note that
the horizontal part Zan of Z ∈ Z(X, G) has Z-coefficients and the vertical
part Zv has G-coefficients. Proper push-forward and flat pull-back are defined
componentwise (cf. [Gu3], Section 3). For a closed subset V of X̃, let R(V, G)

be the G-submodule of Z(X̃, G) generated by cycles rationally equivalent to 0
on V .

The concept of Cartier divisors, line bundles and meromorphic sections is
defined on any ringed space (cf. [EGA IV], 21.1-2), hence it makes sense on
X. The support |D| of a Cartier divisor D has a horizontal part |Dan|, where
Dan is the corresponding Cartier divisor on Xan, and a vertical part given as
the smallest closed subset V of X̃ such that D = 0 on X \ V .

For Z ∈ Z(X, G) such that Dan intersects Zan properly in Xan, we have
a generically proper intersection product D.Z, well-defined in Z(X, G)/R(|D| ∩
|Zv|) (cf. [Gu3], Section 4).

Proposition 4.4. For admissible formal schemes over K ◦, the following prop-
erties hold.

(a) For ϕ proper and ψ flat, we form the Cartesian diagram below.

X′
2

ψ ′
−−−→ X2	ϕ′

	ϕ

X′
1

ψ−−−→ X1

Then ϕ′ is proper, ψ ′ is flat and the fibre-square rule ψ∗ ◦ ϕ∗ = ϕ′
∗ ◦ (ψ ′)∗

holds on Z(X2, G).
(b) Let ϕ : X′ → X be a proper morphism, let D be a Cartier divisor on X such

that ϕ∗(D) is a well-defined Cartier divisor on X′ and let Z′ be a prime cycle
on X′ such that D intersects ϕ(Z′) properly in the generic fibre. Then we have
the projection formula

ϕ∗(ϕ∗(D).Z′) = D.ϕ∗(Z′) mod R(|D| ∩ ϕ̃|Z′
v|, G).

(c) Let D, E be Cartier divisors on X intersecting the cycle Z properly in the
generic fibre. Let |Z̃| := ⋃

Y (Ȳ )∼ ∪ |Zv| where Y ranges over the horizontal
components of Z. Then

D.E .Z = E .D.Z mod R(|D| ∩ |E | ∩ |Z̃|, G).

(d) Let ϕ : X′ → X be a flat morphism, let D be a Cartier divisor on X such
that ϕ∗(D) is a well-defined Cartier-divisor on X′ and let Z be a cycle on X
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intersecting D properly in the generic fibre Xan. Then ϕ∗(D) intersects ϕ∗(Z)

properly in the generic fibre and

ϕ∗(D).ϕ∗(Z) = ϕ∗(D.Z) mod R(ϕ−1(|D|) ∩ ϕ̃−1(|Zv|), G).

Proof. The fibre square rule (a) follows immediately form the corresponding
statements for the generic fibres ([Gu3], Proposition 2.12) and for the special
fibre ([Fu], Proposition 1.7). Claims (b) and (c) are easily deduced from [Gu3],
Proposition 4.5 and Theorem 5.9.

It remains to prove (d). By [Fu], Proposition 2.3(d), the result holds for Z

vertical. Hence it is enough to prove the claim for Z = Z horizontal and prime.
For the horizontal parts, the claim follows from [Gu3], Proposition 2.10. Using
the fibre square rule, we may assume Z = Xan and that X is the formal scheme
associated to a formal analytic variety. It is enough to prove ϕ∗ cyc(D) =
cyc(ϕ∗ D) by checking the multiplicities in the irreducible components of X̃′.
By passing to formal open subspaces, we may assume that X and X′ are formal
affine, that D is given by a ∈ OX(X) and that X̃ and X̃′ are both irreducible. On
the left, the multiplicity in cyc(X̃′) is equal to − log |a(X̃)| and on the right, it
is − ∑

V ′ log |a(V ′)| [K̃ (V ′) : K̃ (X̃′
red)] where V ′ is ranging over all irreducible

components of the special fibre of (X′)f-an (cf. [Gu3], 3.10). By flatness of ϕ̃

and finiteness of the canonical map
(
(X′)f-an

)∼ → X̃′, we conclude that every
V ′ is mapped onto X̃ and hence |a(V ′)| = |a(X̃)|. Then (d) follows from the
following result:

Lemma 4.5. Let X be an admissible formal scheme over K ◦, let cyc(Xan) =∑
j mj X j be the decomposition of the generic fibre into irreducible components X j

and let Xj be the formal analytic structure on X j induced by ιj : Xj ↪→ Xf-an. Then
we have

(3) cyc(X̃) =
∑

j

mj (ι̃j )∗(cyc(X̃j )).

Proof. Again, we may assume that X = SpfA is formal affine and that X̃ is
irreducible. Using noetherian normalization with respect to X̃red, we may reduce
the problem to the zero-dimensional case with base field the completion Q̂ of
the field of fractions of a Tate-algebra (cf. [Gu3], Lemma 5.6). Note that Q̂ is
not algebraically closed but stable ([BGR], Theorem 5.3.2/1, Proposition 3.6.2/3)
and the value group |Q̂×| = |K ×| is still divisible. By [Fu], Lemma A1.3, the
multiplicity of cyc(X̃) in X̃red is

�( Ã) = dimQ̃ Ã/[Q̃(X̃red) : Q̃]

where � denotes the length of the local artinian ring Ã := A ⊗K◦ K̃ (us-
ing X̃ irreducible and zero-dimensional). Note that A = A ⊗Q̂◦ Q̂ is a finite
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dimensional Q̂-algebra and hence A ∼= ∏
A℘ where ℘ ranges over SpecA.

By [Fu], Lemma A1.3, the multiplicity �(A℘) of cyc(Xan) in ℘ is equal to
dimQ̂(A℘)/[Q̂(℘) : Q̂]. Note that Q̂(℘) = (A℘)red is a finite dimensional field

extension of Q̂. By stability and divisibility, we have [Q̂(℘) : Q̂] = [Q̃(℘) : Q̃].
We conclude that

∑
℘

�(A℘)[Q̃(℘) : Q̃(X̃red)] =
∑
℘

dimQ̂(A℘)

[Q̃(X̃red) : Q̃]
= dimQ̂(A)

[Q̃(X̃red) : Q̃]

is the multiplicity of the right hand side of (3) in X̃red. Hence (3) follows from:

Lemma 4.6. Let A be an admissible algebra over the complete valuation ring
Q◦ of height 1. If Ã is a finite dimensional Q̃-algebra, then A is a free Q◦-algebra
of rank dimQ̃( Ã).

Proof. Let us choose b1, . . . , br ∈ A such that b̃1, . . . , b̃r form a Q̃-
basis of Ã. As a quotient of a Tate algebra, A is topologically generated by
ξ1, . . . , ξn ∈ A as a Q◦-algebra. There is an element π ∈ Q, |π | < 1, such that
ξ1, . . . , ξn and every bi bj has the form

∑
j λj bj (mod π A) for λj ∈ Q◦. Any

a ∈ A may be written as a polynomial in ξ1, . . . , ξn with coefficients in K ◦
and hence as a K ◦-linear combination of b1, . . . , br , always up to π A. This
proves

A = Q◦b1 + · · · + Q◦br + πn A

for n = 1 and then by induction for all n ∈ N. Since A is complete and separated
with respect to the π -adic topology ([BL2], Proposition 1.1), we conclude that
b1, . . . , br generate A as a Q◦-module. Obviously, they are linearly independent
over Q◦ proving the claim.

Remark 4.7. This ends also the proofs of Lemma 4.5 and hence of
Proposition 4.4. Note that the argument for Lemma 4.6 works for any Q◦-
algebra of topological finite presentation.

5. – Refined intersections on models

Let K be an algebraically closed field with a non-trivial non-archimedean
complete absolute value | |. Vertical cycles have coefficients in a subgroup G
of R containing log |K ×|.

Definition 5.1. A K ◦-model of a rigid analytic variety X over K is an
admissible formal scheme X over K ◦ with generic fibre Xan = X . We denote
the isomorphism classes of K ◦-models of X by MX . A line bundle L on X is
said to be a K ◦-model of L if Lan = L .
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Proposition 5.2. For quasi-compact and quasi-separated rigid analytic vari-
eties over K , the following properties hold:

(a) They have always a K ◦-model and the same holds for every line bundle.
(b) If ϕ : X ′ → X is a morphism and X is a K ◦-model of X, then there is a

K ◦-model X′ of X ′ and a morphism X′ → X extending ϕ. The extension of ϕ

is always unique.
(c) The set MX is partially ordered by defining X′ ≥ X if and only if the identity on

X extends to a morphism X′ → X. Then MX is a directed set.
(d) If ϕ : X ′ → X is a flat morphism extending to a morphism X′

0 → X0 of
K ◦-models, then there is X1 ∈ MX with X1 ≥ X0 such that the projection
X′

1 := X1 ×X0 X′
0 → X1 is a flat extension of ϕ (meaning the fibre product in

the category of admissible formal schemes).
(e) If Y is a closed analytic subvariety of X extending to a morphism Y → X of

K ◦-models, then there is X′ ∈ MX with a closed subscheme Y′ ∈ MY such that
X′ ≥ X and Y′ ≥ Y.

Proof. The claims (a)-(c) follow from a theorem of Raynaud which is
proved by Bosch and Lütkebohmert in [BL2], Theorem 4.1. For the second
claim in (a), we refer to [Gu3], Lemma 7.6. Claim (d) is proved in [BL3],
Theorem 5.2, and (e) is part of [BL3], Corollary 5.3.

Remark 5.3. Let X be the rigid analytic variety associated to a proper
scheme over K . Note that the GAGA-principle holds on X , i.e. every line
bundle L on X is algebraic, every meromorphic section of L is algebraic, every
analytic subvariety is induced by a closed algebraic subscheme of X and every
analytic morphism of proper schemes over K is algebraic (cf. [Ko]; one can
use also [Ber], Proposition 3.4.11). Hence the algebraic and the analytic cycle
groups on X are the same. By [Fu], 2.3, we get a refined intersection product
D.Z ∈ C H(|D| ∩ |Z |) for a pseudo-divisor D and a cycle Z on X .

5.4. Let X be a K ◦-model of X . A support on X is a pair S := (Y, V ) where
the horizontal part Y is a closed analytic subset of X and the vertical part V
is a closed subset of X̃ with

(
Ȳ

)∼ ⊂ V . Componentwise, it makes sense to
consider range and inverse images of supports, as well as intersections. If D
is a Cartier divisor, then |D| from 4.3 is a support on X. For a cycle Z on X,
the support |Z| is defined as the union of all ((Y, (Ȳ )∼) and (∅, V ) with Y
(resp. V ) ranging over all horizontal (resp. vertical) components of Z.

Definition 5.5. For a support S = (Y, V ) on X, R(S, G) is the subgroup
of Z(X, G) generated by divX( f ) and by R(V, G), where f ranges over all
non-zero rational functions on closed irreducible subsets of Y and divX( f ) is
the Weil divisor considered as a cycle on X. The local Chow group of X with
support in S is defined by

C H S
∗(X, G) := {Z ∈ Z(X, G) | |Z| ⊂ S}/R(S, G)

graded by relative dimension. If S = X̃, then we use the notation C H fin
∗ (X, G).
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Lemma 5.6. Let ϕ : X′ → X be a proper morphism of K ◦-models such that
ϕan is induced by a surjective morphism of integral proper schemes over K . For a
non-zero rational function f ′ on X ′ and for the norm NK (X ′)/K (X) with respect to
function fields, we have

(4) ϕ∗(divX′ ( f ′)) = divX(NK (X ′)/K (X)( f ′)).

Proof. To prove (4), we have only to check the vertical parts, the equality
of the horizontal parts is just [Fu], Proposition 1.4. Note that the irreducible
components of X̃ have the same dimension as X . So we may assume that
dim X = dim X ′, otherwise both sides of (4) are zero. Using 4.1, it is enough to
prove (4) for formal analytic varieties X, X′. The Stein factorization ϕ = ϕ′′ ◦ϕ′
gives a finite map ϕ′′ and a proper morphism ϕ′ of formal analytic varieties
which is an isomorphism outside of π−1(S), where π is the reduction and S is
a closed lower dimensional subset of X̃ (cf. [Gu3], proof of Proposition 4.5).
For ϕ′, the vertical parts of (4) also agree since ϕ′ is an isomorphism outside
π−1(S) and the irreducible components of X̃′ lying over S do not contribute to
the left hand side of (4) by dimensionality reasons. So we may assume that
ϕ = ϕ′′ is finite. By passing to formal open affinoid subspaces, we may assume
that X = SpfA and hence X′ = SpfA′ for K -affinoid algebras A, A′. (Note
that the norm doesn’t change because of K (X ′) ⊗K (X) Q(A) ∼= Q(A′) using
finiteness of X ′ over X and that A, A′ are integral domains with quotient fields
Q(A), Q(A′).)

We check the multiplicities in an irreducible component W of X̃ and, by
passing again to formal open affinoid subspaces, we may assume that W = X̃

and f ′ ∈ A′. We have to check

(5)
∑

V

[K̃ (V ) : K̃ (W )] log | f ′(V )| = log |NQ(A′)/Q(A)( f ′)(W )|

where V ranges over all irreducible components of X̃′. Note that |a(W )| is the
supremum norm on A, which extends uniquely to an absolute value | |W on
Q(A). Similarly, we have absolute values | |V on Q(A′) for every irreducible
component V of X̃′. By [Gu3], Lemma 3.19, they are just the extensions of
| |W to absolute values on Q(A′). Let eV/W be the ramification index and let
fV/W be the residue degree. By [Gu3], Lemma 3.17, the classical formula

(6)
∑

V

eV/W fV/W = [Q(A′) : Q(A)]

holds. Let Q̂(A) be the completion of Q(A) with respect to | |W . By [Ja],
Theorem 9.13, we have Q(A′)⊗Q(A) Q̂(A) ∼= ∏

V RV for finite dimensional local
Q̂(A)-algebras RV with residue fields isomorphic to the completion K̂V of Q(A′)
with respect to | |V . Using eV/W fV/W ≤ [K̂V : Q̂(A)], formula (6) implies
RV

∼= K̂V and equality holds. All value groups involved are equal to |K ×|,
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hence eV/W = 1. By [Gu3], Lemma 3.18, the residue fields of | |W , | |V are
isomorphic to K̃ (W ) and K̃ (V ), respectively, and therefore [K̃ (V ) : K̃ (W )] =
fV/W = [K̂V : Q̂(A)]. By [Ja], Theorem 9.8, (5) follows now from

|NQ(A′)/Q(A)( f ′)|W =
∏
V

|NK̂V /Q̂(A)( f ′)|W =
∏
V

| f ′|[K̂V :Q̂(A)]
V

=
∏
V

| f ′|[K̃ (V ):K̃ (W )]
V .

