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Hörmander Systems and Harmonic Morphisms

ELISABETTA BARLETTA

Abstract. Given a Hörmander system X = {X1, · · · , Xm} on a domain � ⊆ Rn

we show that any subelliptic harmonic morphism φ from � into a ν-dimensional
Riemannian manifold N is a (smooth) subelliptic harmonic map (in the sense of J.
Jost & C-J. Xu, [9]). Also φ is a submersion provided that ν ≤ m and X has rank
m. If � = Hn (the Heisenberg group) and X = { 1

2 (Lα + Lα) , 1
2i (Lα − Lα)

}
,

where Lα = ∂/∂zα−i zα∂/∂t is the Lewy operator, then a smooth map φ : � → N
is a subelliptic harmonic morphism if and only if φ ◦ π : (C(Hn), Fθ0) → N is a

harmonic morphism, where S1 → C(Hn)
π−→ Hn is the canonical circle bundle

and Fθ0 is the Fefferman metric of (Hn, θ0). For any S1-invariant weak solution to
the harmonic map equation on (C(Hn), Fθ0) the corresponding base map is shown
to be a weak subelliptic harmonic map. We obtain a regularity result for weak
harmonic morphisms from (C({x1 > 0}), Fθ(k)) into a Riemannian manifold,
where Fθ(k) is the Fefferman metric associated to the system of vector fields
X1 = ∂/∂x1, X2 = ∂/∂x2 + xk

1 ∂/∂x3 (k ≥ 1) on � = R3 \ {x1 = 0}.

Mathematics Subject Classification (2000): 58E20, 53C43 (primary), 32V20,
35H20 (secondary).

1. – Introduction

J. Jost & C-J. Xu studied (cf. [9]) the existence and regularity of weak
solutions φ : � → N to the nonlinear subelliptic system

(1) Hφi −
m∑

a=1

(∣∣∣ i
jk

∣∣∣ ◦ φ
)

Xa(φ
j )Xa(φ

k) = 0, 1 ≤ i ≤ ν ,

where H = ∑m
a=1 X∗

a Xa is the Hörmander operator associated to a system
X = {X1, · · · , Xm} of smooth vector fields on a open set � ⊆ Rn , verifying
the Hörmander condition on �, and N is a Riemannian manifold. If ω ⊂ �

is a smooth domain such that ∂ω is noncharacteristic for X , the result of
J. Jost & C-J. Xu (cf. op. cit., Theorem 1 and 2, pp. 4641-4644) is that

Pervenuto alla Redazione il 21 Ottobre 2002 ed in forma definitiva il 27 Marzo 2003.



380 ELISABETTA BARLETTA

the Dirichlet problem for (1), with boundary data having values in regular
balls of N , may be solved and the solution is continuous on ω, up to the
boundary. Any such map is then smooth by a result of C-J. Xu & C. Zuily
(cf. [14]), who studied higher regularity of continuous solutions to a quasilinear
subelliptic system including (2). Solutions (smooth a posteriori) to (1) are
subelliptic harmonic maps and (1) is the subelliptic harmonic map system. Cf. also
Z-R. Zhou, [15]. Clearly, if Xa = ∂/∂xa , 1 ≤ a ≤ n, then a subelliptic
harmonic map is an ordinary harmonic map (� is thought of as a Riemannian
manifold, with the Euclidean metric). An important class of harmonic maps are
harmonic morphisms, i.e. smooth maps of Riemannian manifolds pulling back
local harmonic functions to harmonic functions. That these are indeed harmonic
maps is a classical result by T. Ishihara (cf. [7]), actually holding in general for
harmonic morphisms between semi-Riemannian manifolds (cf. B. Fuglede, [5]).
In the present paper we extend the notion of a harmonic morphism to the
context of systems of vector fields and generalize the Fuglede-Ishihara theorem.

A localizable (in the sense of [8], p. 434, i.e. for any x0 ∈ � there is an
open neighborhood U ⊂ � of x0 and a coordinate neighborhood (V, yi ) on
N such that φ(U ) ⊂ V ) map φ : � → N is a (weak) subelliptic harmonic
morphism if for any v : V → R, with V ⊆ N open and 	N v = 0 in V , one
has i) v ◦ φ ∈ L1

loc(U ), for any open set U ⊂ � such that φ(U ) ⊂ V , and ii)
H(v ◦ φ) = 0, in distributional sense. Our main result is

Theorem 1. Let X = {X1, · · · , Xm} be a Hörmander system on a domain
� ⊆ Rn and N a ν-dimensional Riemannian manifold. If ν > m there are no
subelliptic harmonic morphisms of � into N, except for the constant maps. If
ν ≤ m then any subelliptic harmonic morphism φ : � → N is an actually smooth
subelliptic harmonic map and there is a smooth function λ : � → [0, +∞) such that

(2)
m∑

a=1

(Xaφ
i )(x)(Xaφ

j )(x) = λ(x)δi j , 1 ≤ i, j ≤ ν ,

for any x ∈ � and any normal coordinate system (V, yi ) at φ(x) ∈ N, where
φi = yi ◦ φ. In particular if x ∈ U = φ−1(V ) is such that λ(x) 
= 0 then the
matrix [(Xaφ

i )(x)] has maximal rank, hence φ is a C∞ submersion provided that
{X1, · · · , Xm} are independent at any x ∈ �.

