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Integrable Systems and Projective Images
of Kummer Surfaces
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Abstract. The (-1 )-involution on the Jacobian Jr of an arbitrary Riemann surface
r of genus two leads to a singular surface, the Kummer surface Icr of Jr, which,

after desingularization, defines a X-3 surface Kr . We consider ample line bundles
on Kr coming from the even or odd sections of [n O] with prescribed vanishing
at the 2-division points of Jr (0 is the theta divisor of Jr). We use an integrable
system to show that in the cases we study the linear system is base-point-free,
to determine which curves are contracted to singular points and to compute an
explicit equation for the surface in projective space. Our explicit methods apply
to the Kummer surface of any Abelian surface, given as the fiber of the moment
map of an algebraic completely integrable system.
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1. - Introduction

When studying quartic surfaces in three-space with sixteen nodes, Kummer
discovered a very beautiful geometry, relating such a surface on the one hand
to the Jacobian of a hyperelliptic curve (of genus two) and on the other hand
to the singular surface of a quadratic complex (for a modem account of this,
see [10, Chapter 6]). These singular surfaces, which form a three-dimensional
family, are called (singular) Kummer surfaces. They reappeared recently in
the compactification of the moduli space of stable rank two bundles (of fixed
determinant) on a Riemann surface (see [20]) and as the singular locus of a
natural Poisson structure on a moduli space of flat SU(2) connections on a
Riemann surface (see [13]).

The easiest way to obtain abstractly the Kummer surface Kr which is asso-
ciated to a compact Riemann surface r of genus two is as the singular quotient
Jr /(- I) of the Jacobian Jr of r by the -x (recall that
Jr is a two-dimensional complex torus). As such the Kummer surface has an
obvious generalization to other Jacobians (i.e., to Riemann surfaces of higher
genus) and to other complex algebraic tori (Abelian varieties) (see [16, Section
4.8]). To obtain the Kummer surface concretely, i.e., as an algebraic surface in
projective space, one considers the image of the regular map

yielding a quartic surface in p3; the divisor 0 which appears in this map is
the divisor of Riemann’s theta function, and the 2 : 1 map assigns to any
point P E Jr the hyperplane of sections of the line bundle [20] that vanish
at P. For higher dimensional Jacobians the image of also provides a
projective image of its Kummer varieties (see [16, Section 4.8]), but for other
Abelian varieties, even for Abelian surfaces, the situation is more complicated
(see [6]). Getting explicit equations for Kummer surfaces is still a different
matter and relies in all situations that have been considered on arguments that

depend heavily on the specific geometry of the Kummer surface at hand (for
higher dimensional Kummer varieties no such equations are known at present).
One classical computation of the equation of the Kummer surface Kr as a

surface in p3 for example relies on the symmetries of the level two Heisenberg
group (a central extension of the group of half periods (2-division points) of ~r )
(see [12, Chapter 8]); it is not clear how to adapt this approach to other Kummer
surfaces. The other classical computation relies on the above mentioned fact that
the minimal resolution of ICr is the singular surface of the quadratic complex
(see [14, Sect. 82]) and is thus even more dependent on the specifics of the
geometric situation.

The purpose of this paper is to show how equations for projective images of
Kummer surfaces can be obtained in a systematic way. Although our techniques
are valid for other Abelian varieties, we will restrict ourselves here to Kummer
surfaces of two-dimensional Jacobians, but we will consider besides the classical
Kummer surface in p3 also other, less singular, projective models in p3, p4,
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and P . Abstractly, these Kummer surfaces are obtained by desingularizing Icr at
some but not all of its singular points: note that on any Abelian surface the (-1 )-
involution has sixteen fixed points, hence the quotient /Cr has sixteen singular
points. The desingularization of Kr is a I~-3 surface which is denoted by
iCr, and the partial desingularizations are called intermediate Kummer surfaces.
Concretely, as algebraic surfaces in projective space, the K-3 surface and the
intermediate Kummer surfaces are obtained by constructing line bundles on the
(abstract) K-3 surface iCr. We construct such line bundles as follows. Let

be the blow-up of ,7r at its sixteen half periods. The (- I) -involution on

Jr induces an involution on ,7r which leads to a non-singular quotient 7r :