Remark 5.7. Let ϕ : X′ → X be a morphism of admissible formal schemes
with proper algebraic generic fibres. If S′ is a support on X′ with ϕ(S′) contained
in the support S of X, then push-forward induces a map ϕ∗ : C H S′

∗ (X′, G) →
C H S

∗ (X, G). Lemma 5.6 handles rational functions on horizontal prime cycles
and the vertical case follows from [Fu], Proposition 1.4.

If ϕ : X′ → X is a flat morphism, then we have ϕ∗ : C H S
∗ (X, G) →

C Hϕ−1S
∗ (X′, G) induced by pull-back of cycles. This follows easily from Propo-

sition 4.4(d).

5.8. A pseudo-divisor on X is a triple D = (L, S, s) where L is a line bundle
on X, S = (Y, V ) is a support on X and s is an invertible meromorphic section
of L|

X\Ȳ with | div(s)| ⊂ V . We use the notation O(D) := L, |D| := S and
sD := s. Two pseudo-divisors D, E will be identified if |D| = |E | and there is
an isomophism of O(D) onto O(E) carrying sD to sE . Every Cartier divisor
D may be identified with its associated pseudo-divisor (O(D), |D|, sD).

Proposition 5.9. In the category of admissible formal schemes over K ◦ with
proper algebraic generic fibres, there is, for a pseudo-divisor D and for a support S
on X, a unique refined intersection product C H S

∗ (X, G) −→ C H |D|∩S
∗ (X, G), α �→

D.α, with the properties:

(a) If D is a Cartier divisor intersecting a cycle Z properly in the generic fibre,
then D.Z is the generically proper intersection product from 4.3.

(b) The refined intersection product is bilinear using the union of supports.
(c) If ϕ : X′ → X is a morphism and α′ ∈ C H S′

∗ (X′, G) for a support S′ with
ϕ(S′) ⊂ S, then

ϕ∗(ϕ∗ D.α′) = D.ϕ∗(α′) ∈ C H |D|∩S
∗ (X, G) (projection formula).

(d) D.(E .α) = E .(D.α) ∈ C H |D|∩|E |∩S
∗ (X, G) (commutativity for pseudo-

divisors D, E).
(e) If ϕ : X′ → X is a flat morphism, then

ϕ∗(D.α) = ϕ∗ D.ϕ∗α ∈ C Hϕ−1(|D|∩S)
∗ (X′, G).

Proof. By linearity in the components of Z ∈ Z(X, G), it is easy to define
D.Z in the local Chow group with support in |D|∩ |Z| by reducing to (a). This
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proves also uniqueness from (a)-(c). It is clear that the definition satisfies (a)
and (b). Moreover, (c) and (e) follow from Proposition 4.4. However, that
our definition passes to rational equivalence is only clear after proving the
commutativity of Cartier divisors below. Moreover, this lemma implies (d).
The arguments are similar as in [Fu], 2.4.

Lemma 5.10. Let D and D′ be Cartier divisors on X. Then we have

D. cyc(D′) = D′. cyc(D) ∈ C H |D|∩|D′|
∗ (X, G).

Proof. If |D| intersects |D′| properly in the generic fibre X , then this
follows from Proposition 4.4. To reduce to this special case, we proceed as
in the proof of [Fu], Theorem 2.4. Fulton’s idea is to consider blow ups
π an : X ′ → X with suitable centers Y such that one can prove the claim for
π an∗ Dan, π an∗ D′an and then to use projection formula. The only new ingedient
here is to construct an extension π : X′ → X to a K ◦-model X′ such that the
exceptional divisor Ean is the generic fibre of a Cartier divisor E on X′ with
π(|E |) = |Y |.

By Proposition 2.5, π an extends to a morphism of K ◦-models. The clo-
sure F of Ean in X′ is given by a coherent ideal sheaf J on X′ ([Gu3],
Proposition 3.3). Replacing X′ by an admissible formal blowing up as in the
proof of [Gu3], Lemma 7.6, we may assume that J is an invertible ideal sheaf.
Note that we may choose the center of the admissible formal blowing up in F̃ ,
hence if we set E := J and if we consider sEan as a section of E , then the
support of E := divE(sEan) is contained in π−1(|Y |).
5.11. Let X be a rigid analytic variety over K with a line bundle L . A
metric on L is called formal if there is an admissible open covering {Ui }i∈I

trivializing L such that if s ∈ L(Ui ) corresponds to a regular function γi on Ui ,
then we have ‖s(x)‖ = |γi (x)| for all x ∈ Ui .

A K ◦-model L of L gives rise to a formal metric ‖ ‖L on L by using
a trivialization {Ui }i∈I of L and the above formula to define the metric over
Ui := Uan

i . If X is reduced, quasi-compact and quasi-separated, every formal
metric arises this way ([Gu3], Proposition 7.5).

A formal pseudo-divisor D̂ on X is defined as in 2.5 with a formal metric
on O(D).

5.12. For a K ◦-model X of a quasi-separated and quasi-compact rigid analytic
variety X , let Z̃(X, G) := Z(X, G)/R(X̃, G). The Arakelov-cycle group of X is
defined by

Ẑ(X, G) := lim←−
X∈MXred

Z̃(X, G)

where the inverse limit is with respect to push-forward of the morphisms ex-
tending the identity. An element α ∈ Ẑ(X, G) will be described by a family
(αX)X∈MXred

where αX ∈ Z̃(X, G). Note that the horizontal part of all αX agree,
it is a cycle αan on X .
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Definition 5.13. Up to now, we suppose that X is proper and algebraic.
For a non-zero rational function f on an irreducible closed subvariety W of X ,
we set d̂iv( f ) := (divX( f )) ∈ Ẑ(X, G). For a closed analytic subset Y of X ,
let R̂(Y, G) be the subgroup of Ẑ(X, G) generated by all such d̂iv( f ) with
W ⊂ Y . The local Arakelov-Chow group with support in Y is defined by

Ĉ H
Y
∗ (X, G) := {α ∈ Ẑ(X, G) | |αan| ⊂ Y }/R(Y, G).

graded by relative dimension. For Y = ∅, we use the notation Ĉ H
fin
∗ (X, G).

Remark 5.14. Let ϕ : X ′ → X be a proper morphism over K and let Y ′ be
a closed analytic subset of X ′ with ϕ(Y ′) ⊂ Y . Then it is clear that push-forward
may be defined componentwise on Arakelov cycles and descends to a graded
homomorphism of local Arakelov-Chow groups with supports in Y ′ resp. Y
also denoted by ϕ∗. Note however that flat pull-back is neither well-defined on
Arakelov-cycle groups nor on Arakelov-Chow groups.

5.15. There is a unique refined intersection product D̂.α of a formal pseudo-

divisor D̂ and α ∈ Ĉ H
Y
∗ (X, G) with properties similar as in Proposition 5.9(a)-

(d). For proper intersection (a), we claim that (D̂.α)X = divL(sD).αX for every
K ◦-model (X,L) of (X red, O(D)red) with ‖ ‖L equal to the formal metric of D̂
(cf. [Gu3], Proposition 8.4). We omit the details.

6. – Local Chow cohomology on models

Let K and G be as before. All spaces denoted by fractur letters X, X′, . . .
are assumed to be admissible formal schemes over the valuation ring K ◦. Their
generic fibres X, X ′, . . . are assumed to be proper algebraic over K . By [Gu3],
Remark 3.14, X, X′, . . . are proper over K ◦.

Definition 6.1. Let S = (Y, V ) be a support on X (cf. 5.4) and let p ∈ Z.
A Chow cohomology class c ∈ C H p

S (X, G) is a family of homomorphisms

C H S′
k (X′, G) → C H S′∩ψ−1S

k−p (X′, G), α′ �→ c ∩ψ α′,

for all k ∈ N, for all morphisms ψ : X′ → X and for all supports S′ on X′,
satisfying the axioms:

(C1) If ϕ : X′′ → X′ is a proper morphism and α′′ ∈ C H S′′
k (X′′, G) with ϕ(S′′) ⊂

S′, then

ϕ∗(c ∩ψ◦ϕ α′′) = c ∩ψ ϕ∗(α′′) ∈ C H S′∩ψ−1S
k−p (X′, G).
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(C2) If ϕ : X′′ → X′ is a flat morphism of relative dimension d and α′ ∈
C H S′

k (X′, G), then

ϕ∗(c ∩ψ α′) = c ∩ψ◦ϕ ϕ∗(α′) ∈ C Hϕ−1S′∩ϕ−1ψ−1S
k+d−p (X′′, G).

(C3) If D′ is a pseudo-divisor on X′ and α′ ∈ C H S′
k (X′, G), then

D′.(c ∩ψ α′) = c ∩ψ (D′.α′) ∈ C H S′∩|D′|∩ψ−1S
k−p−1 (X′, G).

(C4) The operation c on vertical cycles is induced by a cohomology class c̃ ∈
C H p

V (X̃, G).

Remark 6.2. Working in the category of algebraic schemes over a field
and using axioms (C1)-(C3), we get the local Chow cohomology groups of [Fu],
Example 17.3.1. Using local Chow groups with coefficients, the same procedure
leads to local Chow cohomology groups with coefficients for algebraic schemes
defining C H p

V (X̃, G) in (C4). Let C H∗
fin(X, G) := C H∗

X̃
(X, G).

Example 6.3. A pseudo-divisor D on X induces c1(D) ∈ C H 1
|D|(X, G) by

c1(D)∩ψ α′ := ψ∗ D.α′. The axioms (C1)-(C4) follow easily from the properties
of refined intersection theory.

6.4. We define cup product c∪c′ and pull-back ϕ∗(c) with respect to a morphism
ϕ : Y → X formally completely analogous to [Fu], 17.2. Cup product is
associative, pull-back is functorial and compatible with cup product.

Definition 6.5. Let ϕ : X → Y be a flat morphism of relative dimension
d and let S be a support on X. For c ∈ C H p

S (X, G), the push-forward ϕ∗(c) ∈
C H p−d

ϕS (Y, G) is defined by

ϕ∗(c) ∩ψ α′ := ϕ′
∗(c ∩ψ ′ ϕ′∗(α′)) ∈ C Hϕ′S′∩ψ−1ϕS

k+d−p (Y′, G)

for all k ∈ Z, for all morphisms ψ : Y′ → Y, for all supports S′ on X′ and for all
α′ ∈ C H S′

k (Y′, G) using the base changes ϕ′ : X′ → Y′, ψ ′ : X′ → X of ϕ, ψ .
The axioms follow easily from the fibre square rule 4.4 and Proposition 5.9.
The flat push-forward is functorial.

Proposition 6.6.
(a) ψ∗ϕ∗(c) = ϕ′

∗ψ
′∗(c) ∈ C H p−d

ψ−1ϕS
(Y′, G).

(b) For c′ ∈ C Hq
T (Y, G), we have the projection formulas

ϕ∗(c) ∪ c′ = ϕ∗(c ∪ ϕ∗(c′)) , c′ ∪ ϕ∗(c) = ϕ∗(ϕ∗(c′) ∪ c).

Proof. The fibre square rule is immediate from the definitions and implies
that it is enough to prove (b) for ψ the identity. For α ∈ C H S′

k (X, G), we have

(ϕ∗(c) ∪ c′) ∩ α = ϕ∗(c ∩ ϕ∗(c′) ∩ ϕ∗(α)) = ϕ∗(c ∪ ϕ∗(c′)) ∩ α

and similarly, we prove the other formula.
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Proposition 6.7. We have C H p
S (X, G) = 0 for p < 0 or p > dim(X) + 1.

Proof. The corresponding statement in algebraic geometry ([Fu], Exam-
ple 17.3.3) and (C4) yield that c ∈ C H p

S (X, G) operates trivially on vertical
cycles. In the horizontal case, we may extend the flattening theorem of Ray-
naud and Gruson to suitable K ◦-models by Proposition 5.2 and the claim follows
similarly as in [Fu], Example 17.3.3.

Example 6.8. Note that SpfK ◦ has a horizontal cycle 1 and a vertical
cycle v, hence

C H S
k (SpfK ◦, G) =


Z · 1 if k = 0 and S = 1 ∪ v,

G · v if k = −1 and S = v,

0 otherwise.

Because every morphism to SpfK ◦ is flat, we deduce easily, for all supports S
and all p ∈ Z, that C H p

S (X, G) ∼= C H S
−p(X, G).

Proposition 6.9. Let X be a proper scheme over K endowed with its rigid
analytic structure. Let X be a K ◦-model of X red, S = (Y, V ) a support on X and
cX ∈ C H p

S (X, G). For a proper morphism ψ : X ′ → X and a closed analytic
subset Y ′ of X ′, there is a unique operation

Ĉ H
Y ′
k (X ′, G) → Ĉ H

Y ′∩ψ−1Y
k−p (X ′, G), α′ �→ ĉ ∩ψ α′,

such that for X′ ∈ MXred with an extension ψ̄ : X′ → X of ψ, we have (ĉ∩ψ α′)X′ =
cX ∩ψ̄ α′

X′ .

Proof. We use the last equality to define the operation of ĉ on all such X′.
By (C1), this is compatible with push-forward, thus ĉ is well-defined and unique-
ness is obvious.

Definition 6.10. We call ĉ the local Arakelov-Chow cohomology class
on X with support in Y induced by cX. The local Arakelov-Chow cohomology
classes with support in Y (for varying K ◦-models X) form a group denoted by
Ĉ H

p
Y (X, G). By Proposition 6.7, it is zero for p �∈ {0, . . . , dim X + 1}. For

Y = ∅, we use the notation Ĉ H
p
fin(X, G).

6.11. Let ĉ ∈ Ĉ H
p
Y (X, G) and ĉ′ ∈ Ĉ H

q
Z (X, G) be induced by cX and c′

X′ . To
define the cup product, we may assume that X = X′ (Proposition 5.2) and then

let ĉ ∪ ĉ′ ∈ Ĉ H
p+q
Y∩Z (X, G) be induced by cX ∪ c′

X
. To define the pull-back with

respect to the morphism ψ : X ′ → X of proper schemes over K , we choose
any extension ψ̄ : X′ → X and then ψ∗(ĉ) ∈ Ĉ H

p
ψ−1Y (X ′, G) is induced by

ψ̄∗(cX). Clearly, these definitions do not depend on the choice of cX, c′
X′ and

the extension ψ̄ . Again, the cup product is associative and compatible with
pull-back.
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Proposition 6.12. If ϕ : X ′′ → X ′ is a morphism and α′′ ∈ Ĉ H
Y ′′
k (X ′′, G) for

a closed subset Y ′′ of X ′′, then

ϕ∗(ĉ ∩ψ◦ϕ α′′) = ĉ ∩ψ ϕ∗(α′′) ∈ Ĉ H
ϕY ′′∩ψ−1Y
k−p (X ′, G).