When � = Hn , the Heisenberg group, and X = {Xα, Yα : 1 ≤ α ≤ n}
where Xα = (1/2)∂/∂xα+yα∂/∂t and Yα = J Xα , we relate subelliptic harmonic
morphisms to harmonic morphisms (from a certain Lorentzian manifold), in the
spirit of [1] where subelliptic harmonic maps were related to harmonic maps
(with respect to the Fefferman metric). Here J is given by J Lα = i Lα and
J Lα = −i Lα . We may state

Theorem 2. Let Hn = Cn × R be the Heisenberg group endowed with the
standard strictly pseudoconvex CR structure and the contact form θ0 = dt +
i
∑n

α=1(z
αdzα − zαdzα). Consider the Fefferman metric

Fθ0 = π∗Gθ0 + 2

n + 2
(π∗θ0) � (dγ )



HÖRMANDER SYSTEMS AND HARMONIC MORPHISMS 381

on C(Hn) = (

n+1,0(Hn) \ {0}) /R+, where π : C(Hn) → Hn is the projection

and γ a fibre coordinate on C(Hn). Then a smooth map φ : Hn → N is a subelliptic
harmonic morphism, with respect to the system of vector fields X = {Xα, Yα}, if and
only if φ ◦ π : (C(Hn), Fθ0) → N is a harmonic morphism.

The main ingredient is to relate the Laplace-Beltrami operator � of the
Fefferman metric Fθ0 to the Hörmander operator H on Hn . This is rather well
known in CR geometry (cf. J.M. Lee, [10], where � is related to the sublaplacian
	b of the given strictly pseudoconvex CR manifold) yet not presented in the
literature on PDEs. We emphasize on the relationship between subelliptic and
hyperbolic PDEs by providing a short direct proof that, for the Heisenberg
group, π∗� = −2H where

� f = 1

2

n∑
α=1

(
∂2 f

∂(uα)2
+ ∂2 f

∂(uα+n)2

)
+ 2(|z|2 ◦ π)

∂2 f

∂(u2n+1)2

+ 2uα+n ∂2 f

∂uα∂u2n+1
− 2uα ∂2 f

∂uα+n∂u2n+1
+ 2(n + 2)

∂2 f

∂u2n+1∂u2n+2
,

for any f ∈ C2(Hn). Here u A = x A ◦ π , 1 ≤ A ≤ 2n + 1, and u2n+2 = γ ,
where (x A) = (zα = xα + iyα, t) are coordinates on Hn .

Acknowledgements. The Author is grateful to Sorin Dragomir for care-
fully explaining to her the construction of the Fefferman metric within pseudo-
hermitian geometry. The Author has profited from the many suggestions of the
(anonymous) Referee.

2. – Hörmander systems

Let � ⊆ Rn be an open set and X = {X1, · · · , Xm} a system of C∞
vector fields on �. We say X satisfies the Hörmander condition (or that X
is a Hörmander system) on �, if the vector fields X1, · · · , Xm together with
their commutators up to some fixed length r span the tangent space Tx(�), at
each x ∈ �. If Xa = bA

a (x)∂/∂x A then we set X∗
a f = −∂(bA

a f )/∂x A, for any
f ∈ C1

0(�). Our convention as to the range of indices is a, b, · · · ∈ {1, · · · , m}
and A, B, · · · ∈ {1, · · · , n}. The Hörmander operator is

Hu =
m∑

a=1

X∗
a Xau = −

n∑
A,B=1

∂

∂x A

(
a AB(x)

∂u

∂x B

)
,
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where a AB(x) =∑m
a=1 bA

a (x)bB
a (x). The matrix a AB is symmetric and positive

semi-definite, yet it may fail to be definite, hence in general H is not elliptic
(H is a degenerate elliptic operator).

Example 1 (Cf. [9], p. 4634). The system of vector fields

(3) X1 = ∂/∂x1 , X2 = ∂/∂x2 + (x1)k∂/∂x3 (k ≥ 0)

satisfies the Hörmander system on R3 with r = k+1. We have X∗
a = −Xa , a ∈

{1, 2}, hence the Hörmander operator is

(4) Hu = − ∂2u

∂(x1)2
− ∂2u

∂(x2)2
− (x1)2k ∂2u

∂(x3)2
− 2(x1)k ∂2u

∂x2∂x3
.

As we shall see later, there is a CR structure H(k) on � = R3 \ {x1 = 0} such
that the (rank 2) distribution D spanned by the Xa’s is precisely the Levi (or
maximally complex) distribution of (�,H(k)).

Example 2. Let Hn = Cn × R be the Heisenberg group with coordinates
(z, t) = (z1, · · · , zn, t) and set zα = xα + iyα , 1 ≤ α ≤ n. Consider the
Lewy operators

Lα = ∂

∂zα
− i zα ∂

∂t
, 1 ≤ α ≤ n ,

and the system of vector fields

(5) X := {Xα, Xα+n : 1 ≤ α ≤ n} , Xα+n = J Xα , Xα = 1

2
(Lα + Lα) ,

where Lα = Lα . The Heisenberg group is thought of as a CR manifold (of
hypersurface type) with the standard CR structure

T1,0(Hn)x =
n∑

α=1

CLα,x , x ∈ Hn .