Kr. We pick a symmetric line bundle ,C on Jr and denote the line
bundle on ~r by l. For any v = (Vi)i=l,...,16 we consider the space Illt
(resp. 1,Elv ) of even (resp. odd) sections of £ which vanish at least vi times
at the exceptional divisor Ei which lies over the half period ei. These linear

systems descend to complete linear systems IM+i [ (resp. on kf-. Using
standard algebraic geometric arguments we will determine the dimension of such
linear systems (Proposition 3.2), i.e., the dimension of the target space of the
map

The main focus of the paper is then on studying the map 0.± and on obtainingv

explicit equations for the image of this map. We do this by using an algebraic
completely integrable system (a.c.i. system) whose fibers of the (complex) mo-
ment map are affine parts of genus two Jacobians. Our methods do not depend
on the particular a.c.i. system that we use and can hence be used to compute
explicit equations for other Kummer varieties, as long as the corresponding
Abelian varieties appear as the fiber of the moment map of some a.c.i. system.
Let us explain shortly the role of this deus ex machina (for more information,
see [3] or [28]). It was observed by Kowalewski that an a.c.i. system on an
n-dimensional space M must have one or several families of Laurent solutions

depending on n - 1 free parameters. A careful analysis shows that each such
family corresponds to an irreducible component Di of the divisor D to be
adjoined to a generic fiber it-’(c) of the moment map

(A is the algebra of first integrals of the a.c.i. system; D depends on c) in order
to complete it into an Abelian variety. Moreover, for any function f on M the
restriction of f to this fiber has a pole along Di which equals the pole
of the Laurent series of f, as computed from the family Since (the first few
terms of) the Laurent solutions of an a.c.i. system can be effectively computed,
we have an effective way to compute a basis for the meromorphic functions
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having prescribed poles at a given divisor and hence an effective way to compute
explicitly the sections of any of the line bundles ,C = [E ni Di 1. Since the (-1)-
involution reverses the signs of all the integrable vector fields of the a.c.i. system
the splitting in even and odd sections can also be determined explicitly. Finally,
having these sections at hand one expresses easily the condition that a section has
a prescribed vanishing at some of the half periods. Summarizing, starting from
an a.c.i. system which has a given Jacobian Jr (or, more generally, an Abelian
variety) as one of its fibers, we can find an explicit basis for HO - 
and hence also explicit formulas for the (non-linear) relations which hold be-
tween those sections, i.e., for the equations that define the projective image

. of /Cr.
The integrable system comes in handy for many other things. We use it for

example to determine the base locus of the linear system under consideration: in
the cases of interest to us, this base locus will be shown to be empty, showing
that our maps ~~ v are regular maps. Moreover we can use it to determine

which divisors are contracted: in our case the only possible contractions will be
divisors on /Cr which correspond to translates of the theta divisor (theta curves)
or to the exceptional divisors Ei. Our arguments have the advantage that they
consist of an algebraic computation only, in contrast with the more geometric
arguments, which are specific to the particular class of Abelian surfaces and to
the linear system under consideration.

Finally, using the explicit sections we can compute the coordinates of the
singular points of the image, which allows us to rewrite the equation(s) of
the embedded intermediate Kummer surface in a very symmetric form. In

those cases in which no vanishing at the half periods is prescribed we will
also provide an equation whose coefficients are explicitly expressed in terms of
the coefficients of the curve, defining the Riemann surface r; from the point
of view of number theory such equations are more useful than equations that
depend on the coordinates of the Weierstrass points of the surface. As far as
we know such equations for Kummer surfaces do not appear in the classical
or modem literature. When rewritten in a more symmetric form, depending
on the coordinates of the Weierstrass points, we recover in some cases known
equations and otherwise new equations for projective images of /Cr. In the

following table we summarize some geometric information about the projective
images that we consider.

Table 1
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The meaning of the first three columns is clear. In the fourth column,

.~1~( v ) * . The first number appearing in the sum in column
five is the number of exceptional curves that get contracted while the second
number is the number of theta curves that get contracted. The sum in column
five is the total number of irreducible divisors that get contracted. In the
last two columns we give a reference to the equations for the image of the
Kummer surface in the first equation being the one that does not involve
the coordinates of the Weierstrass points explicitly, while the second equation is
more symmetric but does depend on the coordinates of the Weierstrass points.
Equations (25) and (36) appear already in [14] but all other equations are new.
Using a related integrable system the second author has, in collaboration with
Jos6 Bertin, obtained equations for a one-dimensional family of generalized
Kummer surfaces in P~ (see [9]).