Proof. This follows immediately from (C1) for cX.

Example 6.13. Let D̂ be a formal pseudo-divisor on X . Then there is

ĉ1(D) ∈ Ĉ H
1
|D|(X, G) given by the refined intersection product ĉ1(D) ∩ψ α′ =

ψ∗ D̂.α′ of 5.15. It is induced by any pseudo-divisor D on a K ◦-model X

of X red with generic fibre equal to D|Xred such that ‖ ‖O(D) is the metric of
O(D)red (see 5.11).

Example 6.14. Since SpfK ◦ is the only K ◦-model of SpfK , Example 6.8
shows

Ĉ H
Y
−p(SpfK , G) ∼= Ĉ H

p
Y (SpfK , G) ∼=


Z if p = 0 and Y = Sp f K ,

G if p = 1 and Y = ∅,

0 otherwise.

7. – Admissible metrics

In this section, K denotes an algebraically closed field with a non-trivial
non-archimedean complete absolute value | |. Let us fix a subfield G of R

containing the value group log |K ×|.
Definition 7.1. Let X be an admissible formal scheme over K ◦ with

generic fibre X . A metric ‖ ‖ on the trivial bundle OX is called X-admissible
if there is an open covering {U}U∈I of X, invertible analytic functions γj ∈
OX (Uan)× and λj ∈ G ( j = 1, . . . , r) satisfying

(7) ‖1(x)‖ = |γ1(x)|λ1 · · · |γr (x)|λr

for all x ∈ Uan. A metric ‖ ‖ on a line bundle L on X is called X-admissible
if there is a K ◦-model L of L on X such that ‖ ‖/‖ ‖L is a X-admissible
metric on OX .

Remark 7.2. If L is a line bundle on a quasi-compact and quasi-separated
rigid analytic variety X over K , then a metric on L is called admissible if it
is X-admissible for a K ◦-model X of X . The pull-back and the tensor product
of admissible metrics are admissible.

Example 7.3. For a semistable K ◦-model C of an irreducible smooth
projective curve C over K , we will describe the C-admissible metrics on OC .
Since the special fibre of C is reduced, we may view C as a formal analytic
variety (cf. 4.1).



732 WALTER GUBLER

The vertices of the intersection graph G(C) correspond to the irreducible
components of C̃. For each double point x̃ of C̃, we define an edge of G(C) by
connecting the vertices correspnding to the irreducible components through x̃ .
Let π : C → C̃ be the reduction map. Then the formal fibre π−1(x̃) is an open
annulus {ζ ∈ k×|r < |ζ | < 1} of height 0 < r < 1 ([BL1], Proposition 2.3).
If we require that the edge corresponding to the duoble point x̃ is isometric
to a closed real interval of length − log r (or to a circle if there is only one
irreducible component through π(x), then G(C) will be metrized graph.

There is a canonical map p : C → G(C). If x ∈ C has regular reduction
π(x) ∈ C̃, then p(x) is the vertex corresponding to the irreducible component of
C̃ containing π(x). If π(x) is an ordinary double point x̃ in C̃, then we identify
the edge corresponding to x̃ with [0, − log r ] (or the corresponding loop) and
we set p(x) := − log |ζ(x)|.

Proposition 7.4. For a C-admissible metric ‖ ‖ on OC , there is a unique
f : G(C) → R with f ◦ p = − log ‖1‖. This gives a bijection between C-admissible
metrics on OC and continuous real functions on G(C) which are linear on the edges
with slopes and constant terms in G.

Proof. Let Ũ be an irreducible open affine subscheme of C̃. Then U :=
π−1(Ũ) is a formal open affinoid subspace of C. We may assume that the
C-admissible metric ‖ ‖ is given on U by (7). Because Ũ is integral, the
maximum norm on U is multiplicative ([BGR], Proposition 6.2.3/5). Thus the
absolute values |γi (x)| are constant on U and hence the same holds for ‖1(x)‖.

If t is a vertex of G(C) corresponding to an irreducible component V of C̃,
then x ∈ C maps to t if and only if the reduction π(x) is a regular point of C̃
contained in V . The set of these reductions is an irreducible open subset of C̃
contained in V and may be covered by finitely many Ũ as above. We conclude
that ‖1‖ is constant on p−1(t).

If t is on a loop γ , then there is a unique irreducible component V through
the corresponding double point. As above, we conclude that ‖1(x)‖ is constant
on p−1(γ ).

It remains to consider an interior point t of an edge (which is not a loop).
Then p−1(t) ⊂ π−1(x̃) for a double point x̃ of C̃. We can identify this formal
fibre with an open annulus with coordinate ζ . For every unit γ on a formal open
neighbourhood of π−1(x̃), there is m ∈ Z and α ∈ K × with |γ (x)| = |αζ(x)m |
for all x ∈ π−1(x̃) ([BGR], Lemma 9.7.1/1). By [BL1], Proposition 2.3(ii),
this identity extends to a formal open neighbourhood U of π−1(x̃). By (7),
f (t) := ‖1 ◦ p−1(t)‖ is well-defined and linear on the whole edge with slope
and constant term in G. Continuity is also clear and so the proof of the first
claim is complete.

The arguments may be reversed to get the second claim.

Remark 7.5. By ‖ ‖ ↔ ∑
f (V ) V , the C-admissible metrics on OC may

be identified with the G-vector space of one dimensional cycles on C̃ with
coefficients in G.
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A blowing up of C in a double point leads to a refinement of the intersection
graph G(C) corresponding to a subdivision of the open annulus in two annuli.
Hence we can construct admissible metrics with − log ‖1(x)‖ arbitrarily close
to any continuous function on G(C). If we blow up in a regular point x̃ = π(x)

of C̃, then we have to add a new vertex and a new edge.
For a semistable model C over an discrete valuation ring, the intersection

graph is the same as in [CR], [Zh1] and the results are similar. By using the
rigid analytic structure of the formal fibre, our construction is absolute working
for any complete valuation of height 1.

Proposition 7.6. Let X be a reduced formal analytic variety with generic
fibre X. Let s be an invertible meromorphic section of a line bundle L on X and
let ‖ ‖ be a X-admissible metric on L. For every irreducible component W of X̃,

there is a number ‖s(W )‖ ∈ exp(G) with ‖s(x)‖ = ‖s(W )‖ for all x ∈ X with
reduction π(x) neither in π | div(s)| nor in any other irreducible component of X̃

different from W .

Proof. The claim is local on X, so we may assume that the metric is
given by a product of G-powers of formal metrics on L = OX . By linearity,
we may assume that the metric is formal. The points in question form a
formal open neighbourhood U of X. We may assume U = X formal affinoid
with irreducible special fibre. Thus s ∈ OX (X)× and multiplicativity of the
maximum norm ([BGR], Proposition 6.2.3/5) yields |s(x)| = |s|max constant
on X .

7.7. The order of s in W is ord(s, W ) := − log ‖s(W )‖. As in [Gu3], 3.10
and 4.1, we get a Weil divisor cyc(d̂ivX(s)) and a proper intersection product
d̂ivX(s).Z ∈ Z(X, G) for every horizontal cycle Z on X intersecting div(s)
properly in X . By projection formula, we extend the definition to admissible
formal schemes generalizing the proper intersection product of Cartier divisors
with horizontal cycles from 4.3. The projection formula 4.4(b) and the flat
pull-back rule 4.4(d) still hold for horizontal cycles. By local linearity, this
follows from the formal case.

7.8. Let X be a reduced formal analytic variety over K with generic fibre X ,
let L be a line bundle on X with X-admissible metric ‖ ‖ and let s be an
invertible meromorphic section of L . A remarkable fact is that for a vertical
cycle V of codimension 0 in X̃, we can define an intersection product d̂ivX(s).V
well-defined as a vertical cycle with coefficients in G. There is a K ◦-model L
of L on X such that ‖ ‖/‖ ‖L is a X-admissible metric on OX given by (7)
with respect to a formal open covering {U}U∈I of X trivializing L on the generic
fibre. Let f be the rational function corresponding to s in the trivialization.
By linearity, we may assume that V is an irreducible component of X̃. Then
we define the cycle d̂ivX(s).V on Ũ ∩ V by

(8) div(( f/ f (V ))∼) +
∑

j

λj div((γj/γj (V ))∼).

Lemma 7.9. These cycles fit to a cycle on V depending only on ‖ ‖.
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Proof. The rational functions ( f/ f (V ))∼ on Ũ ∩ V form a Cartier divisor
on V with corresponding line bundle isomorphic to L|V . So we may assume
L = OX and s = 1. It is enough to show that the order of (8) in an irreducible
closed subset W of codimension 1 in V depends only on the metric and the
formal fibre over W . Using noetherian normalization with respect to W and
base change, we reduce to the case of an irreducible and reduced formal analytic
curve X over a complete (stable) field Q (cf. [Gu3], Lemma 5.6 and proof of
Theorem 5.9).

By passing to formal open affinoid subspaces, we may assume that there is
an analytic function g on X with maximum norm ≤ 1 such that W is an isolated
zero of the reduction g̃ in X̃. By [BL1], Lemma 2.4, we know that for r ∈ |K ×|,
r < 1 sufficiently close to 1, the periphery {x ∈ X | π(x) = W, |g(x)| ≥ r} of
the formal fibre over W decomposes into n connected components G1, . . . , Gn .
Here, π still denotes reduction. These components correspond to the points
ỹ1, . . . , ỹn in the normalization of X̃ lying over W . Moreover, Gk is isomorphic
to the semi-open annulus {ζ ∈ B1 | r1/ ordỹk

(g) ≤ |ζ | < 1}. Let ỹk be contained
in the normalization V ′ of V and let γ ∈ O(Uan)×. By [BL1], Lemma 2.5, we
have |γ (x)/γ (V )| = |ζ(x)|ord(γ /γ (V ),ỹk ) for all x ∈ Gk . From (7), we get

‖1(x)‖ = |γ1(V )|λ1 · · · |γr (V )|λr |ζ(x)|
∑

j λj ord(γj /γj (V ),ỹk )

for all x ∈ Gk and therefore
∑

j λj ord(γj/γj (V ), ỹk) depends only on the metric.
By projection formula applied to the normalization morphism over V and to the
divisor of (γj/γj (V ))∼ on V , we have ord(γj/γj (V ), W ) = ∑

k ord(γj/γj (V ), ỹk)

where k ranges over all ỹk contained in V ′. We conclude that the order of (8)
in W depends only on ‖ ‖ and not on the choice of U .

Theorem 7.10. Let X be a reduced formal analytic variety over K with generic
fibre X. Let L , L ′ be line bundles on X with X-admissible metrics ‖ ‖, ‖ ‖′ and
invertible meromorphic sections s, s ′ such that div(s) and div(s ′) intersect properly
in X. Then

d̂ivX(s). cyc(d̂ivX(s ′)) = d̂ivX(s ′). cyc(d̂ivX(s)) ∈ Z(X, G).

Proof. The statement is proved for formal metrics in [Gu3], Theorem 5.9.
The claim is local and then an admissible metric is a product of G-powers of
formal metrics.

Remark 7.11. Let C be a smooth projective curve over K . There is a
semistable K ◦-model C of C such that C̃ has smooth irreducible components.
If necessary, we may choose C larger than any given K ◦-model of C . This
follows from the semistable reduction theorem ([BL1], Theorem 7.1) and its
proof. In fact, the semistable model was obtained by successive refinements of
a given formal analytic structure and a further refinement as in the introductory
remark to Lemma 2.5 of [BL1] leads to smooth irreducible components of C̃.
By dimensionality, 7.7 and 7.8, d̂ivC(s).Z is defined for all Z ∈ Z(C, G) with
Zan intersecting div(s) properly in C .
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Theorem 7.12. Let C be as in Remark 7.11 and let L be a line bundle on C with
C-admissible metric ‖ ‖. For every invertible meromorphic section s of L , there is
a unique ĉ1(s)C ∈ C H 1

| div(s)|∪C̃
(C, G) such that for Z ∈ Z(C, G), we have:

(a) If div(s) intersects Z properly in the generic fibre, then

ĉ1(s)C ∩ Z = d̂ivC(s).Z ∈ C H (| div(s)|∪C̃)∩|Z|
∗ (C, G).

(b) If s ′ is another invertible meromorphic section of L , then

ĉ1(s
′)C ∩ Z − ĉ1(s)C ∩ Z = divC(s

′/s).Z ∈ C H (| div(s′)|∪| div(s)|∪C̃)∩|Z|
∗ (C, G).

Proof. First, we prove uniqueness. Let ψ̄ : X′ → C be a proper morphism
of admissible formal schemes with generic fibre ψ . Let s be an invertible
meromorphic section of L such that ψ∗ div(s) is a well-defined Cartier divisor
on the generic fibre X ′ intersecting a horizontal cycle Z ′ properly in X ′. Then
we claim that

(9) ĉ1(s)C ∩ψ̄ Z ′ = d̂ivX′ (s ◦ ψ).Z ′ ∈ Z̃(X′, G)

is necessary. Note that the right hand side is the intersection product from 7.7
with respect to the X′-admissible metric ψ∗‖ ‖ of ψ∗L . To prove (9), we
may assume Z ′ prime and Z ′ = X ′. Let ρ : X ′ → Y := ψ X ′ be the map
induced by ψ . By [Ha], Proposition III.9.7, it is flat. To prove (9), we may
replace C and X′ by sufficiently large K ◦-models for C and X ′ (use projection
formula and (C1)). By Proposition 5.2, we may assume that ρ extends to a
flat morphism ρ̄ : X′ → Ȳ , where Ȳ is the closure of Y in C. Note that ρ̄ is
induced by ψ̄ . By the flat pull-back rule, ρ̄∗Y = Z ′ and (a), we deduce

d̂ivX′ (s ◦ ψ).Z ′ = ρ̄∗(d̂ivC(s).Y ) = ρ̄∗(ĉ1(s)C ∩ Y ) = ĉ1(s)C ∩ψ̄ Z ′

in Z̃(X′, G). This proves (9). Note that we already get uniqueness of ĉ1(s) on
horizontal cycles because we may use (b) to reduce to the proper intersection
case.

Now let V be a vertical prime cycle on X′. Let ρ : V → W := ψ̃V be
the morphism induced by the reduction ψ̃ of ψ̄ . Then ρ is again flat. By
axiom (C4), ĉ1(s)C operates on vertical cycles by c̃ ∈ C H 1

C̃ (C̃, G). Using (C2)
for c̃ and ρ∗W = V , we get uniqueness from

(10) ĉ1(s)C ∩ψ̄ V =ρ∗(c̃ ∩ W )=ρ∗(ĉ1(s)C ∩ W )=ρ∗(d̂ivC(s).W )∈C H∗(V, G).