Then J is the complex structure in the (real rank 2n) distribution H(Hn) :=
Re
(
T1,0(Hn) ⊕ T0,1(Hn)

)
, i.e. J (Z + Z) := i(Z − Z), for any Z ∈ T1,0(Hn). As

[Lα, Lα] = −2iδαβT (with T = ∂/∂t), (5) is a Hörmander system on Hn , with
r = 1. Next X∗

a = −Xa and the corresponding Hörmander operator is

(6) Hu = −1

4

n∑
α=1

{
∂2u

∂(xα)2
+ ∂2u

∂(yα)2

}
− yα ∂2u

∂xα∂t
+ xα ∂2u

∂yα∂t
− |z|2 ∂2u

∂t2
.
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3. – Subelliptic harmonic morphisms

First we see that a weak subelliptic harmonic morphism φ : � → N is
actually smooth. Indeed, let x ∈ � and p = φ(x) ∈ N . As φ is localizable,
we may consider an open neighborhood U of x and a local system (V, yi ) of
harmonic coordinates at p (cf. e.g. [3], p. 143, i.e. p ∈ V and 	N yi = 0 in V ,
where 	N is the Laplace-Beltrami operator of N ) such that φ(U ) ⊂ V . Then
yi ◦ φ ∈ L1

loc(U ) and H(yi ◦ φ) = 0. Moreover, it is a well known fact that H
is hypoelliptic, i.e. if Hu = f in distributional sense, and f is smooth, then
u is smooth, too. Hence yi ◦ φ ∈ C∞(U ). To show that φ is a subelliptic
harmonic map we need the following

Lemma 1 (T. Ishihara, [7]). Let N be a ν-dimensional Riemannian manifold
and Ci , Ci j ∈ R a system of constants such that Ci j = Cji and

∑ν
i=1 Cii = 0.

Let p ∈ N. Then there is a normal coordinate system (V, yi ) in p and a harmonic
function v : V → R such that

∂v

∂yi
(p) = Ci , vi, j (p) = Ci j .

Here vi, j are the second order covariant(1) derivatives

vi, j = ∂2

∂yi∂y j
−
∣∣∣ k
i j

∣∣∣ ∂v

∂yk
.

Proof of Theorem 1. Let i0 ∈ {1, · · · , ν} be a fixed index and consider
the constants Ci = δi i0 and Ci j = 0. By Ishihara’s lemma there is a local
harmonic function v : V → R such that

∂v

∂yi
(p) = δi i0 , vi, j (p) = 0.

A calculation shows that

Xa(v ◦ φ) = ∂v

∂y j
Xa(φ

j ) ,

H(v ◦ φ) = (Hφ j )
∂v

∂y j
−

m∑
a=1

(Xaφ
j )(Xaφ

k)

{
vj,k +

∣∣∣ i
jk

∣∣∣ ∂v

∂yi

}
.(7)

Then (by (7))

0 = H(v ◦ φ)(x) = (Hφi0)(x) −
m∑

a=1

(Xaφ
j )(x)(Xaφ

k)(x)
∣∣∣ i0

jk

∣∣∣ (p) .

(1)Here
∣∣∣ k

i j

∣∣∣ are the Christoffel symbols (of the second kind) associated to the Riemannian metric

on N .
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To prove (2) in Theorem 1 consider the constants Ci j ∈ R such that Ci j = Cji

and
∑ν

i=1 Cii = 0. Let x ∈ � and p = φ(x) ∈ N . By Ishihara’s lemma there
is a normal coordinate system (V, yi ) in p and a local harmonic function v on
V such that

∂v

∂yi
(p) = 0, vi, j (p) = Ci j .

As φ is a subelliptic harmonic morphism (again by (7))

0 = H(v ◦ φ)(x) = −
m∑

a=1

(Xaφ
j )(x)(Xaφ

k)(x)Cjk

that is

(8) Cjk X jk(x) = 0 ,

where

X jk :=
m∑

a=1

(Xaφ
j )(Xaφ

k) .

The identity (8) may be also written as

(9)
∑
i 
= j

Ci j X i j (x) +
∑

i

Cii

{
Xii (x) − X11(x)

}
= 0 .

Now let us choose the constants Ci j such that Ci j = 0 for any i 
= j and

Cii =



1, i = i0

−1, i = 1

0, otherwise

where i0 ∈ {2, · · · , ν} is a fixed index. Then (9) gives

Xi0i0(x) − X11(x) = 0 ,

that is
X11(x) = X22(x) = · · · = X νν(x)

and (9) becomes

(10)
∑
i 
= j

Ci j X i j (x) = 0 .