ACKNOWLEDGEMENTS. The first author wishes to thank the Université Catho-

lique de Louvain for its hospitality. The second author would like to thank
Jos6 Bertin for drawing his attention to the classical paper [23] by Remy and
is grateful to Francesco Bottacin for useful discussions; he also acknowledges
the Universidad Nacional del Sur in Bahia Blanca for its hospitality.

2. - Abelian and K -3 surfaces

In this section we consider some basic facts about complex Abelian surfaces
and K-3 surfaces. These surfaces are nonsingular and their canonical bundles
are trivial. For any surface X we will write Ox for its structure sheaf and Kx
for its canonical divisor. When X is non-singular then the line bundle £

(invertible sheaf) which corresponds to a divisor D will be denoted by [D] and
the dimension of the i -th cohomology group H‘ (X, ,C) is written as h‘ (,C) or
hi (D). When D is effective we denote its complete linear system [D])
by for ,C = [D] we also write 1,Cl for An effective reduced divisor
on X will be called a curve on X. Linear equivalence of divisors is denoted

by -.
For an Abelian or K-3 surface X the birational invariants are summarized

in the following table.

Table 2
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We will use line bundles on Abelian and K-3 surfaces to construct images
of Kummer surfaces and I~-3 surfaces in projective space. Recall that to a line
bundle ,C = [D] there is associated a holomorphic map

which assigns to any point P (which is not in the base locus of ,C) the
space of sections of ,C that vanish at P. We call £ (and D) very ample when q5
is an embedding and = 0. If some positive power of £ (multiple of D)
provides an embedding then we call £ (or D) ample. Explicitly, if (so, ... , SN)
denotes a basis of £) then OL is given for P E X B B(£) by

Let us assume that B(£) = 0 and that the image of OL is a surface. Then, by
Bertini’s first theorem (see [26, p. 21]), the general member of 1£1 is irreducible
and smooth. If q5L contracts a curve C is a point p), then £ . C = 0
since we can choose a curve D’ E 1,C I I such that avoids the

point p. By Bertini’s second theorem ([26, p. 24]) such a curve is smooth and
it is clear that D’ does not intersect C. However, if C is not contracted then
D . C is the degree of in C) *, multiplied by the degree of ~,~ .

The adjunction formula for nonsingular curves on a surface implies that
the (virtual) genus of a curve C on an Abelian or K-3 surface is given by
g (C) = C2 /2 + 1. On the other hand, the Riemann-Roch formula

simplifies for a curve C on an Abelian or 1~ -3 surface to

because Kx = 0 and the Euler characteristic of [C] is given by X (C) _
h°(C) - h 1 (C) + h°(Kx - C) = h°(C) - h 1 (C). In classical terminology h 1 (C)
is called the superabundance of C and is computed by using a theorem by
Kodaira (see [15, Theorems 2.2 and 2.3]).

THEOREM 2.1. Let m be the number of connected components ofa curve C on a
surface X. Then h 1 (K + C) = m - I + k, where the integer k denotes the dimension
of the kernel of the homomorphism

In the case in which X is K-3 we have from Table 2 that q (X) = h = 0

so that k = 0 and = m - 1, leading to the final formula

In this case conditions for an ample line bundle to lead to a birational map
were given by Saint-Donat (see [25, Theorem 5.2]).
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THEOREM 2.2. Let L be a line bundle on a K-3 surface X such that 4. If
the linear system 1£1 I = PHO (X, L) has no fixed components then L = [C] for an
irreducible curve C of genus g(C) = L 2/2 + 1 and the map

is regular. Moreover, 0 is birational unless X contains an irreducible curve C’ such
that g (C’) = 1 and C’ . C = 2 or such that g (C’) = 2 and C - 2C’.

The following result, which is also due to Saint-Donat (see [25, Theo-
rems 6.1 and 7.2]), gives some information about the equations which define
the image.

THEOREM 2.3. Let f- = [C] be a line bundle on a K-3 surface which satisfies
the conditions of Theorem 2.2, excluding the exceptional cases, i. e., ~ is birational.
Then the natural map

is surjective. If L2 = 4 then the kernel of 1/1 is generated by an element of degree
four while if L2 = 6 it is generated by a pair of elements of degrees two and three.
If £2 ~ 8 then the kernel of 1/1 is generated by its elements of degree two unless X
contains an irreducible curve C’ such that g (C’) = 1 and C’ . C = 3 or X contains
a pair of irreducible curves C’, C" such that g(C’) = 2, g(C") = 0, C’ . C" = 1
and C - 2C’ + C"..

