A Banach-space version of the Calderón-Zygmund theorem is presented and applied to obtaining apriori estimates for solutions of second-order parabolic equations in -spaces.
@article{ASNSP_2002_5_1_4_799_0, author = {Krylov, Nicolai V.}, title = {The {Calder\'on-Zygmund} theorem and parabolic equations in $L P (\mathbb {R}, C^{2+\alpha })$-spaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {799--820}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {4}, year = {2002}, mrnumber = {1991003}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2002_5_1_4_799_0/} }
TY - JOUR AU - Krylov, Nicolai V. TI - The Calderón-Zygmund theorem and parabolic equations in $L P (\mathbb {R}, C^{2+\alpha })$-spaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 799 EP - 820 VL - 1 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2002_5_1_4_799_0/ LA - en ID - ASNSP_2002_5_1_4_799_0 ER -
%0 Journal Article %A Krylov, Nicolai V. %T The Calderón-Zygmund theorem and parabolic equations in $L P (\mathbb {R}, C^{2+\alpha })$-spaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 799-820 %V 1 %N 4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2002_5_1_4_799_0/ %G en %F ASNSP_2002_5_1_4_799_0
Krylov, Nicolai V. The Calderón-Zygmund theorem and parabolic equations in $L P (\mathbb {R}, C^{2+\alpha })$-spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 4, pp. 799-820. http://www.numdam.org/item/ASNSP_2002_5_1_4_799_0/
[1] Interior Schauder estimates for parabolic differential- (or ) equations via the maximum principle, Israel J. Math. 7 (1969), 254-262. | MR | Zbl
,[2] A class of singular integrals, Amer. J. Math. 86 (1964), 441-462. | MR | Zbl
,[3] Parabolic interior Schauder estimates by the maximum principle, Arch. Rational Mech. Anal. 75 (1980), 51-58. | MR | Zbl
,[4] A parabolic Littlewood-Paley inequality with applications to parabolic equations, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 4 (1994), 355-364. | MR | Zbl
,[5] “Lectures on elliptic and parabolic equations in Hölder spaces”, Amer. Math. Soc., Providence, RI, 1996. | MR | Zbl
,[6] The heat equation in -spaces with weights, SIAM J. Math. Anal. 32 (2001), 117-1141. | MR | Zbl
,[7] On the Calderón-Zygmund theorem with applications to parabolic equations, Algebra i Analiz 13 (2001), 1-25, in Russian; English translation in St Petersburg Math. J. 13 (2002), 509-526. | MR | Zbl
,[8] Parabolic equations in -spaces with mixed norms, to appear in Algebra i Analiz. | Zbl
,[9] Optimal Schauder estimates for parabolic problems with data measurable with respect to time, SIAM J. Math. Anal. 32 (2000), 588-615. | MR | Zbl
,[10] An interpolation method to characterize domains of generators of semigroups, Semigroup Forum 53 (1996), 321-329. | EuDML | MR | Zbl
,[11] “Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals”, Princeton Univ. Press, Princeton, NJ, 1993. | MR | Zbl
,