Let us fix i0, j0 ∈ {1, · · · , ν} such that i0 
= j0, otherwise arbitrary, and set

Ci j =
{

1, i = i0 , j = j0 or i = j0 , j = i0

0, otherwise
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Then (10) implies that Xi0 j0(x) = 0. Let us set

λ := X11 =
m∑

a=1

(Xaφ
1)2 ∈ C∞(U ) ,

where U = φ−1(V ) ⊂ �. Summing up the results obtained so far, we have

m∑
a=1

(Xaφ
i )(x)(Xaφ

j )(x) = λ(x)δi j ,

which is (2), and in particular

ν λ(x) =
∑
a,i

(Xaφ
i )(x)2 .

Therefore, we built a global C∞ function λ : � → [0, +∞). Indeed, if (V, ϕ =
(y1, · · · , yν)) and (V ′, ϕ′ = (y′1, · · · , y′ν)) are two normal coordinate systems
at p = φ(x) and F = ϕ′ ◦ ϕ−1, then the identities

Xaφ
′i = ∂ Fi

∂ξ j
Xaφ

j ,
∑

k

∂ Fk

∂ξ i
(p)

∂ Fk

∂ξ j
(p) = δi j

yield ∑
i

(Xaφ
′i )(x)2 =

∑
j

(Xaφ
j )(x)2 .

Assume there is x0 ∈ � such that λ(x0) 
= 0 and consider

vi :=
(
(X1φ

i )(x0), · · · , (Xmφi )(x0)
)

∈ Rm , 1 ≤ i ≤ ν .

Clearly vi 
= 0, for any i , and vi · v j = 0, for any i 
= j . Consequently
rank[(Xaφ

i )(x0)] = ν, hence ν ≤ m. Thus, whenever ν > m it follows that
λ = 0, i.e. Xaφ

i = 0, and then the commutators of the Xa’s, up to the length
r , annihilate φi . As X = {X1, · · · , Xm} is a Hörmander system and � is
connected, it follows that φi = const. Theorem 1 is proved.
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4. – The relationship to hyperbolic PDEs

A smooth map � : M → N of semi-Riemannian manifolds is a harmonic
morphism if for any local harmonic function v : V → R on N , the pullback
v ◦� is harmonic on M , i.e. 	M(v ◦�) = 0 in U = �−1(V ) (cf. e.g. [13]). In
the context of Example 2, we shall relate the subelliptic harmonic morphisms φ :
Hn → N to harmonic morphisms from the Lorentzian manifold (C(Hn), Fθ0).
We need to recollect a few notions of CR and pseudohermitian geometry. A CR
structure (of CR dimension n) on a C∞ manifold M , of real dimension 2n+1, is
a complex rank n complex subbundle T1,0(M) ⊂ T (M)⊗C of the complexified
tangent bundle such that T1,0(M) ∩ T0,1(M) = (0), where T0,1(M) := T1,0(M)

is the complex conjugate of T1,0(M), and [Z , W ] ∈ �∞(T1,0(M)), for any
Z , W ∈ �∞(T1,0(M)) (the formal integrability property). A pair (M, T1,0(M))

is a CR manifold (of CR dimension n) and H(M) := Re{T1,0(M) ⊕ T0,1(M)}
(a real rank 2n distribution on M) its Levi distribution. The Levi distribution
carries the complex structure J defined by J (Z + Z) = i(Z − Z), for any
Z ∈ T1,0(M). If (M, T1,0(M)) is an orientable CR manifold the conormal
bundle H(M)⊥ := {ω ∈ T ∗(M) : K er(ω) ⊇ H(M)} is a trivial line bundle,
hence admits globally defined nowhere zero sections θ ∈ �∞(H(M)⊥), each of
which is a pseudohermitian structure on M (a term coined in [12]). The Levi
form is Lθ (Z , W ) = −i(dθ)(Z , W ), Z , W ∈ T1,0(M). Often the following real
version of the Levi form is used. Set Gθ (X, Y ) := (dθ)(X, JY ), X, Y ∈ H(M);
then Lθ and the C-linear extension of Gθ coincide (on T1,0(M)⊗T0,1(M)). The
CR manifold M is nondegenerate (respectively strictly pseudoconvex) if Lθ is
nondegenerate (respectively positive definite) for some θ . If M is nondegenerate
then each pseudohermitian structure θ is a contact form, i.e. θ∧(dθ)n is a volume
form on M . For a fixed contact form θ , there is a unique vector field T on
M such that T � dθ = 0 and θ(T ) = 1 (the characteristic direction of dθ ). A
complex p-form η on a CR manifold (M, T1,0(M)) is a form of type (p, 0) if
T0,1(M) � η = 0. Let 
p,0(M) → M be the vector bundle of all forms of type
(p, 0) and set