3. - Projective images of Kummer surfaces

A natural class of K-3 surfaces appears as follows. Let A be an Abelian
surface. The (- I)-involution on A (reflection with respect to the origin), which
will be denoted by ( -1 ) A , leads to a singular quotient K A = A / (-1 ) A which
is called the (singular) Kummer surface of A. It has sixteen singular points
which correspond to the half periods e 1, ... , e 16 of A. The desingularization
of ICA can be described as follows. Let p : A ~ A be the blow-up of A at
all its half periods and denote the corresponding exceptional divisors by Ei.
( -1 ) A extends to an involution ( -1 ) A on X and the quotient - = 
is a K-3 surface (see [8, Proposition VIII.11 ]). kA is the desingularisation
(minimal resolution) of KA and we have the following commutative diagram.
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Associated to A there are also several intermediate Kummer surfaces which are
desingularizations of KA at some but not all singular points.

We will be interested in projective embeddings of smooth, singular and
intermediate Kummer surfaces. Therefore. we need to know how to construct

ample line bundles on iCA. Let ,C be a symmetric line bundle on A, (-1):4£ ~ L.
Then (-1 ) A lifts uniquely to an involution (-1 ) ~ on the total space of C which
is C-linear on the fibers of £ and which is identity on the fiber over the origin
of A (see [16, Lemma 4.6.3]). Since the involution which (-1)~ induces on
the fiber over each half period is linear it is either identity or multiplication by
-1. If it is identity the corresponding half period is called even, otherwise it is
called odd; in particular the origin is always an even half period. The induced
involution s ~ (-I)cs(-I)A on HO(A,L) leads to a splitting of HO(A,L)
into (~--1 ) and ( -1 ) spaces, whose elements are called even sections and odd

sections,

Everything can be pulled back using p : we have a line bundle E = 
on A with an induced involution (-1) ’£ and an induced splitting of 
clearly p* realizes isomorphisms between the even resp. odd sections of land
those of ,C. Most importantly, these even and odd sections of L correspond to
the sections of two line bundles on the rank two sheaf 1r*L splits under
the action s - (20131)~(20131)~ into (-f-1 ) and ( -1 ) spaces

and there are isomorphisms [6, Proposition 1.1]

So, we can realize odd (even) sections of ,C on the Abelian variety A as sections
of .~t - (./1~1+) on the smooth Kummer surface The above construction can
be generalized by defining for any vector v = (Vi,..., Vi6) E N16 the line

bundle Lv by

We think of sections of lv as sections of £ with prescribed vanishing at the
half periods ei. The involution (-1)~v on the total space of lv is defined as

the tensor of (-1)~ with the identity on each [Ei ]. Thus, splits under the
action cp(s) = into (-~ 1 ) and (-1 ) line bundles on ic-A, which
we denote by and 

°

When working out concrete examples it is useful to know in advance the

dimension of to know whether the map to projective space, given
by the sections, is birational and whether some divisors (exceptional or not) are
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contracted by this map. Since the symmetric line bundles L which we will
consider come from explicitly given divisors, we will state the result in the

language of divisors. A divisor (or curve) D on A is called symmetric if

(-I)xD = D. The line bundle of a symmetric divisor is symmetric and the
even and odd sections of a symmetric line bundle are symmetric divisors ([16,
Lemma 4.7.1]); therefore, working with symmetric divisors is just as general as
working with symmetric line bundles. We will call a symmetric divisor even or
odd according to whether it is defined by an even or odd section. It is easy to
see that an even (resp. odd) divisor D has even (resp. odd) multiplicity precisely
at the even half periods (in particular at the origin). We denote the multiplicity
of D at the half period ei by [ti (D). Let us fix a symmetric curve D on A for
which [D] =.c. By passing to a linearly equivalent divisor (if necessary) we
may assume that D is such that the chosen numbers vi satisfy vi  for

any i, because if a divisor with the required vanishing at the half periods does
not exist, then lv has no sections and is not of interest for our purposes. As
we will show in the next proposition the divisor p* D - ~i 61 vl Ei is symmetric
if and only if the multiplicities vi are either all even or all odd; we will say
in these cases that v is even or odd. If we denote the proper transform of D

by D then p* D = D + E iti (D) Ei so that

where Bi = 7r,, Ei and pi is defined by pi = vi if is even, and

+ 1 if JLi (D) - Vi is odd (i = 1, ... , 16). The curves Bi are called

(-2)-curves because

PROPOSITION 3.1. Suppose that D E ~,C~ be symmetric, let v E be even or
odd and let the curve C on be defined by (3). Then [C] = Mt if D and v have
the same parity, otherwise [C] = M V-.