We come to the proof of existence which is clear for formal metrics (Exam-
ple 6.3), so we may assume L = OC and s = 1. First, we define the Chow
cohomology class c̃ from axiom (C4) inducing the action on vertical cycles.
Let {U}U∈I be a formal open covering of C such that ‖ ‖ is given by (7). For
an irreducible component W , we may view (γj/γj (W ))∼ as a rational function
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on W with support S(U, j, W ) contained in the double points (cf. proof of
Proposition 7.4). For S := ⋃

U, j,W S(U, j, W ), we define c̃ ∈ C H 1
S (C̃) by the

following procedure: let V be an integral scheme and let ψ : V → C̃ be a
proper morphism. Inspired by (10), we consider the flat ρ : V → W := ψV
induced by ψ and we set

(11) c̃ ∩ψ V := ρ∗(d̂ivC(1).W ) ∈ C Hdim V −1(ψ
−1S, G).

Note that it is a cycle if W is an irreducible component of C̃ and 0 otherwise.
By passing to prime components, this leads to an action c̃ ∩ψ · on all cycles
of a proper scheme over C̃.

We claim that c̃ ∈ C H 1
S (C̃, G). Axioms (C1) and (C2) follow easily from

projection formula and flat pull-back rule for cycles. Let ψ : V ′ → C̃ be a
morphism over K̃ , let V be a cycle on V ′ and let D′ be a pseudo-divisor on
V ′. For (C3), we have to check

(12) D′.(c̃ ∩ψ V ) = c̃ ∩ψ (D′.V ) ∈ C Hdim V −2(V ∩ ψ−1S ∩ |D′|, G).

We may assume V prime, V = V ′ and that D′ is a Cartier divisor. Let
W := ψV , then we may assume that W is an irreducible component of C̃
otherwise both sides in (12) are zero. Let U be the complement of all non-
proper intersection components of ψ−1(S) ∩ |D′| in V . On the open subset U
of V , (12) is an identity of cycles. It may be checked locally over U where c̃
is the refined intersection product with

∑
j λj div((γj/γj (W ))∼). Each Cartier

divisor commutes with D′ proving (12) on U . So let Y be a non-proper
intersection component of ψ−1(S) ∩ |D′|. Then ψ(Y ) is a point, hence there is
an U ∈ I such that Y ⊂ ψ−1(U). The same argument as above proves that (12)
holds in a neighbourhood of Y . This proves (C3) for cycles. We conclude
that c̃ passes to rational equivalence and hence c̃ ∈ C H 1

S (C̃, G).
Now we define the operations ĉ1(1)C . Let X ′ be a proper scheme over K ,

let ψ : X′ → C be a morphism of K ◦-models. For α′ vertical and Z ′ horizontal
on X′, let

ĉ1(1)C ∩ψ α′ := c̃ ∩ψ̃ α′ , ĉ1(1)C ∩ψ Z ′ := d̂ivX(1).Z ′

using the X′-admissible metric ψ∗‖ ‖ on OX ′ . Axioms (C1)-(C3) are clear on
vertical cycles using the corresponding axioms for c̃. For a horizontal cycle,
axioms (C1) and (C2) follow from projection formula and flat pull-back rule.
To prove (C3) for Z ′, we first reduce to Z ′ = X ′ prime. Replacing sections
if necessary, we reduce to the proper intersection case and (C3) follows from
Theorem 7.10. Finally, (C4) is by definition. By (C3), the actions ĉ1(1)C factor

through rational equivalence and hence ĉ1(1)C ∈ Ĉ H
1
C̃(C, G). Clearly, (a) and

(b) are true.

Remark 7.13. Let C be a smooth projective curve over K and let L
be a line bundle on C with an admissible metric ‖ ‖. There is a semistable
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K ◦-model C of C such that C̃ has smooth irreducible components and such that
‖ ‖ is C-admissible. For an invertible meromorphic section s of L , let ĉ1(s) ∈
Ĉ H

1
| div(s)|(C, G) be induced from ĉ1(s)C (Theorem 7.12). By (9) and (10), it

does not depend on the choice of C. Note that if ‖ ‖ is a formal metric, then
ĉ1(s) agrees with ĉ1(div(s)) from Example 6.13.

Corollary 7.14. Let C, C ′ be smooth projective curves over K with invertible
meromorphic sections s, s ′ of admissibly metrized line bundles L and L ′, respec-
tively. If X is a proper scheme over K with morphisms ϕ : X → C and ϕ′ : X → C ′,
then

ϕ∗ĉ1(s) ∪ ϕ′∗ĉ1(s
′) = ϕ′∗ĉ1(s

′) ∪ ϕ∗ĉ1(s) ∈ Ĉ H
2
| div(s)|∩| div(s′)|(X, G).

Proof. The argument is completely similar to the proof of axiom (C3) in
Theorem 7.12. We can always reduce to a local question where the divisors
are G-linear combinations of formal Cartier divisors. We omit the details.

Definition 7.15. Let X be a rigid analytic variety proper over K . For a
K ◦-model π : X → SpfK ◦ and αX ∈ Z̃−1(X, G), let us denote by

∫
X

αX the
number in G corresponding to π∗(αX) ∈ Z̃−1(SpfK ◦, G) ∼= G (Example 6.8).
If α ∈ Ẑ−1(X, G), then

∫
X

αX is independent of the choice of X ∈ MXred and
is denoted by

∫
X α.

If cX ∈ C H dim(X)+1
fin (X, G) induces ĉ ∈ Ĉ H

dim(X)+1
fin (X, G) for algebraic X ,

then ∫
X

ĉ :=
∫

X

cX :=
∫

X
ĉ ∩ cyc(X) =

∫
X

cX ∩ cyc(X).

Remark 7.16. Let C be a semistable K ◦-model of a smooth projective
curve C over K . By Remark 7.5, α ∈ Z1(C̃, G) induces a unique C-admissible
metric ‖ ‖α on OC with α = cyc(d̂iv

α

C(1)). For α, β ∈ Z1(C̃, G), we get a
pairing

〈α | β〉 :=
∫
C

d̂iv
α

C(1).β ∈ G.

Let L be a line bundle C with invertible meromorphic section s and C-admissible
metric ‖ ‖. Let ver be the vertical part of cyc(d̂ivC(1)). By Remark 7.13, the
C-admissible metrics ‖ ‖ver and ‖ ‖hor := ‖ ‖/‖ ‖ver induce

ĉver
1 := ĉver

1 (1) ∈ Ĉ H
1
fin(C, G) , ĉhor

1 (s) = ĉ1(s) − ĉver
1 ∈ Ĉ H

1
| div(s)|(C, G)

called the vertical and horizontal part of ĉ1(s). For a morphism ψ : X ′ → C
such that ψ∗ div(s) is a well-defined Cartier divisor on X ′, it is clear that
ĉhor

1 (s) ∩ cyc(X ′) = cyc(div(s ◦ ψ)).
The following is a local version of the Hodge index theorem for arithmetic

surfaces proved by Faltings ([Fa1], Theorem 4), and Hriljac ([Hr], Theorem 3.4).
The arguments are similar.
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Theorem 7.17. The above pairing is a symmetric negative semidefinite bilinear
form on the G-vector space Z1(C̃, G). If C is irreducible, then the kernel of the
pairing is G · cyc(C̃).

Proof. Clearly, the pairing is bilinear and symmetry follows from Theo-
rem 7.10. Let α = ∑

V mV V and β = ∑
W nW W with V and W ranging over

all irreducible components of C̃. Because a multiple of cyc(C̃) = ∑
V V is

rationally equivalent to 0, we get

(13) 〈α | β〉 = −1

2

∑
V,W

(mV − nW )2〈V | W 〉.

Let V �= W . We compute the multiplicity of the cycle d̂iv
V
C (1).W in P ∈ W .

If P is regular, then the admissible metric ‖ ‖V is constant on the formal
fibre over P and so the multiplicity is zero. If P is a double point, then
the formal fibre is isomorphic to an open annulus {ζ ∈ K | r < |ζ | < 1}
of height r ∈ |K ×|, r < 1. Let W ′ be the other irreducible component of C̃
passing through P , it may happen W ′ = W . If W ′ �= V , then Proposition 7.4
shows that the metric ‖ ‖V is constant 1 on the formal fibre and again the
multiplicity is 0. So we may assume that W ′ = V , i.e. P ∈ V ∩ W . Allowing
the usual change of coordinates ζ ↔ r/ζ if necessary, the metric ‖ ‖V is given
on the formal fibre over P by ‖1(x)‖V = |ζ(x)|−1/ log r . We conclude that the
multiplicity is −1/ log r > 0 (cf. proof of Lemma 7.9). Hence we have proved
that 〈V | W 〉 ≥ 0 with equality if and only if V ∩ W = ∅. Using (13), we
conclude that the bilinear form 〈 | 〉 is negative semidefinite. If C is irreducible,
then C̃ is connected. Thus for V �= W , there is a chain V0 = V, V1, . . . , Vr = W
of irreducible components of C̃ such that Vj−1 ∩ Vj �= ∅. By (13), we conclude
that α is in the kernel of 〈 | 〉 if and only if α ∈ G · ∑

V V .

Corollary 7.18. Let C be a smooth projective curve over K and let L ∈
Pic0(C). Then there is an admissible metric ‖ ‖ on L such that for any invertible

meromorphic section s of L and any α ∈ Ĉ H
fin
0 (C, G), we have

∫
C ĉ1(s) ∩ α = 0.

If C is irreducible, then the metric is uniquely determined up to multiples in exp(G)

and is called a canonical metric.

Proof. We may assume C irreducible. Note that the operation of ĉ1(s) on

Ĉ H
fin
∗ (C, G) is independent of s. Let C be a semistable K ◦-model of C . Since

we may compute the intersection number
∫

C ĉ1(s)∩α on C, we have to look for

a C-admissible metric ‖ ‖ on L with
∫
C d̂ivC(s).α = 0 for all α ∈ Z1(C̃, G). Let

‖ ‖L be any formal metric on L with K ◦-model L which we may assume to

live on C, then the corresponding action of d̂iv
L
C (s) on Z1(C̃, G) is an G-linear

form �. Using commutativity with divisors of constants and L ∈ Pic0(C), it is
clear that � vanishes on cyc(C̃). By the local Hodge index theorem, there is
β ∈ Z1(C̃, G) with �(α) = 〈β | α〉 for all α ∈ Z1(C̃, G). We conclude that the
C-admissible metric ‖ ‖L/‖ ‖β satisfies the claim. By using a sufficiently large
K ◦-model, uniqueness also follows from the local Hodge index theorem.
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The Néron pairing 〈 , 〉Nér on a smooth projective curve C over K
(cf. [La], Theorem 11.3.6) is closely related to the canonical metric ‖ ‖ of
L ∈ Pic0(C) from Corollary 7.18:

Corollary 7.19. For any invertible meromorphic section s of L and any divi-
sor Z of degree 0 with | div(s)| ∩ |Z | = ∅, we have − log ‖s(Z)‖ = 〈div(s), Z〉Nér.

Proof. This follows from the characteristic properties of the Néron pair-
ing. Symmetry follows from Corollary 7.14 and boundedness is clear because
admissible metrics are bounded.

Example 7.20. Let q ∈ K ×, |q| < 1, and let C = Gm/qZ be Tate’s elliptic
curve (cf. [BGR], Example 9.3.4/4 and 9.7.3). For a ∈ K ×, |q| < |a| < 1,
let C be the formal analytic variety given by the formal open affinoid covering
U1 := {ζ ∈ Gm | |a| ≤ |ζ | ≤ 1} and U2 := {ζ ∈ Gm | |q| ≤ |ζ | ≤ |a|} of
C . Then C is a semistable K ◦-model of C with intersection graph equal to a
circle of circumference − log |q| divided up in two arcs of length − log |a| and
log |a| − log |q|, respectively. The canonical metric on O([a] − [1]) is given by

‖s[a]−[1](ζ )‖ =


r ·

∣∣∣∣ζ λ2
ζ − a

ζ − 1

∣∣∣∣ if ζ ∈ U1,

r ·
∣∣∣∣ζ λ1

ζ − a

ζ − q

∣∣∣∣ if ζ ∈ U2

for any r ∈ exp(G), where λ1 = 1 − log |a|
log |q| , λ2 = − log |a|

log |q| . This is an easy
exercise. It shows that admissible metrics are indispensable for dealing with
canonical metrics.

8. – Cohomological models of line bundles

Let K and G be as in Section 7. All spaces denoted by greek letters
X, X ′, . . . are assumed to be proper schemes over K endowed with their rigid
analytic structures.

We define admissible first Arakelov-Chern classes for line bundles in Arake-
lov-Chow cohomology. Since the cup product is not known to be commutative,
we have to work inside the centralisator. The Arakelov-Chern classes generalize
the divisoral operations of formally metrized line bundles on any proper scheme
over K and also of admissibly metrized line bundles on curves considered in the
previous section. They give rise to associated metrics on the line bundles. The
main result is that for every line bundle L algebraically equivalent to 0, there is
an admissible first Arakelov-Chern class which is orthogonal to vertical cycles.
The associated metric is given by the Néron symbol. Using a correspondence
of L to a curve, this is deduced from the corresponding result on curves proved
in the Section 7.
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Definition 8.1. Let B̂∗(X, G) be the set of all ĉ ∈ Ĉ H
∗
fin(X, G) such that

for any projective smooth curve C ′, any admissible metric ‖ ‖ on OC ′ and any
morphisms ψ : X ′ → X, φ : X ′ → C ′, we have

ψ∗ĉ ∪ φ∗ĉ1(1) = φ∗ĉ1(1) ∪ ψ∗ĉ ∈ Ĉ H
∗
fin(X ′, G).

Definition 8.2. Let Ĉ∗
fin(X, G) be the set of ĉ ∈ Ĉ H

∗
fin(X, G) satisfying

ĉ′ ∪ ψ∗ĉ = ψ∗ĉ ∪ ĉ′ ∈ Ĉ H
∗
fin(X ′, G)

for all morphisms ψ : X ′ → X and all ĉ′ ∈ B̂∗(X ′, G).

Remark 8.3. If ‖ ‖ is a formal metric on OX , then (C3) implies ĉ1(div(1))∈
Ĉ1

fin(X, G). If ‖ ‖ is an admissible metric on OC for a projective smooth curve
C , then Corollary 7.14 proves ĉ1(1) ∈ B̂1(C, G). Clearly, the above groups
are closed under pull-back and cup-product. We conclude that Ĉ∗

fin(X, G) ⊂
B̂∗(X, G), hence Ĉ∗

fin(X, G) is commutative with respect to cup-product. Clearly,
Ĉ∗

fin(C, G) contains ĉ1(1) for an admissible metric ‖ ‖ on OC .

