Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 2, pp. 461-469.

Any Kähler metric on the ball which is strongly asymptotic to complex hyperbolic space and whose scalar curvature is no less than the one of the complex hyperbolic space must be isometrically biholomorphic to it. This result has been known for some time in odd complex dimension and we provide here a proof in even dimension.

Classification : 53C24, 53C27, 53C55, 58J60
@article{ASNSP_2002_5_1_2_461_0,
     author = {Boualem, Hassan and Herzlich, Marc},
     title = {Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {461--469},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 1},
     number = {2},
     year = {2002},
     mrnumber = {1991147},
     zbl = {1170.53308},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2002_5_1_2_461_0/}
}
TY  - JOUR
AU  - Boualem, Hassan
AU  - Herzlich, Marc
TI  - Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2002
SP  - 461
EP  - 469
VL  - 1
IS  - 2
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_2002_5_1_2_461_0/
LA  - en
ID  - ASNSP_2002_5_1_2_461_0
ER  - 
%0 Journal Article
%A Boualem, Hassan
%A Herzlich, Marc
%T Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2002
%P 461-469
%V 1
%N 2
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_2002_5_1_2_461_0/
%G en
%F ASNSP_2002_5_1_2_461_0
Boualem, Hassan; Herzlich, Marc. Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 2, pp. 461-469. http://www.numdam.org/item/ASNSP_2002_5_1_2_461_0/

[1] L. Andersson - M. Dahl, Scalar curvature rigidity for asymptotically locally hyperbolic manifolds, Ann. Global Anal. Geom. 16 (1998), 1-27. | MR | Zbl

[2] C. Bär, Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993), 509-521. | MR | Zbl

[3] A. L. Besse, “Einstein manifolds”, Ergeb. Math. Grenzgeb., Band 10, Springer, Berlin, 1981. | MR | Zbl

[4] O. Biquard, “Métriques d'Einstein asymptotiquement symétriques”, Astérisque, vol. 265, Soc. math. France, 2000. | Numdam | Zbl

[5] C. R. Graham - J. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991), 186-225. | MR | Zbl

[6] M. Herzlich, Scalar curvature and rigidity for odd-dimensional complex hyperbolic spaces, Math. Ann. 312 (1998), 641-657. | MR | Zbl

[7] K. D. Kirchberg, Killing spinors on Kähler manifolds, Ann. Global Anal. Geom. 11 (1993), 141-164. | MR | Zbl

[8] M. C. Leung, Pinching theorem on asymptotically hyperbolic spaces, Internat. J. Math. 4 (1993), 841-857. | MR | Zbl

[9] M. Min-Oo, Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math. Ann. 285 (1989), 527-539. | MR | Zbl

[10] A. Moroianu, La première valeur propre de l'opérateur de Dirac sur les variétés kähleriennes compactes, Comm. Math. Phys. 169 (1995), 373-384. | MR | Zbl

[11] A. Moroianu, S pin c manifolds and complex contact structures, Comm. Math. Phys. 193 (1998), 661-674. | MR | Zbl