C(M) =
(

n+1,0(M) \ {zero section}

)/
R+ ,

where R+ is the multiplicative group of the positive reals. When M is nonde-
generate C(M) → M is a principal S1-bundle and C(M) ≈ M × S1 (the trivial
bundle) when M is embeddable (i.e. CR isomorphic to a real hypersurface in
Cn+1, e.g. the boundary of a domain in Cn+1). If M is strictly pseudoconvex,
with each contact form θ (such that Lθ is positive definite) one may associate
(cf. [10]) a Lorentzian metric Fθ on C(M) (the Fefferman metric of (M, θ))
which can be computed in terms of the connection 1-forms and (pseudoher-
mitian) scalar curvature of a canonical connection ∇ on M , known as the
Tanaka-Webster connection of (M, θ). The Tanaka-Webster connection obeys to
the axioms i) H(M) is ∇-parallel, ii) ∇ J = 0, ∇gθ = 0, and iii) the torsion
of ∇ is pure (e.g. in sense of [2], p. 65) and its existence and uniqueness
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is actually guaranteed when M is merely nondegenerate (cf. [12] and [11]).
Here gθ is the Webster metric (cf. e.g. [2], p. 65) of (M, θ), i.e. gθ = Gθ on
H(M)⊗ H(M), gθ (X, T ) = 0 for any X ∈ H(M), and gθ (T, T ) = 1. We only
recall the construction of the Fefferman metric for the case of the Heisenberg
group (for the general case of an arbitrary strictly pseudoconvex CR manifold,
cf. [10]). As the Heisenberg group is embeddable (the map f : Hn → ∂�n+1,
f (z, t) := (z, t + i |z|2), (z, t) ∈ Hn , is a CR isomorphism of Hn onto the
boundary of the Siegel domain �n+1 = {(z, u + iv) ∈ Cn+1 : v > |z|2}) the
bundle C(Hn) → Hn is of course trivial. θ0 = dt + i

∑n
α=1(z

αdzα − zαdzα) is
a contact form on Hn (with the corresponding Levi form positive definite). An
element [ω] ∈ C(Hn) is a class of a (n + 1, 0)-form ω = λ(θ0 ∧ θ1 ∧ · · · ∧ θn)x ,
for some λ ∈ C∗ = C \ {0} and x ∈ Hn . Here θα = dzα . We shall use the local
fibre coordinate γ on C(Hn) given by

γ ([ω]) := arg(λ/|λ|),

where arg : S1 → [0, 2π). Let us extend the Levi form Gθ0 to the whole
of T (Hn) by requesting that Gθ0(V, T ) = 0, for every V (the characteristic
direction of dθ0 is T = ∂/∂t). Consider the (globally defined) 1-form σ =
(1/(n + 2))dγ on C(Hn) and set

Fθ0 = π∗Gθ0 + 2(π∗θ0) � σ ,

where � denotes the symmetric tensor product. Then Fθ0 is a Lorentz metric
on C(Hn) (the Fefferman metric of (Hn, θ0), cf. [10]).

Proof of Theorem 2. With respect to the local coordinates (ua) = (u A, γ ),
where u A = x A ◦ π , the Fefferman metric may be written as

(11)

Fθ0 = 2
n∑

α=1

[
(duα)2 + (duα+n)2

]

+ 2

n + 2

[
du2n+1 + 2

n∑
α=1

(uαduα+n − uα+nduα)

]
� du2n+2 .

We wish to compute the Laplace-Beltrami operator

� f = 1√|F |
∂

∂ua

(√|F |Fab
θ0

∂ f

∂ub

)
, f ∈ C2(C(Hn)) .

A calculation shows that

(12) F := det [(Fθ0)ab] = −
(

2n

n + 2

)2

,
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(13) Fab
θ0

:




1/2 · · · 0 0 · · · 0 un+1 0
...

...
...

...
...

...

0 · · · 1/2 0 · · · 0 u2n 0
0 · · · 0 1/2 · · · 0 −u1 0
...

...
...

...
...

...

0 · · · 0 0 · · · 1/2 −un 0
un+1 · · · u2n −u1 · · · −un 2|z|2 ◦ π n + 2

0 · · · 0 0 · · · 0 n + 2 0




,

hence

(14)

� f = 1

2

n∑
α=1

[
∂2 f

∂(uα)2
+ ∂2 f

∂(uα+n)2

]
+ 2(n + 2)

∂2 f

∂u2n+1∂u2n+2

+ 2uα+n ∂2 f

∂uα∂u2n+1
− 2uα ∂2 f

∂uα+n∂u2n+1
+ 2(|z| ◦ π)2 ∂2 f

∂(u2n+1)2
.

Let c ∈ π−1(0) ⊂ C(Hn). [Fab
θ0

(c)] has spectrum {1/2, n + 2, −n − 2} (with
multiplicities {2n, 1, 1}, respectively). The corresponding eigenspaces are

Eigen(1/2) =
2n∑

j=1

Rej , Eigen(±(n + 2)) = R(0, · · · , 0, 1, ±1) ,

(where {e1, · · · , e2n+2} ⊂ R2n+2 is the canonical linear basis). Consequently,
under the coordinate transformation



w j = √
2 u j , 1 ≤ j ≤ 2n

w2n+1 = 1√
2(n + 2)

(
u2n+1 + γ

)
w2n+2 = 1√

2(n + 2)

(
u2n+1 − γ

)
(14) goes over to the canonical hyperbolic form

(� f )(c) =
2n+1∑
A=1

∂2 f

∂(wA)2
(c) − ∂2 f

∂(w2n+2)2
(c) .