Definition 8.4. Let L be a line bundle on X . An admissible first Arakelov-

Chern class ĉ1(L) for L is a family of elements ĉ1(D) ∈ Ĉ H
1
|D|(X, G) for every

pseudo-divisor D = (L , |D|, sD) on X . It is required that all these operations
are given by one formal metric ‖ ‖L of L and one ĉG

1 ∈ Ĉ1
fin(X, G) through

ĉ1(D) = ĉL1 (D) + ĉG
1 where ĉL1 (D) is from Example 6.13 using ‖ ‖L. If s is

an invertible meromorphic section of L , then we write ĉ1(s) := ĉ1(div(s)).

Remark 8.5. Note that a formal metric ‖ ‖L and a class ĉG
1 ∈ Ĉ1

fin(X, G)

induce always an admissible first Arakelov-Chern class. We may extend the
constructions of sum and pull-back. The assumption ĉG

1 ∈ Ĉ1
fin(X, G) shows

that admissible first Arakelov-Chern classes commute with respect to the cup
product. By Remark 7.13, every admissibly metrized line bundle on a smooth
projective curve induces an admissible first Arakelov-Chern class.

8.6. For an admissible first Arakelov-Chern class ĉ1(L), the associated metric
on L is

‖s(x)‖ĉ1(L) :=
∫

{x}
ĉ1(s(x)) ∈ G

for x ∈ X, s(x) ∈ Lx . If ĉ1(L) is induced by a formal metric (resp. an
admissible metric in case of a smooth projective curve), then the associated
metric is equal to the original metric.

By Proposition 5.2, there is a K ◦model L on X ∈ MX such that ĉ1(L) is

induced by ‖ ‖L and the corresponding ĉG
1 is induced by ĉG

1,X ∈ Ĉ H
1
fin(X, G).

We say that ĉ1(L) lives on X.
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Proposition 8.7. Let ĉ1(L) be an admissible first Arakelov-Chern class on a
reduced X. Then ĉ1(L) lives on a formal analytic model X of X. We consider an
invertible meromorphic section s of L and an irreducible component V of X̃. For any
x ∈ X with reduction π(x) ∈ V ∩ X̃reg and with π(x) �∈ π | div(s)|, the multiplicity
of ĉ1(s) ∩ cyc(X) in V is equal to − log ‖s(x)‖ĉ1(L). This number is denoted by
− log ‖s(V )‖.

Proof. The result holds for the first Arakelov-Chern class of a formally
metrized line bundle (Proposition 7.6), hence we may assume L = OX , s = 1
and ĉ1(s) = ĉG

1 . By Proposition 5.2 and passing to the associated formal analytic
variety, it is clear that such a X exists.

The proof of the multiplicity claim is by induction on the dimension of X .
If X is 0-dimensional, the claim is by definition of ‖ ‖ĉ1(L). So we may assume
dim(X) > 0. We choose x ∈ X with x̃ := π(x) ∈ V ∩ X̃reg. There is a regular
function ã in an affine irreducible neighbourhood Ũ of x̃ with ã(x̃) = 0 and
dã(x̃) �= 0. Thus div(ã) is smooth in a neighbourhood of x̃ . We may assume
that there is a prime divisor W in V such that div(ã) = Ũ ∩ W is smooth. Let
U = SpfA = π−1Ũ be the corresponding formal affinoid open subspace of X.
We choose a lift a ∈ A◦ of ã. Since the algebraic functions are dense in A, we
may assume that a is induced by a rational function on X also denoted by a.
We may assume that a(x) = 0.

We consider the closed formal subscheme SpfA◦/〈a〉 of SpfA◦. It is ob-
vious that A◦/〈a〉 has no K ◦-torsion. Since the reduction Ã/〈ã〉 is integral,
we conclude that SpfA◦/〈a〉 is an admissible formal scheme associated to the
integral formal analytic variety SpfA/〈a〉 (4.1 and [BGR], Proposition 6.2.3/5).
In particular, the horizontal div(a) is prime on U . Let Y be the irreducible
component of div(a) passing through U . Note that W is the intersection of
U with the special fibre of Ȳ . Applying induction to Ȳ , we conclude that the
multiplicity of ĉG

1,X ∩ Y in W is equal to − log ‖1(x)‖ĉ1(L). Axiom (C3) shows

(14) divX(a).(ĉG
1,X∩cyc(X)) = ĉG

1,X∩(divX(a). cyc(X)) ∈ C H | divX(a)|∩X̃

dim(X)−2 (X, G) .

Note that W is an irreducible component of the support | divX(a)| ∩ cyc(X̃) and
W has relative dimension dim(X) − 2. The multiplicity of the left hand side
of (14) in W is equal to the multiplicity of ĉG

1,X ∩ cyc(X) in V (by construction
of a and working on U). The multiplicity of the right hand side of (14) in W
is − log ‖1(x)‖ĉ1(L).

Proposition 8.8. Let Z be a t-dimensional cycle on a smooth proper variety X

over K algebraically equivalent to 0. Then there is αfin ∈ Ĉ H
fin
t (X, G) such that∫

X ĉ ∩ (Z + αfin) = 0 for all ĉ ∈ Ĉ t+1
fin (X, G).

Proof. By [Fu], Example 10.3.2, we may assume that there is a smooth
projective curve C over K , a correspondence � on X × C and t0, t1 ∈ C such
that Z = p1∗(p∗

2c1(O([t1] − [t0])) ∩ �) ∈ C Hd(X) where pi are the projections
of X ×C onto the factors. Now we choose a canonical metric ‖ ‖ on O(t1 − t0)
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from Corollary 7.18. We may assume p1∗(p∗
2 ĉ1([t1] − [t0]) ∩ �) = Z + αfin for

a suitable αfin ∈ Ĉ H
fin
t (X, G). We get∫

X
ĉ∩(Z+αfin) =

∫
X×C

p∗
1 ĉ∩p∗

2 ĉ1([t1]−[t0])∩� =
∫

C
ĉ1([t1]−[t0])∩p2∗(p∗

1 ĉ∩�) .

Because p2∗(p∗
1 ĉ ∩ �) is vertical, this equals 0.

Theorem 8.9. Let X be a smooth proper variety over K and let L ∈ Pic0(X).
Then there is an admissible first Arakelov-Chern class ĉ1(L) for L such that∫

X ĉ1(L) ∩ α = 0 for all α ∈ Ĉ H
fin
0 (X, G). This determines the associated metric

‖ ‖ĉ1(L) up to multiples in eG.

Proof. We may assume that X is irreducible. Since L is algebraically
equivalent to 0, there is an irreducible smooth projective curve C over K with
points t0, t1 ∈ C and M ∈ Pic(X × C) with Mt0 = OX and Mt1 = L . We
endow the line bundle O([t1] − [t0]) on C with a canonical admissible metric
‖ ‖ from Corollary 7.18. By Remark 7.11, there is a semistable K ◦-model C
of C such that ‖ ‖ is C-admissible and such that C̃ has smooth irreducible
components. By Proposition 5.2, there is a K ◦-model M of M living on the
K ◦-model Y of X × C such that the projections pi of X × C to the factors
extend to morphisms p̄1 : Y → X and p̄2 : Y → C of K ◦-models. The formal
metric ‖ ‖M induces a formal metric ‖ ‖t on Mt for any t ∈ C . Replacing X

and Y by larger K ◦-models, we may assume that ‖ ‖t0 is the trivial metric on
Mt0 = OX , ‖ ‖t1 = ‖ ‖L1 for a K ◦-model L1 of L = Mt1 on X and p̄1 is flat
(Proposition 5.2).

We choose any invertible meromorphic section sM of M . Note that we may
assume that div(sM) intersects any finite number of cycles properly in X × C
([Gu2], Lemma 3.6). So we may assume that sM restricts to a well-defined
invertible meromorphic section st of Mt for t = 0, 1 and that st0 = 1. We use
vertical and horizontal parts for ĉ1([t1]−[t0]) from Remark 7.16 componentwise.
We claim that there is ĉG

1 ∈ Ĉ1
fin(X, G) induced on horizontal cycles by

(15) p̄1∗(ĉM1 (sM)Y ∪ p̄∗
2 ĉver

1,C)

and on vertical cycles by

(16) p̄1∗(ĉM1 (sM)Y ∪ p̄∗
2 ĉ1([t1] − [t0])C) − ĉL1 (st1)X .

This defines operations ĉG
1 on Ẑ(X ′, G) for every proper morphism ψ : X ′ → X

which do not depend on the choice of sM . Note that ĉG
1 ∩ψ α′ is always

vertical for α′ ∈ Ẑ(X ′, G). Let cG
1,X∩ψ̄ be the operation on Z̃(X′, G) given

by (15) and (16) where ψ̄ : X′ → X is a proper morphism of admissible formal
schemes. We will prove that cG

1,X satisfies the axioms (C1)-(C4) on the cycle
level. Hence the operations pass to rational equivalence and give a well-defined
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cG
1,X ∈ C H 1

fin(X, G) inducing ĉG
1 ∈ Ĉ H

1
fin(X, G). Finally, we will prove that

ĉG
1 ∈ Ĉ1

fin(X, G).
Axioms (C1) and (C2) may be checked on horizontal and vertical cycles

separately, and axiom (C4) concerns only vertical cycles. So they follow from
the corresponding axioms for (15) or (16). For a pseudo-divisor D′ on X′, the
same argument proves (C3) for vertical α′ ∈ Z̃(X, G). So we may assume α′
horizontal, α′ = X ′ prime and that D′ is a Cartier divisor. The problem
is now that cG

1,X acts on vertical and horizontal cycles simultaneously. Note
that (15) and (16) agree on horizontal cycles if we allow the larger support
S := p1(| div(sM)| ∩ (X × {t0, t1})) ∪ X̃. Using (C3) for (16), we get

(17) cG
1,X ∩ψ̄ (D′.X ′) = D′.(cG

1,X ∩ψ̄ X ′) ∈ C Hψ−1S∩|D′|
dim(X)−2 (X′, G) .

We may choose sM such that all occuring intersections of div(sM) in the above
supports are proper in the generic fibre. By dimensionality, (17) holds also for
S = X̃ proving (C3) for cG

1,X.

Next, we prove that ĉG
1 ∈ Ĉfin(X, G). Let ψ : X ′ → X be a morphism and

let ĉ′ ∈ B̂∗(X ′, G). We have to prove that ψ∗ĉG
1 and ĉ′ commute. It is enough

to check this on a cycle α′ of a sufficiently large K ◦-model X′ of X ′. So we
may assume that ψ extends to a morphism ψ̄ : X′ → X and that ĉ′ is induced
by c′

X′ ∈ C H∗
fin(X

′, G). We have to check the identity

(18) cG
1,X ∩ψ̄ (c′

X′ ∩ α′) = c′
X′ ∩ (cG

1,X ∩ψ̄ α′) ∈ C H fin
∗ (X′, G) .

It is clear that ĉ′ commutes with any first Arakelov-Chern class for a formally
metrized line bundle and with any pull-back of a first Arakelov-Chern class
of an admissibly metrized line bundle on a projective smooth curve. If α′ is
vertical, then working on the fibre square Y×X X′ and using projection formula
as well as fibre square rule, we deduce (18) from (16). If α′ is horizontal, then
as in the proof of axiom (C3) above, we can prove that cG

1,X in (18) may be
replaced by (16) and the same argument as in the vertical case proves (18).

We define a first Arakelov-Chern class ĉ1(L) for L by the formal metric

‖ ‖t1 and by ĉG
1 ∈ Ĉ1

fin(X, G). Let α ∈ Ĉ H
fin
0 (X, G). By (16), we get∫

X
ĉ1(L) ∩ α =

∫
Y

p̄∗
2 ĉ1([t1] − [t0])C ∩ ĉM1 (sM)Y ∩ p̄∗

1αX

=
∫
C

ĉ1([t1] − [t0])C ∩ p̄2∗(ĉM1 (sM)Y ∩ p̄∗
1αX) .

Because p̄2∗(ĉM1 (sM)Y ∩ p̄∗
1αX) is vertical, this is zero proving existence.

To prove uniqueness of the associated metric, we may assume L = OX .
Let us fix x0 ∈ X and let x be any point of X . Then x − x0 is algebraically

equivalent to 0. By Proposition 8.8, there is αfin ∈ Ĉ H
fin
0 (X, G) such that

0 =
∫

X
ĉ1(1) ∩ (x − x0 + αfin) = log ‖1(x0)‖ĉ1(OX ) − log ‖1(x)‖ĉ1(OX ) .

Hence ‖ ‖ĉ1(OX ) is equal to ‖1(x0)‖ĉ1(OX ) times the trivial metric on OX .
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Corollary 8.10. Let X be a smooth proper scheme over K and let L ∈ Pic0(X)

with an admissible first Arakelov-Chern class ĉ1(L) of type as in Theorem 8.9. For
every invertible meromorphic section s of L and every 0-dimensional cycle Z of
degree 0 with | div(s)| ∩ |Z | = ∅, we have − log ‖s(Z)‖ĉ1(L) = 〈div(s), Z〉Nér and
the canonical metric ‖ ‖ĉ1(L) is bounded.

Proof. For the Néron symbol 〈 , 〉Nér, we refer to [Ne], Théorème 3.
On curves, the claim follows from Corollary 7.9. We use the notation of the
proof of Theorem 8.9. We may choose sM with | div(sM)| ∩ (|Z |× {t0, t1}) = ∅.
Replacing again (15) by (16), we get

− log ‖st1(Z)‖ĉ1(L) =
∫

X

p̄1∗(ĉM1 (sM)Y ∪ p̄∗
2 ĉ1([t1] − [t0])C) ∩ Z

=
∫
C

ĉ1([t1] − [t0])C ∩ p̄1∗(ĉM1 (sM)Y ∩ p̄∗
1 Z) .

Using the case of curves and the correspondence � = div(sM), we get

− log ‖st1(Z)‖ĉ1(L) = 〈t1 − t0, �(Z)〉Nér = 〈div(st1), Z〉Nér .

The last step was by the reciprocity law ([Ne], Théorème 4) and st0 = 1.
By the axiom of the Néron symbol for principal divisors, we get the desired
identity also for s. Using the boundedness axiom, it is clear that the metric is
bounded.

9. – Local heights over non-archimedean fields

We use the same assumptions and notation as in Section 8.

9.1. A metric associated to an admissible first Arakelov-Chern class is called
a cohomological metric. Every formal metric is a cohomological metric. On a
projective smooth curve, every admissible metric is a cohomological metric. A
cohomological pseudo-divisor is a pseudo-divisor with a cohomological metric
(defined similarly as in 2.5).

