@article{ASNSP_2000_4_29_3_531_0, author = {Sychev, Mikhail A.}, title = {Characterization of homogeneous gradient young measures in case of arbitrary integrands}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {531--548}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 29}, number = {3}, year = {2000}, mrnumber = {1817708}, zbl = {1067.49009}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2000_4_29_3_531_0/} }
TY - JOUR AU - Sychev, Mikhail A. TI - Characterization of homogeneous gradient young measures in case of arbitrary integrands JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2000 SP - 531 EP - 548 VL - 29 IS - 3 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2000_4_29_3_531_0/ LA - en ID - ASNSP_2000_4_29_3_531_0 ER -
%0 Journal Article %A Sychev, Mikhail A. %T Characterization of homogeneous gradient young measures in case of arbitrary integrands %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2000 %P 531-548 %V 29 %N 3 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2000_4_29_3_531_0/ %G en %F ASNSP_2000_4_29_3_531_0
Sychev, Mikhail A. Characterization of homogeneous gradient young measures in case of arbitrary integrands. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 29 (2000) no. 3, pp. 531-548. http://www.numdam.org/item/ASNSP_2000_4_29_3_531_0/
[AF] Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145. | MR | Zbl
- ,[Ba] A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), 570-598. | MR | Zbl
,[B1] A version of the fundamental theorem for Young measures, In: "PDE's and Continuum Models of Phase Transitions", M. Rascle - D. Serre - M. Slemrod (eds.), Lecture Notes in Physics, Vol. 344, Springer-Verlag, 1989, pp. 207-215. | MR | Zbl
,[B2] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1978), 337-403. | MR | Zbl
,[B3] Review of "Nonlinear problems of elasticity" by Bull., AMS 3 (1996), 269-276.
,[BL] Intégrandes normales et mesures paramétrées en calcul des variations, Bull. Soc. Math. France 101 (1973), 129-184. | EuDML | Numdam | MR | Zbl
- ,[BM] W1,p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984), 225-253. | MR | Zbl
- ,[Bu] Lower Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations", Pitman Res. Notes Math. Ser. 207, 1989. | MR | Zbl
, "[C] Mathematical Elasticity", Vol.I: "Three-Dimensional Elasticity", North-Holland, 1988. | MR | Zbl
, "[D] Direct Methods in the Calculus of Variations ", Springer-Verlag, 1989. | MR | Zbl
, "[ET] Convex analysis and variational problems ", North-Holland, 1976. | MR | Zbl
- , "[FM] Relaxation of Multiple Integrals in Sobolev Spaces Below the Growth Exponent for the Energy Density, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 309-338. | Numdam | MR | Zbl
- ,[JS] Remarks on W1,p-quasiconvexity, interpenetration of matter and function spaces for elasticity, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 263-280. | Numdam | MR | Zbl
- ,[KP1] Characterization of Young measures generated by gradients, Arch. Rational Mech. Anal. 115 (1991), 329-365. | MR | Zbl
- ,[KP2] Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal. 23 (1992), 1-19. | MR | Zbl
- ,[KP3] Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. 4 (1994), 59-90. | MR | Zbl
- ,[Kr] Finite functionals and Young measures generated by gradients of Sobolev functions, Ph.D. Thesis, Technical University of Denmark, Kyngby, August 1994.
,[M] Weak lower semicontinuity of polyconvex integrals, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 681-691. | MR | Zbl
,[MQY] On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 217-243. | Numdam | MR | Zbl
- - ,[Sa] "Theory of the integral", Hafner, New York, 1937. | Zbl
,[S1] Young measure approach to characterization of behavior of integral functionals on weakly convergent sequences by means of their integrands, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 755-782. | Numdam | MR | Zbl
,[S2] A new approach to Young measure theory, relaxation and convergence in energy, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), 773-812. | Numdam | MR | Zbl
,[S3] Young measures as measurable functions, (in preparation).
,[S4] Existence and relaxation results in special classes of deformations, Preprint No 17, Max-Planck-Institute for Mathematics in Sciences, Leipzig, February 2000. | MR
,[Sv1] New examples of quasiconvex functions, Arch. Rational Mech. Anal. 119 (1992), 293-300. | MR | Zbl
,[Sv2] On Tartar's conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 405-412. | Numdam | MR | Zbl
,[Sv3] Regularity properties of deformations with finite energy, Arch. Rational Mech. Anal. 100 (1988), 105-127. | MR | Zbl
,[T1] Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Pitman Res. Notes Math. Ser. 39, 1979, pp. 136-212. | MR | Zbl
,[T2] The compensated compactness method applied to systems of conservations laws, in Systems of Nonlinear Partial Differential Equations, J. M. Ball (ed.), NATO ASI Series, Vol. CIII, Reidel, 1982. | MR | Zbl
,[Y] Lectures on the Calculus of Variations and Optimal Control Theory", Saunders, 1969 (reprinted by Chelsea 1980). | MR | Zbl
, "