The unit circle S1 acts freely on C(Hn) by Rw([ω]) = [ω] ·w := [wω], w ∈ S1.
Then u A ◦ Rw = u A and γ ◦ Rw = γ + arg(w) + 2kπ , for some k ∈ Z,
hence R∗

w Fθ0 = Fθ0 , i.e. S1 ⊂ I som(C(Hn), Fθ0). As well known, this yields

�Rw = �, where we set �ψ f := (� f ψ−1
)ψ and f ψ−1

:= f ◦ ψ , for any
diffeomorphism ψ of C(Hn) in itself (we adopt the conventions in [6], p. 241).
Therefore,

π∗� : C∞(Hn) → C∞(Hn), (π∗�)u := (�(u ◦ π))̃ ,
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is well defined, where, for a given S1 invariant function f on C(Hn), f̃ denotes
the corresponing base map. Finally, a calculation based on (6) and (14) leads to

(15) (π∗�)u = −2 Hu, u ∈ C2(Hn) .

At this point, Theorem 2 is proved. For given a local harmonic function
v : V → R on N and φ : Hn → N a subelliptic harmonic morphism then
(by (15)) 0 = −2H(v ◦ φ) = (π∗�)(v ◦ φ) hence �(v ◦ �) = 0, i.e. � = φ ◦ π

is a harmonic morphism.

Example 1 (continued). Theorem 2 applies, with only minor modifications,
to subelliptic harmonic morphisms from � = R3 \ {x1 = 0}, with respect to
the Hörmander system (5). R3 is a CR manifold with the CR structure H(k)

spanned by

Z := 2
∂

∂z
− i
(

z + z

2

)k ∂

∂t
,

where z = x1 + i x2 and t = x3. Next

θ(k) = dt + i

2

(
z + z

2

)k

(dz − dz)

is a pseudohermitian structure on R3 with the Levi form

Lθ(k)(Z , Z) = −k
(

z + z

2

)k−1

,

hence (R3,H(0)) is Levi flat while (�,H(k)) is nondegenerate, for any k ≥ 1.
Moreover, if k ≥ 1 each connected component �+ = {x1 > 0} and �− =
{x1 < 0} is strictly pseudoconvex. If ∇ is the Tanaka-Webster connection of a
nondegenerate CR manifold M (on which a contact form θ has been fixed) and
{Tα : 1 ≤ α ≤ n} is a (local) frame in T1,0(M) then we set ∇TA TB = �C

AB TC ,
where A, B, · · · ∈ {0, 1, · · · , n, 1, · · · , n}. Also Tα := Tα and T0 := T . Let T∇
be the torsion tensor field of ∇. Then T∇(T, Tα) = Aβ

αTβ is the pseudohermitian
torsion (cf. also [4] for the properties of T∇). Let R∇ be the curvature tensor
field of ∇ and set R∇(TB, TC)TA = RA

D
BC TD . The (pseudohermitian) Ricci

tensor is Rλµ = Rλ
α

αµ and the (pseudohermitian) scalar curvature is R = Rλ
λ

(one uses the local coefficients of the Levi form gαβ = Lθ (Tα, Tβ) and their

inverse [gαβ] := [gαβ]−1 to raise and lower indices). The Tanaka-Webster
connection of (�, θk) is given by

�1
11

= 0, �1
11 = 2(k − 1)

z + z
, �1

01 = 0 .

In particular, the Tanaka-Webster connection of (�, θ(k)) has pseudohermitian
scalar curvature R = − k−1

k (2/(z + z))k+1, and one may explicitely compute
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the Fefferman metric Fθ(k) of (�±, θ(k)). Also the pseudohermitian torsion

vanishes (i.e. A1
1 = 0). Note that (�, θ(1)) is Webster flat. Set ∇H u = πD∇u,

where ∇u is the gradient of u ∈ C∞(�) with respect to the Webster metric and
πH : T (�) → D the projection with respect to the direct sum decomposition
T (�) = D ⊕ R∂/∂t . That is ∇H u = u1 Z + u1 Z , where u1 = h11u1 and
u1 = Z(u). The sublaplacian is 	bu = −div(∇H u), where the divergence is
taken with respect to the volume form θ(k) ∧ (dθ(k))n . As

div(Z) = k − 1

x1
, h11 = −1

k
x1−k

1 (x1 = x1)

one has 	b = 1
k x1−k

1 (Z Z + Z Z), hence (by (4)) 	b = − 1
k x1−k

1 H on C∞
functions. By a result in [10], the Laplace-Beltrami operator � of the Fefferman
metric of (�±, θ(k)) is related to the sublaplacian by π∗� = 1

2	b hence

(16) (π∗�)u = −1

k
x1−k

1 Hu, u ∈ C∞(�±) .

Consequently

Proposition 1. For any subelliptic harmonic morphism φ : �± → N, with
respect to the Hörmander system (4), the map � = φ ◦ π : C(�±) → N is a
harmonic morphism, with respect to the Fefferman metric of (�±, θ(k)).

For the converse, cf. our Section 5.