Definition 9.2. Let D̂0, . . . , D̂t be cohomological pseudo-divisors with
metrics associated to ĉ1(O(D0)), . . . , ĉ1(O(Dt)) and let Z be a cycle on X of
dimension t . We say that the local height λ(Z) of Z with respect to D̂0, . . . , D̂t

is well-defined if |D0| ∩ · · · ∩ |Dt | ∩ |Z | = ∅. Then

λ(Z) := λD̂0,... ,D̂t
(Z) :=

∫
Z

ĉ1(D0) ∪ · · · ∪ ĉ1(Dt ) .

Remark 9.3. It follows from Proposition 8.7 that the dependence of the
local height with respect to ĉ1(O(D0)), . . . , ĉ1(O(Dt)) is determined by the
associated metrics. The local height has similar properties as in Section 3.
Obviously, it is multilinear and symmetric in D̂0, . . . , D̂t , and linear in Z .
By 6.12, the analogue of functoriality 3.6 holds.
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Proposition 9.4. Let X be smooth and let D̂0, . . . , D̂t be cohomological
pseudo-divisors such that the local height λ(Z) of the t-dimensional cycle Z is
well-defined. We assume that O(D0) ∈ Pic0(X) is endowed with the canonical
metric ‖ ‖ (cf. Corollary 8.10). Let Y be a cycle representing D1 . . . Dt .Z ∈
C H0(|D1| ∩ . . . ∩ |Dt | ∩ |Z |). Then λ(Z) = − log ‖sD0(Y )‖ holds.

Proof. Using the same notation as in the proof of Proposition 3.7, we get

log ‖s0(Y
′)‖ − log ‖s0(Y )‖ =

∫
div(f)

ĉ1(s0) =
∫

X
ĉ1(s0) ∩ d̂iv(f) = 0

proving independence of the representative Y . The formula follows from

λ(Z) =
∫

Z
ĉ1(D0) ∩ Y = − log ‖s0(Y )‖

because the horizontal part of ĉ1(D1) ∪ · · · ∪ ĉ1(Dt ) is Y and the verical part
plays no role.

Remark 9.5. There is also an analogue of the induction formula. We
use the same assumptions and notation as in Proposition 3.5. There is a K ◦-
model X of X such that ĉ1(O(Dj )) lives on X for all j = 0, . . . , t . Let
c̃1(O(Dj )) ∈ C H 1(X̃, G) inducing the action of ĉ1(Dj ) on vertical cycles of X.
By Proposition 8.7, we get

λD̂0,...,D̂t
(Z) = λD̂0,...,D̂t−1

(Y )

−
∫

Z

∑
V

log ‖st,Z (V )‖ · c̃1(O(D0)) ∩ · · · ∩ c̃1(O(Dt−1)) ∩ V

where V ranges over the irreducible components of Z̃ for Z := (Z̄)f-an.
Let λ′(Z) be the local height obtained by exchanging the metric ‖ ‖ on

O(D0) by another cohomological metric ‖ ‖′. For ρ := log(‖sD0‖′/‖sD0‖),
symmetry and induction formula imply

(19) λ(Z) − λ′(Z) =
∫

Z

∑
V

ρ(V ) c̃1(O(D1)) ∩ · · · ∩ c̃1(O(Dt)) ∩ V .

9.6. Let L be a line bundle on X . An admissible first Arakelov-Chern class
ĉ1(L) is called semipositive if it satisfies the following property: There is a
K ◦-model X of X such that ĉ1(L) lives on X with c̃1(L) ∈ C H 1(X̃, G) inducing
the action on vertical cycles. Then we assume that deg(c̃1(L) ∩ V ) ≥ 0 for all
1-dimensional prime cycles V on X̃. Note that the condition is independent of
the choice of X (use [Kl], Lemma I.4.1).

A metric on L is called cohomologically semipositive if it is bounded and
associated to a semipositive admissible first Arakelov-Chern class for L .

These notions are closed under tensor product and pull-back. The formal
metric of a K ◦-model L is cohomologically semipositive if L is generated by
global sections.
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Lemma 9.7. Let ĉ1(L1), . . . , ĉ1(Lt ) be semipositive admissible first Arakelov-
Chern classes for line bundles L1, . . . , Lt on X. Then they live on a K ◦-model X

of X such that the operations on vertical cycles are induced by c̃1(L j ) ∈ C H 1(X̃, G).
For effective t-dimensional cycles Z on X and V on X̃, we have degL1,...,Lt (Z) ≥ 0
and deg(c̃1(L1) ∩ c̃1(L2) ∩ · · · ∩ c̃1(Lt ) ∩ cyc(V )) ≥ 0.

Proof. The existence of the K ◦-model follows from Proposition 5.2. By the
alteration theorem of de Jong ([dJ], Theorem 4.1), there is a smooth scheme V ′
and a proper morphism ψ : V ′ → V which is the composition of a birational
morphism with a finite surjective morphism. By Poincaré duality ([Fu], Corol-
lary 17.4), the Chow cohomology classes ψ∗c̃1(L1), . . . , ψ

∗c̃1(Lt ) are the first
Chern classes of numerically positive line bundles. By projection formula and
a result of Kleiman ([Kl], Corollary II.2.2), we deduce the second inequality.

To prove the first inequality, let [v] be the special fibre of SpfK ◦, we may
view it as an G-power of a formal Cartier divisor. If π is the morphism of
structure, then the above implies

degL1,...,Lt (X)[v] = π∗(ĉ1(L1) ∩ · · · ∩ ĉ1(Lt ) ∩ π∗[v] ∩ X) ≥ 0 .

10. – Canonical local heights

Let K be an algebraically closed field with a complete absolute value | |v .
First, we extend the result of local heights of subvarieties obtained in Sections 3
and 9 allowing certain uniform limits of metrics. In the archimedean case, we
always pass to the underlying reduced complex analytic space to apply the
previous results and in the non-archimedean case, we fix a subfield G as in the
previous sections. Then we study canonical local heights in dynamic situations.

Definition 10.1. Let L be a line bundle on a proper scheme X over K .
For two bounded metrics ‖ ‖, ‖ ‖′ on L , let

(‖ ‖′/‖ ‖)
(x) := ‖s(x)‖′/‖s(x)‖

where x ∈ X and s(x) ∈ Lx \ {0}. This is a bounded function on X and we
define the distance

d(‖ ‖, ‖ ‖′) := max
x∈X

| log(‖ ‖′/‖ ‖)(x)| .

Definition 10.2. Let g
+
X be the set of isometry classes of line bundles

with semipositive curvature forms (resp. cohomologically semipositive metrics).
Let ĝ

+
X be the set of isometry classes of metrized line bundles (L , ‖ ‖) on X

satisfying the following property: For all n ∈ N, there is a proper surjective
morphism ϕn : Xn → X and a metric ‖ ‖n on ϕ∗

n L with (ϕ∗
n L , ‖ ‖n) ∈ g

+
Xn

such that limn→∞ dXn (ϕ∗
n‖ ‖, ‖ ‖n) = 0. Let gX := g

+
X − g

+
X .
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Let ĝX be the set of isometry classes of metrized line bundles L on X
with a proper surjective morphism ϕ : X ′ → X and M, N ∈ ĝ

+
X ′ such that

ϕ∗L = M ⊗ N
−1

. A ĝX -pseudo-divisor is a metrized pseudo-divisor D̂ with
O(D) ∈ ĝX and similarly, we proceed for gX , g

+
X or ĝ

+
X .

Remark 10.3. Note that we may always assume that the morphisms in
Definition 10.2 are from projective varieties (Chow lemma) with disjoint ir-
reducible components and that the morphism is generically finite. The lat-
ter follows by intersection with generic hyperplanes until the right dimension
is obtained. Thus the definitions of ĝ

+
X and ĝX agree with those in [Gu2],

Section 1.
It is clear that g

+
X , ĝ

+
X are semigroups and ĝX is a group with respect

to tensor product. If L is a metrized line bundle with L
⊗n ∈ ĝ

+
X for some

n ∈ N \ {0}, then L ∈ ĝ
+
X . Every metric of a line bundle in ĝX is bounded. The

semigroup ĝ
+
X is closed under uniform convergence.

Let ϕ : X ′ → X be a proper morphism with a metrized line bundle L
on X . If L ∈ ĝ

+
X (resp. ĝX ), then ϕ∗L ∈ ĝ

+
X ′ (resp. ĝX ′). The converse holds

for ϕ surjective ([Gu2, Proposition 1.18).

Proposition 10.4. Hermitian and formally metrized line bundles are both in
ĝX , hence every line bundle has a metric in ĝX .

Proof. The archimedean case is in [Gu2], Example 1.20. The proof for
a formal metric is similar. By Chow’s lemma and Remark 10.3, we may
assume that X is a projective variety over K . There is a K ◦-model L of our
line bundle such that the formal metric is ‖ ‖L. By Lemma 10.5 below, we
may assume that L lives on a projective K ◦-model X of X . Therefore, L
is the difference of two very ample line bundles giving ‖ ‖L as the quotient
of g

+
X -metrics. Finally, existence follows by a partition of unity argument and

Proposition 5.2.

Proposition 10.5. Let X be a projective scheme over K with K ◦-model X.
Then there is a projective K ◦-model X1 of X with X1 ≥ X.

Proof. We fix a closed embedding X ⊂ PN . There is a projective flat K ◦-
model X0 of X associated to a flat projective subscheme X

alg
0 of PN

K◦ . By [BL2],
Section 4, there is a K ◦-model X1 of X with X1 ≥ X0, X1 ≥ X. Moreover, X1
is obtained as a formal blowing up of X0 in an open coherent ideal J . Using
the GAGA-principle for projective schemes ([Ul], Theorem 6.8), J is alge-
braic. Note that the blowing up X

alg
1 of X

alg
0 in Jalg is projective, since X

alg
0

is quasicompact and Jalg is of finite type (use [EGA II], Proposition 8.1.7,
Proposition 3.4.1, Théorème 5.5.3, Corollaire 5.3.3). It follows from the local
description of admissible formal blowing ups ([BL2], Lemma 2.2) that X1 is
the formal completion of X

alg
1 along the special fibre.

Theorem 10.6. For a proper scheme X over K with ĝX -pseudo-divisors
D̂0, . . . , D̂t , there is a unique local height λ(Z) = λD̂0,...,D̂t

(Z), well-defined on
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t-dimensional cycles Z of X with |D0| ∩ · · · ∩ |Dt | ∩ |Z | = ∅, satisfying the follow-
ing properties (assuming all terms well-defined) :

(a) λ(Z) is multilinear and symmetric in the variables D̂0, . . . , D̂t , and linear in Z.
(b) Let ϕ : X ′ → X be a proper morphism, then we have the functoriality

λϕ∗ D̂0,...,ϕ∗ D̂t
(Z ′) = λD̂0,...,D̂t

(ϕ∗Z ′) .

(c) If D̂0 = d̂iv( f ) for an invertible meromorphic function f on X and if Y is a
representative of D1 . . . Dt .Z ∈ C H0(|D1| ∩ · · · ∩ |Dt | ∩ |Z |), then λ(Z) =
log | f (Y )|v .

(d) Let O(D1), . . . , O(Dt ) ∈ ĝ
+
X . Replacing the metric ‖ ‖ on O(D0) by a ĝX -

metric ‖ ‖′, we get the local height λ′(Z). For Z effective, there are finite upper
and lower bounds c± of log(‖ ‖′/‖ ‖) restricted to Z, and we have

c− · degO(D1),...,O(Dt )(Z) ≤ λ(Z) − λ′(Z) ≤ c+ · degO(D1),...,O(Dt )(Z) .

(e) If D̂0, . . . , D̂t are g
+
X -pseudo-divisors, then λ(Z) is the local heights of 3.3

or 9.2.

Proof. We have seen in Sections 3 and 9 that (a)-(d) hold for gX -pseudo-
divisors. For (d), use Proposition 3.8 and that c1(O(D1)) ∧ · · · ∧ c1(O(Dt )) is
a positive measure on Z with volume degO(D1),...,O(Dt )(Z) in the archimedean
case, resp. (19) and the positivity results of Lemma 9.7 in the non-archimedean
case. By [Gu2], 1.19, the results extend uniquely to ĝX .

Proposition 10.7. Let Z be an effective t-dimensional cycle on X such that the
local height λ(Z) is well-defined with respect to the ĝ

+
X -pseudo-divisors D̂0, . . . , D̂t .

On Z \ |Dj |, we assume that ‖sDj (x)‖ ≤ Cj ∈ R. Then λ(Z) ≥ − ∑t
j=0 log Cj ·

degO(D0),...,O(Dj−1),O(Dj+1),...,O(Dt )(Z). In particular, if Cj = 1 for j = 0, . . . , t ,
then the local height is non-negative.

Proof. By continuity and functoriality, we may assume that D̂0, . . . , D̂t

are g
+
X -pseudo-divisors. We proceed by induction on t . We may assume Z

prime. For t = 0, the local height is − log ‖s0(Z)‖ ≥ − log Cj . For t > 0,
symmetry allows us to assume Z �⊂ |Dt |. We claim that the cycle Dt .Z is
effective. By functoriality and de Jong’s alteration theorem ([dJ], Theorem 4.1),
we may assume that Dt is a divisor with normal crossings on the smooth
variety X = Z . Because ‖sDt ‖ is bounded on X \ Dt , we conclude that Dt

is effective. As in the proof of (d) above, induction formula shows λ(Z) ≥
λ(Dt .Z)− log Ct · degO(D0),...,O(Dt−1)(Z). Induction for the local height λ(Dt .Z)

with respect to D̂0, . . . , D̂t−1 proves the claim.

10.8. We give a slight generalization of a result of Zhang ([Zh2], Theorem 2.2)
constructing canonical metrics relative to dynamics. Let X be a proper scheme
over K and let ψ : X → X be a morphism. Let L be a line bundle on X with
an isomorphism θ : ψ∗L⊗n ∼−→ L⊗m for some n, m ∈ Z, |m| > |n|. Any other
isomorphism has the form αθ for locally constant α.
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Theorem 10.9. There is a unique bounded metric ‖ ‖θ on L with ‖ ‖⊗m
θ ◦ θ =

ψ∗‖ ‖⊗n
θ .

Proof. The metric space of bounded metrics on L with the distance d is
a complete metric space non canonically isometric to the space of bounded
functions on X . It has a contractive endomorphism � with contraction factor
| n

m | given by

�(‖ ‖) := ((ψ∗‖ ‖⊗n) ◦ θ−1)
1
m .

By Proposition 10.4, there is at least one bounded metric ‖ ‖ on L . By
Banach’s fixed point theorem, there is a unique bounded metric on L with
�(‖ ‖) = ‖ ‖.

