Let be a holomorphic map from to defined in a neighborhood of zero such that If the jacobian determinant of is not identically zero, P. M. Eakin and G. A. Harris proved the following result: any formal power series such that is analytic is itself analytic. If the jacobian determinant of is identically zero, they proved that the previous conclusion is no more true. J. Chaumat and A.-M. Chollet extended this result in the case of formal power series satisfying growth conditions, of Gevrey type for instance. The author gets similar results when the map is no more holomorphic. The loss of regularity on is optimal.
@article{ASNSP_2002_5_1_1_73_0, author = {Mouze, Augustin}, title = {Sur la composition de s\'eries formelles \`a croissance contr\^ol\'ee}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {73--92}, publisher = {Scuola normale superiore}, volume = {5e s{\'e}rie, 1}, number = {1}, year = {2002}, mrnumber = {1994802}, language = {fr}, url = {http://www.numdam.org/item/ASNSP_2002_5_1_1_73_0/} }
TY - JOUR AU - Mouze, Augustin TI - Sur la composition de séries formelles à croissance contrôlée JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 73 EP - 92 VL - 1 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2002_5_1_1_73_0/ LA - fr ID - ASNSP_2002_5_1_1_73_0 ER -
%0 Journal Article %A Mouze, Augustin %T Sur la composition de séries formelles à croissance contrôlée %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 73-92 %V 1 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2002_5_1_1_73_0/ %G fr %F ASNSP_2002_5_1_1_73_0
Mouze, Augustin. Sur la composition de séries formelles à croissance contrôlée. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 1, pp. 73-92. http://www.numdam.org/item/ASNSP_2002_5_1_1_73_0/
[1] Control of radii of convergence and extension of subanalytic functions, Preprint, University of Toronto (2001). | MR | Zbl
,[2] Geometric and differential properties of subanalytic sets, Ann. of Math. 147 (1998), 731-785. | MR | Zbl
- ,[3] Propriétés de l'intersection des classes de Gevrey et de certaines autres classes, Bull. Sci. Math. 122 (1998), 455-485. | MR | Zbl
- ,[4] On composite formal power series, Trans. Amer. Math. Soc. 353 (2001), 1691-1703. | MR | Zbl
- ,[5] When convergent implies is convergent, Math. Ann. 229 (1977), 201-210. | MR | Zbl
- ,[6] Formal Relations Between Analytic Functions, Math. USSR-Iz. 7 (1973), 1056-1088. | MR | Zbl
,[7] Fonctions composées différentiables, Ann. of Math. (1963), 193-209. | MR | Zbl
,[8] Sur le théorème de Maillet, Asymptotic Anal. 2 (1989), 1-4. | MR | Zbl
,[9] Un théorème d'Artin pour des anneaux de séries formelles à croissance contrôlée, C. R. Acad. Sci. (Paris) 330 (2000), 15-20. | MR | Zbl
,[10] Anneaux de séries formelles à croissance contrôlée, Thèse, Université de Lille, juin 2000.
,[11] Fonctions composées analytiques et différentiables, C. R. Acad. Sci. (Paris) 282 (1976), 1237-1240. | MR | Zbl
- ,[12] Sur les fonctions composées ultradifférentiables, J. Math. Pures Appl. (1997), 499-524. | MR | Zbl
,[13] “Idéaux de fonctions différentiables”, Springer Verlag, Berlin (1972). | MR | Zbl
,