5. – Weak harmonic maps from C(Hn)

From now on, we assume that N is covered by one coordinate chart ϕ =
(y1, · · · , yν) : N → Rν and �i := yi ◦ �. A map � : C(Hn) → N satisfies
weakly the harmonic map system

(17) ��i + Fab
θ0

(∣∣∣ i
jk

∣∣∣ ◦ π
) ∂� j

∂ua

∂�k

∂ub
= 0, 1 ≤ i ≤ ν ,

if �i and their first derivatives (in distributional sense) are square integrable and

ν∑
i=1

{∫
C(Hn)

�i �ϕi d vol(Fθ0)

+
∫

C(Hn)

Fab
θ0

(∣∣∣ i
jk

∣∣∣ ◦ π
) ∂� j

∂ua

∂�k

∂ub
ϕi d vol(Fθ0)

}
= 0 ,
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for any ϕ ∈ C∞
0 (C(Hn), Rν). Given a smooth vector field X on U ⊆ C(Hn)

open, the function gi
X ∈ L2(U) defined a.e. by∫

U
gi

Xϕ d vol(Fθ0) =
∫
U

�i X∗ϕ d vol(Fθ0),

is denoted by X (�i ). Here X∗ is the formal adjoint of X with respect to the
L2-inner product (u, v)L2 = ∫ uv dvol(Fθ0), for u, v ∈ C∞(C(Hn)), at least one
of compact support. In [1], given a strictly pseudoconvex CR manifold M , one
related smooth harmonic maps from C(M) (with the Fefferman metric corre-
sponding to a fixed choice of contact form on M) to smooth pseudoharmonic
maps from M (as argued there, these are locally J. Jost & C-J. Xu’s subelliptic
harmonic maps). Here we wish to attack the same problem for weak solutions
(of the harmonic, respectively subelliptic harmonic, map equations). We recall
the Sobolev space W 1,2

X (�) = {u ∈ L2(�) : Xau ∈ L2(�), 1 ≤ a ≤ m}, adapted
to a system of vector fields X = {X1, · · · , Xm} on � ⊆ Rn (the Xau’s are
understood in distributional sense). Then φ : � → N is a weak solution to (1)
if φi ∈ W 1,2

X (�) and
ν∑

i=1

{∫
�

m∑
a=1

(Xaφ
i ) (Xaϕ

i ) dx −
∫

�

m∑
a=1

(∣∣∣ i
jk

∣∣∣ ◦ φ
)

(Xaφ
j )(Xaφ

k)ϕi dx

}
= 0 ,

for any ϕ ∈ C∞
0 (�, Rν). Cf. e.g. [9], p. 4641. We wish to show

Lemma 2. Let � : C(Hn) → N be a S1-invariant map and φ = �̃ the
corresponding base map. If �i ∈ L2(C(Hn)) and Y (�i ) ∈ L2(U), for any smooth
vector field Y on U ⊆ C(Hn), then φi ∈ W 1,2

X (Hn).

One has ‖�i‖L2(C(Hn)) = 2π‖φi‖L2(Hn), hence φi ∈ L2(Hn). In particular
φi ∈ L1

loc(Hn) and �i ∈ L1
loc(C(Hn)). Let ϕ ∈ C∞

0 (Hn). Then ϕ ◦ π ∈
C∞

0 (C(Hn)) (because S1 is compact) and∫
C(Hn)

�i�(ϕ ◦ π) dvol(Fθ0) = (by (15))

= −2
∫

C(Hn)

(φi Hϕ) ◦ π dvol(Fθ0) = −4π

∫
Hn

φi Hϕ θ0 ∧ (dθ0)
n

= −4π

∫
Hn

2n∑
a=1

(Xaφ
i )(Xaϕ) θ0 ∧ (dθ0)

n .

On the other hand∫
Hn

φi (X∗
αϕ)dx = −

∫
Hn

φi (Xαϕ)dx = − 1

2π

∫
C(Hn)

�i (Xαϕ) ◦ π dxdγ

= − 1

2π

∫
�i X̂α(ϕ ◦ π) dxdγ

= (as (∂/∂ua)∗ = −∂/∂ua)

= 1

2π

∫
�i
(

X̂a

)∗
(ϕ ◦ π) dxdγ = 1

2π

∫ (
X̂a�

i
)

(ϕ ◦ π) dxdγ .
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The notation dx (respectively dx dγ ) is short for θ0 ∧ (dθ0)
n (respectively, for

d vol(Fθ0)). Also, we set

X̂α := 1

2

∂

∂uα
+ uα+n ∂

∂u2n+1
, X̂α+n = 1

2

∂

∂uα+n
− uα ∂

∂u2n+1
.

The Jacobian of the right translation Rw with w ∈ S1 is the unit matrix, hence
for any ψ ∈ C∞

0 (C(Hn))∫ (
X̂a�

i
)

ψdxdγ = −
∫

�i X̂aψdxdγ = −
∫

(�i ◦ Rw)(X̂aψ) ◦ Rwdxdγ =
(as X̂a is right-invariant)

= −
∫ (

�i ◦ Rw

)
(x, γ )

(
(d(x,γ ) Rw)X̂a

)
(ψ)(x, γ ) =

(as �i is S1-invariant)

= −
∫

�i X̂a(ψ ◦ Rw)dxdγ =
∫

(X̂a�
i ) (ψ ◦ Rw) dxdγ

=
∫ (

(X̂a�
i ) ◦ Rw−1

)
ψ dx dγ ,

hence X̂a�
i = (X̂a�

i ) ◦ Rw−1 , i.e. there is an element of L2(Hn), which we
denote by Xaφ

i , such that

X̂a�
i = (Xaφ

i ) ◦ π .