Remark 10.10. Recall from the proof of Banach’s fixed point theorem that
‖ ‖θ = limk→∞ ‖ ‖k for any bounded metric ‖ ‖ on L and ‖ ‖k := �k(‖ ‖).
It is a Cauchy sequence by

(20) d(‖ ‖k, ‖ ‖l) ≤
∣∣∣∣ n

m

∣∣∣∣k
(

1 +
∣∣∣∣ n

m

∣∣∣∣ + · · · +
∣∣∣∣ n

m

∣∣∣∣l−k−1
)

d(‖ ‖0, ‖ ‖1)

for k < l. If we replace θ by αθ , then uniqueness implies ‖ ‖αθ = |α|
1

n−m
v ‖ ‖θ .

Example 10.11. Let A be an abelian variety over K and let ψ = [m]
be multiplication with m ∈ Z, |m| ≥ 2. The theorem of the cube implies
[m]∗L ∼= L⊗m2

if L is even and [m]∗L ∼= L⊗m if L is odd. Any line bundle L
on A is isomorphic to the tensor product of an even and an odd line bundle
unique up to 2-torsion in Pic(X). So we get canonical metrics on any line
bundle, unique up to multiples in |K ×|v . In the same sense, they are not
depending on the choice of m.

If v is archimedean, then there is a smooth hermitian metric on L with
harmonic Chern form. This metric is unique up to multiples. Since [m]∗
transforms harmonic forms to harmonic forms, the canonical metrics are the
smooth hermitian metrics with harmonic Chern forms.

Now let v be non-archimedean and let L be odd (or equivalently L ∈
Pic0(A)). By Corollary 8.10, we get a canonical metric on L unique up to
multiples and given by the Néron symbol. From the basic properties of the
Néron symbol, we deduce that these canonical metrics satisfy the characteristic
property of Theorem 10.9, hence they agree with the canonical metrics above.

Remark 10.12. Let X be a smooth proper scheme over K and let L ∈
Pic0(X). From the fundamental property of the Picard variety, there is an
abelian variety A, L ′ ∈ Pic0(A) and a morphism ϕ : X → A with ϕ∗L ′ ∼= L .
The pull-back of a canonical metric on L ′ is called a canonical metric on L .

If v is archimedean (resp. non-archimedean), then the canonical metrics are
the smooth hermitian metrics on L with first Chern form 0 (resp. the canonical
metrics of Theorem 8.9). They are closed under pull-back and tensor product.
Note that canonical metrics are in g

+
X .
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Proposition 10.13. Let Z be a t-dimensional cycle on a smooth proper
scheme X over K such that the local height λ(Z) is well-defined with respect to
ĝX -pseudo-divisors D̂0, . . . , D̂t . Suppose that O(D0) ∈ Pic0(X) and that its metric
‖ ‖ is canonical. For a cycle Y representing the refined intersection D1 . . . Dt .Z,
the identity λ(Z) = − log ‖sD0 (Y ) ‖ holds.

Proof. By functoriality and de Jong’s alteration theorem ([dJ], Theorem 4.1),
we may assume that D̂1, . . . , D̂t are differences of ĝ

+
X -pseudo-divisors. By

multilinearity choosing the subtrahends generic, we reduce to D̂1, . . . , D̂t ĝ
+
X -

pseudo-divisors. Theorem 10.6(d) shows that λ(Z) is independent of the ĝ
+
X -

metrics on O(D1), . . . , O(Dt ) using O(D0) ∈ g
+
X (Remark 10.12). Passing

again to an equidimensional covering, we may assume that D̂1, . . . , D̂t are
g

+
X -pseudo-divisors and the claim follows from Propositions 3.7 and 9.4.

10.14. Next, we are going to define canonical local heights in the dynamic
situation of 10.8. Let ψ : X → X be a morphism of a proper scheme over K .
For j = 0, . . . , t , we fix mj , nj ∈ Z, |mj | > |nj |. Let L j be a line bundle
on X with a metric in ĝ

+
X . Such a metric exists if L is generated by global

sections, if L is ample or, for X smooth, if L ∈ Pic0(X). Suppose that we

have isomorphisms θj : ψ∗L
⊗nj
j

∼−→ L
⊗mj
j .

Let Dj = (L j , |Dj |, sj ) be a pseudo-divisor. By Remark 10.10, the canon-
ical metric ‖ ‖θj is uniform limit of metrics in ĝ

+
X giving rise to a ĝ

+
X -pseudo-

divisor D̂
θj
j . By Theorem 10.6, the local height of a t-dimensional cycle Z with

respect to D̂
θ0
0 , . . . , D̂θt

t is well-defined if |D0|∩ · · ·∩ |Dt |∩ |Z | = ∅. It is called
the canonical local height λ̂(Z) of Z with respect to (D0, θ0), . . . , (Dt , θt ).

10.15. If X is irreducible and if we replace the isomorphisms θj by other
isomorphisms θ ′

j inducing the canonical local height λ̂′(Z), then there are αj ∈
K × with θ ′

j = αjθj and Remark 10.10 proves

λ̂(Z) − λ̂′(Z) =
t∑

j=0

log |αj |v
nj − mj

degL0,...,L j−1,L j+1,...,Lt (Z) .

10.16. We assume that (|D0| ∪ ψ−1|D0|) ∩ · · · ∩ (|Dt | ∪ ψ−1|Dt |) ∩ |Z | = ∅.
For a representative Yj of the refined intersection D0 . . . Dj−1.Dj+1 . . . Dt .Z , we
deduce from Theorem 10.6

m0 · · · mt λ̂(Z) − n0 · · · nt λ̂(ψ∗Z) =
t∑

j=0

log

∣∣∣∣∣∣θj ◦ s
⊗nj
j ◦ ψ

s
⊗mj
j

(Yj )

∣∣∣∣∣∣
v

.

Proposition 10.17. Let A be an abelian variety over K with a line bundle L
endowed with a canonical metric as in Example 10.11. Then L ∈ ĝX .
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Proof. We may assume that L is even or odd. For L odd, we know that
L ∈ g

+
X (Remark 10.12). So we may assume that L is even. There is a very

ample even line bundle H on A. By considering L ⊗ H⊗n for large powers n,
we may assume that L is even and very ample. Thus L has a g

+
X -metric. By

Remark 10.14, we get L ∈ ĝ
+
X .

10.18. Let D̂0, . . . , D̂t be pseudo-divisors on A endowed with canonical metrics.
For a t-dimensional cycle Z on A with |D0|∩· · ·∩|Dt |∩|Z | = ∅, Theorem 10.6
provides us with a canonical local height λ̂(Z) of Z . It is multilinear in the
variables D̂0, . . . , D̂t , linear in Z and functorial with respect to homomorphisms
of abelian varieties always under the assumption that all local heights are well-
defined.

If we replace the canonical metrics ‖ ‖j on L j by other canonical met-
rics ‖ ‖′

j for j = 0, . . . , t , then there is rj ∈ R with ‖ ‖′
j = rj‖ ‖j and

Theorem 10.6(a) and (c) proves

λ̂(Z) − λ̂′(Z) =
t∑

j=0

log rj degL0,...,L j−1,L j+1,...,Lt (Z) .

11. – Global heights

In this section, K denotes an M-field with defect of product formula d. All
spaces considered are assumed to be proper schemes over K and are denoted
by X, X ′, . . .

Definition 11.1. Let K be a field and let (M, µ) be a positive measure
space. For every α ∈ K , let M → R+, v �→ |α|v, be a µ-almost everywhere
defined map with

(a) |α + β|v ≤ |α|v + |β|v µ-ae
(b) |αβ|v = |α|v|β|v µ-ae
(c) log |γ |v ∈ L1(M, µ) and |0|v = 0 µ-ae

for all α, β ∈ K and γ ∈ K ×. Then K is called an M-field. For α ∈ K ×,
we call dα := ∫

M log |α|v dµ(v) the defect of product formula. If dα = 0 for all
α ∈ K ×, then K is said to satisfy the product formula.

Example 11.2. Every number field K is an MK -field with MK the set
of places of K endowed with the discrete µ(v) = Nv/[K : Q], where Nv is
the local degree of v ∈ MK . Similarly, every function field K is an MK -field
for MK the set of prime divisors.

In Nevanlinna theory, one considers the MR-field of meromorphic functions
on C, where MR := {v ∈ C | |v| ≤ R} with the counting measure in the interior
and the Lebesque probability measure on the boundary. Only in the interior, we
have honest absolute values induced by the order. On the boundary, evaluation
induces only almost absolute values. The defect of product formula may be
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easily computed by Jensen’s formula. In all these examples, the algebraic closure
has a canonical M-field structure. For details, we refer to [Gu2] or 11.23.

11.3. We recall from [Gu2], Section 2, the concept of boundedness and metrics
for M-fields. For simplicity, we assume that almost all | |v are absolute values.

If M is a proper set of absolute values on K , then M-bounded sets and
functions are well-known in diophantine geometry (cf. [La] or [Ne]). For gen-
eralization to M-fields, one has to replace all M-constants in the bounds by
integrable functions on M .

Let Kv be the completion of the algebraic closure of the completion of K
with respect to | |v . It is a complete algebraically closed field with respect to
the unique extension of | |v to an absolute value ([BGR], Proposition 3.4.1/3).

An M-metric ‖ ‖ on a line bundle L is a family of metrics ‖ ‖v on
L(Kv) over Kv for almost every v ∈ M . We also assume that the metric ‖ ‖
is locally M-bounded, i.e. for every open subset U of X and every s ∈ L(U ),
the function ‖s‖ is locally M-bounded on U .

We denote by ĝX the set of isometry classes of line bundles L on X
endowed with an M-metric ‖ ‖ such that ‖ ‖v is in ĝX⊗Kv for almost all
v ∈ M (using Definition 10.2). Similaly, we proceed for gX , g

+
X and ĝ

+
X .

Let D̂0, . . . , D̂t be ĝX -pseudo-divisors. Let Z be a t-dimensional cycle
on X . Then the local height is said to be well-defined in v ∈ M if |D0| ∩ · · · ∩
|Dt | ∩ |Z | = ∅ and we set

λ(Z , v) := λ
D̂0

v
,...,D̂t

v (Z) .

Definition 11.4. A t-dimensional prime cycle Z on X is called integrable
with respect to L0, . . . , Lt ∈ ĝX if there are invertible meromorphic sections
s0,Z , . . . , st,Z of L0|Z , . . . , Lt |Z such that all partial intersections formed out
of div(s0,Z ), . . . , div(st,Z ) are proper in Z and such that the local height with
respect to (L0|Z , s0,Z ), . . . , (Lt |Z , st,Z ) is well-defined for almost all v ∈ M and
integrable on M . By linearity, we extend this definition to all cycles Z .

For a morphism ϕ : X ′ → X and a prime cycle Z ′ on X ′, ϕ∗Z ′ is
integrable with respect to L0, . . . , Lt if and only if Z ′ is integrable with respect
to ϕ∗L0, . . . , ϕ

∗Lt (Theorem 10.6(b)).

Proposition 11.5. Let D̂0, . . . , D̂t be ĝX -pseudo-divisors and let Z be a t-
dimensional cycle integrable with respect to O(D0), . . . , O(Dt ). If |D0| ∩ · · · ∩
|Dt | ∩ |Z | = ∅, then the local height of Z with respect to D̂0, . . . , D̂t is well-defined
for almost all v ∈ M and integrable on M.

Proof. In the proper intersection case, this was proved in [Gu2], Corol-
lary 3.8. To reduce the general case to the proper intersection case, we may
assume X = Z . By de Jong’s alteration theorem ([dJ], Theorem 4.1), we
reduce to the case of a regular projective variety. By multilinearity and de
Jong’s alteration theorem again now applied to the divisors, we may assume
that D0, . . . , Dt are all prime divisors and that a list of different representa-
tives intersects properly. Using Theorem 10.6(a),(c) and [Gu2], Lemma 3.6, we
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may replace repeated divisors by equivalent ones such that D0, . . . , Dt intersect
properly in X .

Definition 11.6. Let D̂0, . . . , D̂t be ĝX -pseudo-divisors. The global height
of a t-dimensional cycle Z on X with respect to D̂0, . . . , D̂t is well-defined if Z
is integrable with respect to O(D0), . . . , O(Dt ) and if |D0|∩· · ·∩|Dt |∩|Z | = ∅.

Then it is defined by

h(Z) := hD̂0,...,D̂t
(Z) :=

∫
M

λD̂0,...,D̂t
(Z , v) dµ(v) .

11.7. By integration, properties (a)-(d) of Theorem 10.6 hold for global heights.
In (c), the defect of product formula gives h(Z) = df (Y ) and in (d), one has
to use integrable bounds c± on M leading to the estimates of h(Z) − h′(Z) by∫

c±dµ times the degree. This is possible because X and hence the metrics
are M-bounded (cf. [Gu2], Corollary 2.20).

Example 11.8. Let Z be a t-dimensional cycle on the multiprojective space
P = Pn0 × · · · × Pnt and let s0, . . . , st be global sections of OP(e0), . . . , OP(et )

such that | div(s0)|∩· · ·∩| div(st )|∩|Z | = ∅. Let ŌP(e0), . . . , ŌP(et ) be endowed
with the standard (resp. Fubini-Study) metrics in the non-archimedean (resp.
archimedean) case. Clearly, they are in g

+
X . Then the corresponding global

height h(Z) is well-defined and given in terms of the Chow form FZ ([Gu2],
Lemma 3.4).

Remark 11.9. Any line bundle on X generated by global sections has
a g

+
X -metric obtained by pull-back of ŌPn (1) endowed with standard (resp.

Fubini-Study) metrics. More generally, let L be a line bundle on X such that
there is k ∈ N, k ≥ 1, with L⊗k generated by global sections. This includes also
all ample line bundles. Then we endow L with the k-th root of a pull-back
metric considered above. We denote by b

+
X the set of such isometry classes.

Using the Segre embedding, it is obvious that b
+
X is a submonoid of ĝ

+
X . By

Example 11.8 and functoriality, every t-dimensional cycle Z on X is integrable
with respect to L0, . . . , Lt ∈ b

+
X . If Z = ∑

Y nY Y is the decomposition into
components, then let

δL0,...,Lt (Z) :=
t∑

j=0

∑
Y

|nY | degL0,...,L j−1,L j+1,...,Lt (Y ) .

For pseudo-divisors D0, . . . , Dt such that a positive tensor power of every
O(Dj ) is generated by global sections, the global height h(Z) with respect
to D̂0, . . . , D̂t doesn’t depend on the b

+
X -metrics on O(D0), . . . , O(Dt ) up to

O(δL0,...,Lt )(Z). It is well-defined if and only if |D0| ∩ · · · ∩ |Dt | ∩ |Z | = ∅.
This follows immediately from Theorem 10.6 and generalizes Weil’s theorem
and the first main theorem of Nevanlinna theory (cf. [Gu2]). For effective Cartier
divisors, Proposition 10.7 shows that we may always find a representative h
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for the global height with respect to D0, . . . , Dt such that h(Z) ≥ 0 for all
effective cycles Z on X .

