Let be the realization () of a differential operator on with general boundary conditions (). Here is a homogeneous polynomial of order in complex variables that satisfies a suitable ellipticity condition, and for is a homogeneous polynomial of order ; it is assumed that the usual complementing condition is satisfied. We prove that is a sectorial operator with a bounded functional calculus.
@article{ASNSP_2002_5_1_3_487_0, author = {Dore, Giovanni and Venni, Alberto}, title = {$H^\infty $ functional calculus for an elliptic operator on a half-space with general boundary conditions}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {487--543}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {3}, year = {2002}, mrnumber = {1990671}, zbl = {1072.47014}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2002_5_1_3_487_0/} }
TY - JOUR AU - Dore, Giovanni AU - Venni, Alberto TI - $H^\infty $ functional calculus for an elliptic operator on a half-space with general boundary conditions JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 487 EP - 543 VL - 1 IS - 3 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2002_5_1_3_487_0/ LA - en ID - ASNSP_2002_5_1_3_487_0 ER -
%0 Journal Article %A Dore, Giovanni %A Venni, Alberto %T $H^\infty $ functional calculus for an elliptic operator on a half-space with general boundary conditions %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 487-543 %V 1 %N 3 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2002_5_1_3_487_0/ %G en %F ASNSP_2002_5_1_3_487_0
Dore, Giovanni; Venni, Alberto. $H^\infty $ functional calculus for an elliptic operator on a half-space with general boundary conditions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 3, pp. 487-543. http://www.numdam.org/item/ASNSP_2002_5_1_3_487_0/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623-727. | MR | Zbl
- - ,[2] Elliptic problems with a parameter and parabolic problems of general type, (Russian), Uspehi Mat. Nauk 19 n. 3 (1964), 53-161; translated in: Russian Math. Surveys 19 n. 3 (1964), 53-157. | MR | Zbl
- ,[3] Bounded -calculus for elliptic operators, Differential Integral Equations 7 (1994), 613-653. | MR | Zbl
- - ,[4] A. F. M. ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory 38 (1997), 87-130. | MR | Zbl
-[5] Banach space operators with a bounded functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), 51-89. | MR | Zbl
- - - ,[6] “Absolutely Summing Operators”, Cambridge Studies in Advanced Mathematics vol. 43, Cambridge University Press, Cambridge, 1995. | MR | Zbl
- - ,[7] On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189-201. | MR | Zbl
- ,[8] functional calculus for sectorial and bisectorial operators, preprint. | MR | Zbl
- ,[9] “Linear Operators. Part I”, Pure and Applied Mathematics vol. 7, Interscience Publishers, New York, 1958. | MR | Zbl
- ,[10] functional calculus of elliptic operators with coefficients on spaces of smooth domains, J. Austral. Math. Soc. Ser. A 48 (1990), 113-123. | MR | Zbl
,[11] functional calculus of second order elliptic partial differential operators on spaces, In: “Miniconference on Operators in Analysis (Sydney, 1989)”, I. Doust - B. Jefferies - C. Li - A. McIntosh (eds.), Proc. Centre Math. Anal. A.N.U. vol. 24, A.N.U., Canberra, 1990, pp. 91-102. | MR | Zbl
,[12] Functional calculi of second-order elliptic partial differential operators with bounded measurable coefficients, J. Geom. Anal. 6 (1996), 181-205. | MR | Zbl
- ,[13] Complex multiplicative perturbations of elliptic operators: heat kernel bounds and holomorphic functional calculus, Differential Integral Equations 12 (1999), 395-418. | MR | Zbl
- ,[14] -calculus for elliptic operators with nonsmooth coefficients, Differential Integral Equations 10 (1997), 201-217. | MR | Zbl
- ,[15] Discrete quadratic estimates and holomorphic functional calculi in Banach spaces, Bull. Austral. Math. Soc. 58 (1998), 271-290. | MR | Zbl
- ,[16] Abstract -estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal. 102 (1991), 72-94. | MR | Zbl
- ,[17] “Inequalities”, Cambridge University Press, Cambridge, 1934. | JFM | Zbl
- - ,[18] Functional calculi for linear operators in vector-valued -spaces via the transference principle, Adv. Differential Equations 3 (1998), 847-872. | MR | Zbl
- ,[19] The -calculus and sums of closed operators, Math. Ann. 321 (2001) 319-345. | MR | Zbl
- ,[20] A joint functional calculus for sectorial operators with commuting resolvents, Proc. London Math. Soc. (3) 77 (1998), 387-414. | MR | Zbl
- - ,[21] Heat kernel estimates and functional calculi of , Math. Scand. 87 (2000), 287-319. | MR | Zbl
- ,[22] On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), 429-452. | MR | Zbl
- ,[23] Imaginary powers of elliptic second order differential operators in -spaces, Hiroshima Math. J. 23 (1991), 161-192. | MR | Zbl
- ,[24] Complex powers of an elliptic operator, In: “Singular Integrals (Chicago, 1966)”, Proc. Simpos. Pure Math. vol. 10, American Mathematical Society, Providence, 1967, pp. 288-307. | MR | Zbl
,[25] The resolvent of an elliptic boundary problem, Amer. J. Math. 91 (1969), 889-920. | MR | Zbl
,[26] Norms and domains of the complex powers, Amer. J. Math. 93 (1971), 299-309. | MR | Zbl
,[27] Imaginary powers of second order differential operators and -Helmholtz decomposition in the infinite cylinder, Math. Ann. 311 (1998), 577-602. | MR | Zbl
- ,[28] On general boundary problems for systems which are elliptic in the sense of A. Douglis and L. Nirenberg. I, (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 665-706; translated in: Amer. Math. Soc. Transl. Ser. 2 56 (1966), 193-232. | MR | Zbl
,[29] On operator-valued Fourier multiplier theorems, preprint.
- ,[30] “Interpolation Theory, Function Spaces, Differential Operators”, North-Holland Mathematical Library vol. 18, North-Holland Publishing Co., Amsterdam, 1978. | MR | Zbl
,[31] Marcinkiewicz and Mihlin multiplier theorems, and R-boundedness, preprint. | MR | Zbl
,