@article{ASNSP_2001_4_30_2_269_0, author = {Birindelli, Isabeau and Prajapat, Jyotshana}, title = {One dimensional symmetry in the {Heisenberg} group}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {269--284}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 30}, number = {2}, year = {2001}, mrnumber = {1895712}, zbl = {1014.35019}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2001_4_30_2_269_0/} }
TY - JOUR AU - Birindelli, Isabeau AU - Prajapat, Jyotshana TI - One dimensional symmetry in the Heisenberg group JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2001 SP - 269 EP - 284 VL - 30 IS - 2 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2001_4_30_2_269_0/ LA - en ID - ASNSP_2001_4_30_2_269_0 ER -
%0 Journal Article %A Birindelli, Isabeau %A Prajapat, Jyotshana %T One dimensional symmetry in the Heisenberg group %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2001 %P 269-284 %V 30 %N 2 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2001_4_30_2_269_0/ %G en %F ASNSP_2001_4_30_2_269_0
Birindelli, Isabeau; Prajapat, Jyotshana. One dimensional symmetry in the Heisenberg group. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 30 (2001) no. 2, pp. 269-284. http://www.numdam.org/item/ASNSP_2001_4_30_2_269_0/
[1] Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000), 725-739. | MR | Zbl
- ,[2] The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math. 53 (2000), 1007-1038. | MR | Zbl
- - ,[3] Monotonicity for elliptic equations in unbounded domains, Comm. Pure Appl. Math. 50 (1997), 1088-1111. | MR | Zbl
- - ,[4] One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J. 103 (2000), 375-396. | MR | Zbl
- - ,[5] On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. 22 (1991), 1-37. | MR | Zbl
- ,[6] The principal eigenvalue and maximum principle for second order elliptic operator in general domains, Comm. Pure Appl. Math. (1994), 47-92. | MR | Zbl
- - ,[7] Hopf's lemma and anti-maximum principle in general domains, J. Differential Equations 119 (1995), 450-472. | MR | Zbl
,[8] Superharmonic functions in the Heisenberg group: estimates and Liouville theorems, to appear in NoDEA. | MR | Zbl
,[9] Nonlinear Liouville theorems in the Heisenberg group via the moving plane method, Comm. Partial Differential Equations 24 (1999), 1875-1890. | MR | Zbl
- ,[10] Monotonicity results for nilpotent stratified groups, Pacific J. Math., to appear. | MR
- ,[11] Symmetry for solutions of semilinear elliptic equations in RN and related conjectures, Ricerche di Matematica 48 (1999), 129-154. | MR | Zbl
,[12] Convergence problems for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis (Rome 1978), Pitagora (ed.), Bologna (1979), pp. 131-188. | MR | Zbl
,[13] On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998), 481-491. | MR | Zbl
- ,[14] Boundary regularity in the Dirichlet problem for □b on CR manifolds, Comm. Pure Appl. Math. 36 (1983), 143-181. | Zbl
,[15] The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523. | MR | Zbl
,[16] A. Sánchez-Calle, Subelliptic, second order differential operators, Complex analysis, III (College Park, Md., 1985-86), 46-77, Lecture Notes in Math., 1277, Springer, Berlin-New York, 1987. | MR | Zbl
,[17] Non coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443-492. | MR | Zbl
- ,[18] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals", Princeton Mathematical Series, 43, 1993. | MR | Zbl
, "[19] Analysis and geometry on groups, Cambridge tracts in Mathematics 100", Cambridge University Press, 1992. | MR | Zbl
- - , "