PROOF. Let s resp. s* be sections that vanish at D’ = b + E16 (D) -
vi) Ei resp. at p* D = b + iti (D) Ei. We choose a local defining equation
xi for Ei. Using the fact that xi (-1 ) A = -xl and that locally the two sections
are related by s = s * /xi l we find

(1&#x3E;Notice that since D is symmetric each irreducible component of its direct image x* 6 appears
an even number of times.
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where +/- corresponds to s* even/odd. This implies that s is symmetric if
and only if v is even or odd, and it shows how the parity of s is related to
the parity of s* (i.e., of D) and of v. We want to see how s descends to the
Kummer surface Let us assume that s is an even section, s E £v)+,
so that 1 /s locally generates the -module M +; v a proof for an odd section
goes along similar lines.

The canonical - leads, by taking a direct limit over

neighbourhoods of q E A, to a map

and induces an isomorphism where G is the group generatedKA A

by (-1)A ([19, page 66]). Away from the ramification locus of 7r, which
. 

A 
consists of the set of exceptional curves Ei, the map is an isomorphism.
Therefore, if q E A does not belong to an exceptional curve then xq sends the
local equation of C to the equation s = 0 of D’. It remains to be shown that
this is also true when q belongs to an exceptional curve. Let q be a point in Ei ;
we may assume that q does not belong to any other Ej. If we denote a local

defining equation for Ei by xi, as before, and we consider a coordinate system
(xi, t), then (u = x2, t) is a coordinate system around 7r(q) and the map nq is
the immersion C[[u, t]] = cC [ [x 2 , t]] -~ C[[x, t]]. An equation for D’ about the
point q is given by s = f (x , t ) = Xmi g(x, t), where g is a local equation for
the proper transform D and mi = Ai (D) - vi. The local section g is even ([6,
Proposition 1.2]), so that g(x, t) = g(x2, t), and

Since s is an even section the above equation shows that ei is an even half period
precisely if mi is even. Now, Ilf is a generator of the Cq and
the linear map 0 splits the rank two OK A -module lq into spaces 

Then, for this generator 

It follows that if ei is an even half period then 1 / f is a generator of Mt
around q ; otherwise is generated by xi If around q. In the first case an

equation for a divisor on corresponding to the line bundle is given by
f (xi , t) = t) = t) = 0. In the second case such an equation
is given by t)/xi - x2k+lg(X?, ukg(u, t) = 0. In both cases this

gives a local equation (around q E Ei ) for the divisor C, given by (3). 0

In the following proposition we use Kodaira’s Theorem to compute h°(C).
We also compute the intersection of C with other curves (in particular the
(-2)-curves) because this allows us to determine which curves are contracted
by the map [C]) and to compute the degree of the image
curve.
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PROPOSITION 3.2. Let D a symmetric curve on an Abelian surface A which
induces a polarization of type (~1, 82). Suppose that v E I~16 is symmetric and
satisfies vi  (D) for i = 1, ... , 16. Let C be the curve on ICA defined by (3)
and assume that I C I has no fixed components. Then

where pi = vi if iti (D) - vi is even and pi = vi -~- 1 otherwise; the integer m is
the number of connected components of C. If C’ is any curve in J’CA which does not
contain any of the curves Bi as one of its irreducible components, then

where D’ is the symmetric divisor on A such that n * C’ - p* D’ - (D’) Ei .
Also C - Bi = pi for any i.

PROOF. We know from Formula ( 1 ) that

where m is the number of connected components of C. Since 7r is of degree
two we get from (3) that

Using the fact that ( p* D)2 = D2 = 28182 we find the announced formula (4).
Combined with (7) this gives the right number for h°(C). The verification
of (6) is similar:
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Finally,

Our formula for h°(C) generalizes the formula given in [6, Theorem 3.1 ] .
In the latter formula all vi are zero which implies m = 1 because at any half
period which belongs to two irreducible components of D we have 2.
If D is even (resp. odd) then pi = 1 for the odd (resp. even) half periods and
pi = 0 for the even (resp. odd) half periods. Thus our formula specializes to
Bauer’s formula,

where n is the number of even half periods if D is odd and n is the number
of odd half periods if D is even.

