On every reduced complex space we construct a family of complexes of soft sheaves ; each of them is a resolution of the constant sheaf and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of . The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.
@article{ASNSP_2003_5_2_1_119_0, author = {Ancona, Vincenzo and Gaveau, Bernard}, title = {Families of differential forms on complex spaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {119--150}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {1}, year = {2003}, mrnumber = {1990976}, zbl = {1170.35358}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2003_5_2_1_119_0/} }
TY - JOUR AU - Ancona, Vincenzo AU - Gaveau, Bernard TI - Families of differential forms on complex spaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 119 EP - 150 VL - 2 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2003_5_2_1_119_0/ LA - en ID - ASNSP_2003_5_2_1_119_0 ER -
%0 Journal Article %A Ancona, Vincenzo %A Gaveau, Bernard %T Families of differential forms on complex spaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 119-150 %V 2 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2003_5_2_1_119_0/ %G en %F ASNSP_2003_5_2_1_119_0
Ancona, Vincenzo; Gaveau, Bernard. Families of differential forms on complex spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 1, pp. 119-150. http://www.numdam.org/item/ASNSP_2003_5_2_1_119_0/
[A] “Building mixed Hodge structures, The arithmetic and geometry of algebraic cycles”, CRM Proc. Lecture Notes 24, Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
,[AG1] Le complexe de De Rham d'un espace analytique normal, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 577-581. | MR | Zbl
- ,[AG2] Intégrales de formes différentielles et théorèmes de De Rham sur un espace analytique, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 65-70. | MR | Zbl
- ,[AG3] Théorèmes de De Rham sur un espace analytique, Rev. Roumaine de Math. Pures appl. 38 (1993), 579-594. | MR | Zbl
- ,[AG4] The De Rham complex of a reduced complex space, In: “Contribution to complex analysis and analytic geometry”, H. Skoda and J. M. Trépreau (eds.), Vieweg, 1994. | MR | Zbl
- ,[AG5] Théorie de Hodge et complexe de De Rham holomorphe pour certains espaces analytiques, Bull. Sci. Math. 122 (1998), 163-201. | MR | Zbl
- ,[AG6] Suites spectrales, formes holomorphes et théorie de Hodge de certains espaces analytiques, “Proceedings of Coimbra conference on Partial differential equations and Mathematical Physics” J. Vaillant and J. Carvalho e Silva (eds.), Textos Mat. Ser. B, 24 (2000), 1-14. | Zbl
- ,[AG7] Differential forms, integration and Hodge theory on complex analytic spaces, Preprint 2001.
- ,[BH] De Rham cohomology of an analytic space, Invent. Math. 7 (1969), 275-296. | EuDML | MR | Zbl
- ,[C] Polyhedral resolutions of algebraic varieties, Trans. Amer. Math. Soc. 292 (1985), 595-612. | MR | Zbl
,[D] Théorie de Hodge II et III, Publ. Math. IHES 40 (1971), 5-58 et 44 (1974), 5-77. | Numdam | MR | Zbl
,[E] Mixed Hodge structures, Trans. Amer. Math. Soc. 275 (1983), 71-106. | MR | Zbl
,[GK] Deformationen von Singularitäten komplexer Räume, Math. Ann. 153 (1964), 236-260. | MR | Zbl
- ,[GNPP1] “Théorie de Hodge via schémas cubiques, Notes polycopiées”, Univ. Politecnica de Catalunya, 1982.
- - - ,[GNPP2] Hyperrésolutions cubiques et descente cohomologique, Lecture notes in Math. 1335, Springer, 1988. | Zbl
- - - ,[GS] Recent developments in Hodge theory: a discussion of techniques and results, “Proceedings of the International Colloquium on Discrete subgroups of Lie groups”, (Bombay, 1973), Oxford University Press, 1975. | MR | Zbl
- ,[L] Problème de Cauchy III, Bull. Soc. Math. France 87 (1959), 81-180. | Numdam | MR | Zbl
,[R] Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen, Math. Z. 101 (1964), 269-284. | MR | Zbl
,[S] Infinitesimal computations in topology, Publ. Math. IHES 47 (1977), 269-331. | Numdam | MR | Zbl
,