If the product formula is satisfied for the M-field K , then the dependence
of the global heights h(Z) on the pseudo-divisors D0, . . . , Dt is determined
by the isomorphism classes O(D0), . . . , O(Dt ). For L0, . . . , Lt ∈ Pic(X) with
a positive tensor power generated by global sections, we get a global height
hL0,...,Lt (Z), well-defined for all t-dimensional cycles on X and canonical up to
O(δL0,...,Lt )(Z). It is multilinear and symmetric in L0, . . . , Lt and functorial.

Theorem 11.10. If L has an M-metric (resp. ĝ
+
X -metric) in the dynamic

situation of 10.8, then there is a unique M-metric (resp. ĝ
+
X -metric) satisfying

‖ ‖⊗m
θ ◦ θ = ψ∗‖ ‖⊗n

θ .

Proof. For almost all v ∈ M , we may assume that | |v is an absolute value
(by passing to sufficiently large finitely generated subfields of K , cf. [Gu2],
Remark 2.10). By Theorem 10.9, we get a canonical metric ‖ ‖θ,v on L
satisfying the required identity. Remark 10.10 shows ‖ ‖θ,v = limk→∞ ‖ ‖k,v

where ‖ ‖k := �k(‖ ‖) is an M-metric (resp. ĝ
+
X -metric). By (20) and because

dv(‖ ‖0,v, ‖ ‖1,v) is bounded by an L1-function, ‖ ‖θ is an M- (resp. ĝ
+
X -)

metric.

11.11. Let ψ : X → X be a morphism and let mj , nj ∈ N, mj > nj . For
j = 0, . . . , t , let L j be a line bundle on X with a positive tensor power

generated by global sections and with isomorphisms θj : ψ∗L
⊗nj
j

∼−→ L
⊗mj
j .

Theorem 11.10 induces a canonical L
θj
j ∈ ĝ

+
X .

Proposition 11.12. Every t-dimensional cycle is integrable with respect to
L

θ0
0 , . . . , L

θt
t .

Proof. We use the above construction of canonical metrics starting with
a b

+
X -metric on every L j . Because every cycle is integrable with respect to

b
+
X -metrics, the claim follows from the dominated convergence theorem.

Definition 11.13. Under the assumptions of 11.11, let D̂
θj
j = (L

θj
j , |Dj |, sj )

be a ĝ
+
X -pseudo-divisor. The global height ĥ of a t-dimensional cycle Z with

respect to D̂
θ0
0 , . . . , D̂θt

t is called the canonical height of Z with respect to
(D0, θ0), . . . , (Dt , θt ). By Proposition 11.12, it is well-defined if and only if
|D0| ∩ · · · ∩ |Dt | ∩ |Z | = ∅.

Theorem 11.14. We assume that the product formula is satisfied. Under the
assumptions of 11.11, there is a unique real function ĥ on the t-dimensional cycles Z
satisfying:

(a) m0 · · · mt ĥ(Z) = n0 · · · nt ĥ(ψ∗Z).
(b) For all integrable cycles Z with respect to L0, . . . , Lt ∈ ĝ

+
X , we have

|ĥ(Z) − hL0,...,Lt
(Z)| = O(δL0,...,Lt )(Z) .

Moreoever, ĥ is the canonical height and it is non-negative on effective cycles.
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Proof. Let ĥ be the canonical height of 11.13. By integrating 10.15, 10.16,
it depends only on L0, . . . , Lt , thus well-defined for all cycles and satisfies (a).
By Theorem 10.6(d), we get (b).

To see ĥ(Z) ≥ 0 for an effective cycle Z , we may assume that K is
infinite, otherwise all global heights are zero. We may assume L0, . . . , Lt

generated by global sections. Then there are global sections sj of L j with
| div(s0)| ∩ · · · ∩ | div(st )| ∩ |Z | = ∅. We can construct a b

+
X -metric ‖ ‖ on L j

such that supx∈X ‖sj (x)‖v ≤ 1 for almost all v ∈ M . Then this holds for all
b

+
X -metrics ‖ ‖k from the proof of Proposition 11.12. By Proposition 10.7 and

the dominated convergence theorem, we deduce ĥ(Z) ≥ 0.
To prove uniqueness, let h̄ be another real function on t-dimensional cycles

satisfying (a) and (b). For any t-dimensional cycle Z on X and any k ∈ N, we
get

|ĥ(Z) − h̄(Z)| =
(

n0 · · · nt

m0 · · · mt

)k

|ĥ(ψk
∗ Z) − h̄(ψk

∗ Z)|

≤ C
(

n0 · · · nt

m0 · · · mt

)k

δL0,...,Lt (ψ
k
∗ Z)

= C
t∑

j=0

(
nj

mj

)k

degL0,...,L j−1,L j+1,...,Lt (Z)

where the constant C is independent of Z and k. By k → ∞, we get ĥ(Z) =
h̄(Z).

Example 11.15. Let A be an abelian variety over K . As on any projective
variety, every line bundle L has an M-metric because it may be written as
the difference of two very ample ones. By the decomposition into even and
odd parts and using Theorem 11.10, we get canonical M-metrics ‖ ‖ on L
as in Example 10.11. They are unique up to multiplication with the function
v �→ |α|v for some α ∈ K ×. For almost every v ∈ M , the metric ‖ ‖v is
the canonical metric of Example 10.11 and hence canonical metrics are in ĝX .
Canonical M-metrics are closed under tensor product and pull-back with respect
to homomorphisms of abelian varieties.

Proposition 11.16. Let L0, . . . , Lt be line bundles on A endowed with canon-
ical metrics. Then every t-dimensional cycle on A is integrable with respect to
L0, . . . , Lt .

Proof. By multilinearity, we may assume that every L j is either even and
very ample (cf. proof of Proposition 10.17) or odd (i.e. in Pic0(A)). First, we
handle the case where one line bundle is odd, say L0. Then the local heights
do not depend on the choice of the metrics on L1, . . . , Lt (Proposition 10.13).
Using multilinearity, we may assume that L1, . . . , Lt ∈ b

+
A . Clearly, L0 has a

metric ‖ ‖ lying in b
+
A − b

+
A . Then the same holds for the sequence ‖ ‖k :=

�k(‖ ‖) of metrics on L0 considered in the proof of Theorem 11.10. Using (20),
the convergence of ‖ ‖k to the canonical metric of L0 is dominated by an



756 WALTER GUBLER

integrable function on M . By Remark 11.9, every t-dimensional cycle on A
is integrable with respect to (L0, ‖ ‖k), L1, . . . , Lt . Using Theorem 10.6(d)
and the dominated convergence theorem, we conclude that the same holds for
L0, . . . , Lt . By symmetry, this proves the case of at least one odd line bundle.

So we may assume that all line bundles are even. By multilinearity using
the argument in Proposition 10.7, we may assume that all line bundles are even
and generated by global sections. Then the claim follows by Proposition 11.12.

Definition 11.17. Let D̂0, . . . , D̂t be pseudo-divisors on an abelian va-
riety A over K endowed with canonical metrics. For a t-dimensional cy-
cle Z on A, the global height with respect to D̂0, . . . , D̂t is called the Néron-
Tate height of Z . By Proposition 11.16, it is well-defined if and only if
|D0| ∩ · · · ∩ |Dt | ∩ |Z | = ∅.

Theorem11.18. Suppose that K satisfies the product formula. For L0, . . . , Lt ∈
Pic(A), there is a real function ĥL0,...,Lt on all t-dimensional cycles Z of A with

(a) ĥL0,...,Lt is multilinear and symmetric in the variables L0, . . . , Lt , and linear
in Z.

(b) If ϕ is a homomorphism of abelian varieties and Z ′ is a cycle on A′, then

ĥϕ∗L0,...,ϕ∗Lt (Z ′) = ĥL0,...,Lt (ϕ∗Z ′) .

(c) If m ∈ Z, |m| ≥ 2, if k line bundles of L0, . . . , Lt are even and the others are
odd, then

mk+t+1ĥ(Z) = ĥ([m]∗Z) .

(d) For all integrable cycles Z with respect to any L0, . . . , Lt ∈ ĝ
+
A, we have

|ĥL0,...,Lt (Z) − hL0,...,Lt
(Z)| = O(δL0,...,Lt )(Z) .

(e) If L0, . . . , Lt are even with a positive tensor power generated by global sections
and if Z is effective, then ĥL0,...,Lt (Z) ≥ 0.

The function ĥL0,...,Lt is the Néron-Tate height, uniquely determined by (a), (c)
and (d).

Proof. By Theorems 10.6 and 11.14, the Néron-Tate height satisfies (a)-
(e). For uniqueness, (a) implies that we may assume L j even or odd and
Theorem 11.14 proves the claim.

11.19. Let X be a proper smooth scheme over K and let L ∈ Pic0(X). We
assume that X has a K -rational point which usually may be achieved by base
change. Then there is a morphism ϕ of X to an abelian variety A (e.g. the
Albanese variety) over K with L ′ ∈ Pic0(A) such that L ∼= ϕ∗L ′. An M-metric
‖ ‖ on L is called canonical if it is the pull-back of a canonical M-metric
on such an L ′. For almost all v ∈ M , we get a canonical metric ‖ ‖v in the
sense of Remark 10.12. Hence canonical metrics are in g

+
X . Clearly, canonical

metrics are closed under tensor product and pull-back.
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If X is irreducible, then we claim that a canonical metric on L is unique
up to multiplication by the function v �→ |α|v on M for some α ∈ K ×. To see
it, we use that up to a translation ϕ factors through the Albanese variety and
the pull-back of L ′ is the fibre of the Poincaré class over L . Then uniqueness
follows from Example 11.15.

Proposition 11.20. Let X be as in 11.19 with ĝX -pseudo-divisors D̂0, . . . , D̂t .
Suppose that O(D0) ∈ Pic0(X) and that its M-metric is canonical. Then every
t-dimensional cycle Z on X is integrable with respect to O(D0), . . . , O(Dt ). If
|D0| ∩ · · · ∩ |Dt | ∩ |Z | = ∅, then hD̂0,...,D̂t

(Z) = hD̂0
(Y ) for any representative Y

of the refined intersection D1 . . . Dt .Z.

Proof. By Proposition 10.13, we have λD̂0,...,D̂t
(Z , v) = − log ‖sD0 (Y ) ‖v

for almost all v ∈ M . Using Proposition 11.12 and functoriality, we get the
claim.

Remark 11.21. Let K be a number field with ring of integers OK and
let X be a proper flat scheme over OK with generic fibre X . Then hermitian
line bundles L0, . . . ,Lt on X induce MK -metrics on the generic fibres. The
absolute height of a cycle on X with respect to L0, . . . ,Lt from arithmetic
intersection theory (cf. [BoGS]) is the same as the global height with respect
to the corresponding MK -metrized line bundles using the normalizations of
Example 11.2. This follows from Section 3 and [Gu3], Proposition 6.5.

A hermitian line bundle L on X is called nef if the hermitian metric has
semipositive curvature on X (C), if the restrictions of L to vertical fibres are
numerically positive and if hL(C) ≥ 0 for all 1-dimensional effective cycles
on X . Similarly as in 9.6, the height of an effective cycle with respect to nef
hermitian line bundles is non-negative. By de Jong’s alteration theorem ([dJ],
Theorem 8.2), this follows from [Mor], Proposition 2.3.

Example 11.22. Let T be an integral normal variety proper and flat over Z

of relative dimension t . We are going to explain Moriwaki’s M-field structure
([Mor]) on the function field K := Q(T ) where Mfin is the set of prime divisors
on T and M∞ := T (C).

We fix hermitian line bundles H1, . . . ,Ht assumed to be nef. For v ∈ Mfin,
the height h(v) with respect to H1, . . . ,Ht is non-negative (Remark 11.21)
giving rise to the absolute value | f |v := e− ord( f,v)h(v) on K . For v ∈ M∞, let
| f |v := | f (v)|. The positive measure µ is the counting measure on Mfin and
c1(H1) ∧ · · · ∧ c1(Ht ) on M∞. Then K is an M := Mfin ∪ M∞-field satisfying
the product formula. To see the latter, note that the height of TQ with respect
to H1, . . . ,Ht ,OT is 0 and then apply the induction formula (3.5 and 9.5) for
Y = div( fQ).

Example 11.23. For the M-fields considered in Example 11.2, it is always
possible to pass to the algebraic closure. With a similar procedure, we define
a canonical M-field structure on the algebraic closure F of K := Q(T ). For a
finite subextension L/K , let T (L) be the integral closure of T in L . It is an
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integral normal variety with a canonical finite morphism pL : T (L) → T and
function field L ([EGA II], 6.3).

Let M (L)
fin be the set of prime divisors on T (L) and let M (L)

∞ := T (L)(C).
The height with respect to p∗

LH1, . . . , p∗
LHt is denoted by h(L). For w ∈

M (L)
fin with v := pL(w), let Nw := [L̂w : K̂ v] using completions with respect

to the discrete valuations ord(·, w) and ord(·, v). Because of normality, the
classical formula

∑
w Nw = [L : K ] holds where w ranges over p−1

L (v). We
conclude that the absolute values on L extending | |v are given by | f |w :=
exp(− ord( f, w)h(L)(w)/Nw), w ∈ p−1

L (v). If h(v) �= 0, then they are pairwise
inequivalent discrete absolute values. For w ∈ M (L)

∞ , let | f |w := | f (w)|. The
positive measure µ(L) on M (L) is defined by µ(L)(w) = Nw/[L : K ] on M (L)

fin
and by c1(p∗

LH1) ∧ · · · ∧ c1(p∗
LHt )/[L : K ] on M (L)

∞ . By Example 11.22, we
conclude that L is an M (L)-field satisfying the product formula.

Using the complex structure on M (L)
∞ and the discrete topology on M (L)

fin ,
we get a locally compact space MF := lim←−L M (L) given as a closed subset
of

∏
L M (L) where L ranges over all finite subextensons of F/K . Let p̄L :

MF → M (L) be the projection. For a finite subextension L ′ of F/K with
L ⊂ L ′, it follows from projection formula and transformation formula of
integrals that µ(L) is the image measure of µ(L ′) with respect to the canonical
map M (L ′) → M (L). Hence there is a unique regular Borel measure µF on MF

such that µ(L) = p̄L(µF ). For u ∈ MF and f ∈ F , let | f |u := | f |w where
w := p̄L(u) for a finite subextension L of F/K with f ∈ L . If v ∈ M (K )

fin and
h(v) �= 0, then p̄−1

K (v) gives rise to all absolute values on F extending | |v .
By passing to finite subextensions, we conclude that F is an MF -field

satisfying the product formula. The same construction works for every algebraic
extension L/K . If it is finite, then it is equal to the M (L)-field structure above.
If X is a proper scheme over L , then heights of cycles on X are independent
of the choice of L and may be computed over L̄ .
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