4. - The Mumford system

In this section we introduce an integrable system and we use it to compute
explicit bases for the sections of different natural line bundles on the Jacobian
as well as parametrizations of the divisors that are cut out by these sections. In
the next section we will use these sections to compute several projective images
of its Kummer surface.

Consider a hyperelliptic curve of genus two, given by the equation

and assume that it is smooth, i.e., all ki are different. This curve can be

completed into a non-singular complete curve (compact Riemann surface) r by
adding a single point which we will denote by oo. The map r ~ P which is
given on the affine part r B {00} by (h, it) « h expresses r as a two-sheeted
cover of P. It has six ramification points Wi (i = 0, ... , 5) which are called
Weierstrass points. They are the fixed points of the hyperelliptic involution I
which is given on r B fool by (À, it) H (À, 2013/~). At oo the Riemann surface
is described in terms of a uniformizing parameter t by
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showing that m is one of the Weierstrass points; we will always label these
points such that and such that = Xi for 1  i  5. At wi the
curve is parametrized by

(the particular choice of square root is irrelevant because we can replace t
by -t). We denote the Jacobian of r (its group of divisors of degree zero
modulo linear equivalence; equivalently its group of line bundels of degree zero)
by Jr and we denote the element of Jr that corresponds to a divisor D of
degree zero on r by [D]. It is a fundamental fact that ,7r is an Abelian surface
and that the map P « [P - oo] is an embedding of the curve in its Jacobian.
We denote the image of this map by 0 and call it the theta divisor; 0 is indeed
a divisor and 02 = 2.

The hyperelliptic involution i on r extends linearly to an involution on the
group of divisors on r which in turn descends to the (-I)-involution on Jr.
It follows that the sixteen half periods on ,7r are given by eij = ] and
their group structure is governed by the formulas

(for the proof of the second formula, use the meromorphic function (À-Ài)(À-
hm) /&#x3E; to realize the linear equivalence (t)i + wk + N + 

We also introduce the sixteen translates 8ij = of the theta divisor which
we will call theta curves. The theta curves are symmetric, the odd ones
are the six curves Ooi which pass through the origin and the remaining ones
are even.

To every point of ,7r we can uniquely associate a matrix of polynomials
(in À)

whose characteristic polynomial equals ~2 - f(h) as follows (see [18]). Every
element of jar is of the form [P + Q - 200] for some P, Q E r and the
unorderd pair (P, Q) is unique if and only if P # i (Q). In this case, if

both P and Q are different form oo we take the entries of the matrix (12) to
be given by (note that w(À) is indeed a polynomial because = 

and v(~,(Q)) _ JL(Q»
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For example, for the ten half periods eij = 160i - coj] ( 1  i  j  5), we get

The above formula for is to be interpreted in the right way when P = Q:
taking the limit Q - P in the above formula for v(h) we find the following
formula for v(h) when P = Q,

Note that the denominator does not vanish because i P, i.e., P is not a
Weierstrass point. Still assuming that P # ~(3), if Q = oo then the matrix is
given by

For example, for the five half periods = Ccvi - oo~ , i = 1,..., 5 we have

The divisors P + l (P) - 200 form a linear system that corresponds to the origin
of the Jacobian; its matrix is given by

For future use we will now compute the set of matrices which correspond to the
divisors 8ij; more precisely we will give a parametrization of all of the divisor
minus one point. In order to make our formulas more compact we introduce
the following expressions in the ki which generalize the elementary symmetric
polynomials ai (introduced in (9)),

For example crij2 = -~.1 - Å2 and 63,j2 = ·
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Clearly, a parametrization for the theta divisor 0 = Ooo is given by all
matrices (16) where P runs over r. For the other divisors Ooi we get

where *i is found by expressing that the characteristic polynomial of the matrix
is equal to ~2 - f (~,),

The formulas for computing the other (with 0  i  j  5) require some
more work. The points on are of the form [P + wit + Wj - 3oo], which
we first need to rewrite in the standard form [ Q + R - 200] ( Q and R will
depend on P). Consider for fixed P the following meromorphic function on r,