We may conclude (by Fubini’s theorem) that∫
φi X∗

aϕ dx =
∫

(Xaφ
i ) ϕ dx ,

i.e. Xaφ
i is indeed the weak derivative of φi . The Lemma 2 is proved. At this

point we may establish the following

Theorem 3. Let φ : Hn → N be a map such that � := φ ◦ π satisfies weakly
the harmonic map system (17). Then φ is a weak solution to the subelliptic harmonic
map system (1).

Combining the regularity results in [9] and [14] with Theorem 3 we obtain
the following

Corollary 1. Let N be a Riemannian manifold of sectional curvature ≤ κ2,
for some κ > 0. Let � : C(Hn) → N be a bounded S1-invariant weak solution to
the harmonic map equation (17) such that �(C(Hn)) is contained in a regular(2)

ball of N . Then � is smooth.

(2)That is a ball B(p, ν) = {q ∈ N : dN (q, p) ≤ ν} such that ν < min{π/(2κ) , i(p)}, where
i(p) is the injectivity radius of p (cf. [9], p. 4644).
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Proof of Theorem 3. The statement follows from the preceding calculations
and the identity

(∣∣∣ i
jk

∣∣∣ ◦ �
) ∂� j

∂ua

∂�k

∂ub
Fab

θ0
=
(∣∣∣ i

jk

∣∣∣ ◦ �
){

2
2n∑

a=1

(X̂a�
j )(X̂a�

k)

+ (n + 2)

(
∂� j

∂γ

∂�k

∂u2n+1
+ ∂� j

∂u2n+1

∂�k

∂γ

)}

(itself a consequence of (13)) provided we show that ∂� j/∂γ = 0, as a distribu-
tion. Indeed, given ϕ ∈ C∞

0 (C(Hn)) set C := supC(Hn) |∂ϕ/∂γ |, � := supp(ϕ)

and �H = π(�). Then, given φ j
ν ∈ C∞

0 (Hn) such that φ j = L2-limν→∞ φ j
ν ,∣∣∣∣

∫
C(Hn)

(φ j
ν ◦ π)

∂ϕ

∂γ
dvol(Fθ0) −

∫
C(Hn)

(φ j ◦ π)
∂ϕ

∂γ
dvol(Fθ0)

∣∣∣∣
≤ 2π C V ol(�H )1/2 ‖φ j

ν − φ j‖L2(Hn)

hence (as (12) implies (∂/∂γ )∗ = −∂/∂γ )

∂� j

∂γ
(ϕ) = −

∫
C(Hn)

(φ j ◦ π)
∂ϕ

∂γ
dvol(Fθ0)

= − lim
ν→∞

∫
C(Hn)

(φ j
ν ◦ π)

∂ϕ

∂γ
dvol(Fθ0) = 0 ,

by Green’s lemma and div(∂/∂γ ) = 0, again as a consequence of (12).

Example 1 (continued). As shown in Section 3, as a consequence of
the hypoellipticity of the Hörmander operator together with the existence of
local harmonic coordinates on the target manifold, there is no notion of weak
subelliptic harmonic morphism (of course, this is true for harmonic morphisms
between Riemannian manifolds, as well). In the context of the Hörmander
system (4) we say a localizable map � : (C(�±), Fθ(k)) → (N , h) is a weak
harmonic morphism if, for any local harmonic function v : V → R on N
one has v ◦ � ∈ L1

loc(U), for any U ⊆ C(�±) open such that �(U) ⊂ V ,
and �(v ◦ �) = 0 in distributional sense. Then we may prove the following
regularity result (and converse of Proposition 1).

Proposition 2. If � : C(�±) → N is S1-invariant weak harmonic morphism
then the base map φ = �̃ : �± → N is a smooth subelliptic harmonic morphism
(in particular, � is smooth).

Let ϕ ∈ C∞
0 (�±). Then

0 = �(v ◦ �)(ϕ ◦ π) =
∫

C(�±)

(v ◦ �) �(ϕ ◦ π) dvol(Fθ(k)) =
(by (16) and Fubini’s theorem)

= −2π

k

∫
�±

(v ◦ φ)(x)x1−k
1 (Hϕ)(x) dx = −2π

k
H(x1−k

1 v ◦ φ)(ϕ) ,



394 ELISABETTA BARLETTA

i.e. H(x1−k
1 v ◦ φ) = 0 in distributional sense [here dx is short for θ(k) ∧

(dθ(k))n]. Hence there is f ∈ C∞(U ) such that v ◦ φ = xk−1
1 f , i.e. v ◦ φ is

smooth (here U ⊆ �± is any open set such that φ(U ) ⊂ V ). Then, again by
(16), H(v ◦ φ) = 0. Q.e.d.
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Università degli Studi della Basilicata
Dipartimento di Matematica
Contrada Macchia Romana
85100 Potenza, Italy
barletta@unibas.it


