Let be a closed semialgebraic subset of euclidean space of codimension at least one, and containing the origin as a non-isolated point. We prove that, for every real , there exists an algebraic set which approximates to order at . The special case generalizes the result of the authors that every semialgebraic cone of codimension at least one is the tangent cone of an algebraic set.
@article{ASNSP_2002_5_1_1_1_0, author = {Ferrarotti, Massimo and Fortuna, Elisabetta and Wilson, Les}, title = {Local approximation of semialgebraic sets}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {1--11}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {1}, year = {2002}, mrnumber = {1994799}, zbl = {1051.14065}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2002_5_1_1_1_0/} }
TY - JOUR AU - Ferrarotti, Massimo AU - Fortuna, Elisabetta AU - Wilson, Les TI - Local approximation of semialgebraic sets JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 1 EP - 11 VL - 1 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2002_5_1_1_1_0/ LA - en ID - ASNSP_2002_5_1_1_1_0 ER -
%0 Journal Article %A Ferrarotti, Massimo %A Fortuna, Elisabetta %A Wilson, Les %T Local approximation of semialgebraic sets %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 1-11 %V 1 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2002_5_1_1_1_0/ %G en %F ASNSP_2002_5_1_1_1_0
Ferrarotti, Massimo; Fortuna, Elisabetta; Wilson, Les. Local approximation of semialgebraic sets. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 1, pp. 1-11. http://www.numdam.org/item/ASNSP_2002_5_1_1_1_0/
[B-C-R] “Géométrie algébrique réelle”, Springer-Verlag, 1987. | MR | Zbl
- - ,[B1] Families of semialgebraic sets and limits, In: “Real Algebraic Geometry” (Rennes 1991), M. Coste - L. Mahé - M.-F. Roy (eds.), Lecture Notes in Math., 1524, Springer-Verlag, Berlin, 1992, pp. 145-162. | MR | Zbl
,[B2] On the reduction of semialgebraic sets by real valuations, in: “Recent advances in real algebraic geometry and quadratic forms”, Contemp. Math., 155, Amer. Math. Soc., Providence, RI, 1994, pp. 75-95. | MR | Zbl
,[F-F-W] Real algebraic varieties with prescribed tangent cones, Pacific J. Math. 194 (2000), 315-323. | MR | Zbl
- - ,[K-R] Densité des ensembles sous-analytiques, Ann. Inst. Fourier (Grenoble) 39 (1989), 753-771. | Numdam | MR | Zbl
- ,