It realises the linear equivalence P + wi + Wj rv Q + R + oo, the points Q
and R being given as the non-trivial zeros of the numerator. To find these

zeros, multiply this numerator by

to find the following equation in h whose solutions are X (Q) and 

Note that we are not required to solve this for À(Q) and À(R) individually:
we can solve it linearly for -f- ~, ( R ) and and this is enough to
determine the polynomial u(,X) which is associated to an arbitrary point on 8ij,
in fact these are precisely the coefficients of u(h) since u(h) = (03BB-03BB(Q))(03BB-
À(R). Solving linearly we get



366

In order to find the polynomial v (~,) which is associated to an arbitrary point
on eij we use the vanishing of the numerator of to find

The right hand side only involves À(P) + À(Q) and hence it suffices
to plug in the expressions (19) for these to find the polynomial v(X) associated
to +~/ -3oo],

I The corresponding polynomial w(h) is found from w(h) = ( f(h) - v2(À»/u(À).
The above formulas for the divisors give a parametrization but do not

describe the sections which cut them out. Nor do we have, at this point, a way
to compute a basis for the odd or even sections of which lead to projective
images of the Kummer surface. To get these we consider the (two-dimensional)
Mumford system (see [18]), which consists of a pair of commuting vector fields
on the seven dimensional affine space M of matrices (12). Coordinates on M
are given by u 1, u 2 , w I and w2 .

Let H denote the map

which associates to such a matrix A(h) its characteristic polynomial. Then the
fiber of H over a polynomial 03BC2 - ( f monic of degree five and square-
free) is isomorphic to the affine variety Jr B 0 where r is the curve defined

by tt2 = f(À); explicitly the isomorphism is given by (13). Equations for this
affine variety thus follow from the equations of the fiber,
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where we denoted the coefficients of the curve ~2 = f(h) by ai, as in (9).
Two independent commuting vector fields on M are given by

Mumford shows that these vector fields restrict to linear vector fields on the
Jacobians which appear as fibers of the map H (it is easy to check that these
vector fields are indeed tangent to the fibers of H). Fixing the section which cuts
out n8, the sections of can be described by the meromorphic functions
with a pole of order at most n at infinity, i.e., at 0. To find these meromorphic
functions one looks for Laurent solutions to the differential equations which
describe one of the linear vector fields (see [28, Chapter 5.3]), more precisely
one looks for all families of Laurent solutions of the maximal dimension (i.e.,
containing the maximal number of free parameters). In the case at hand we pick
the first vector field (the Laurent solutions for this vector fields are easier to find
because that vector field is weight homogeneous, see [28, loc. cit.]) We find
that there is only one such family of Laurent solutions and that its dimension
is six. We display here precisely as many terms of the Laurent solutions as
we need for our computations below; moreover we only display them for u 1
and u 2 because the Laurent solutions for the other affine variables follow at

once from them by using the differential equations (e.g., v, = ic 1, etc.).

A basis for the functions with a pole of order two at most at 0 is given by

To see that the restriction of Z3 to Jr is linearly independent of the other
functions it suffices to compute the leading term of z3, which is given by
4b (3a -~ 2b) / t2. The corresponding sections embed the singular Kummer surface
into p3 (see the next section). A basis for the functions with a triple pole
along 0 is given by adding the following five functions
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Their leading terms are given by

showing their independence. These nine functions allow to embed the Jacobian
into projective space Finally, to get a basis for the space of functions with
a pole of order at most four along O, one also adds the following functions:

Their leading terms are given by

hence these sections are also independent (on the Jacobian of any smooth
curve r). Since the hyperelliptic involution on r is given by (À, (À, 2013/~)
the (-I)-involution on ~7r is given by

and we easily see that each of the functions zi, i = 0, ... , 15 is either even
or odd with respect to this involution. In order to consider such a function zi
as a section of [nO] we need to multiply zi by the section that cuts out n8,
which is even for n even and which is odd for n odd. Therefore we find the

following table for the functions zi which represent the even and odd sections
of [20), [30] and [40]. An explicit basis for the even and odd sections for
[n8] with n &#x3E; 5 are obtained in a completely analogous way but will not be
used here.

Table 3
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5. - Kummer surfaces of Jacobians

In this section we will use the results of the previous section to compute
different projective images of the Kummer surface l’Cr of Jr. The linear systems
which we will use consist of the even or odd sections of (with n = 2, 3, 4)
with prescribed vanishing at the half periods. Recall from Section 3 that we

denote the line bundle p*,C ® on ~r by lv and that we denote
the line bundles on lCr which correspond to the even and odd sections of lv
by In order to compute these induced linear systems on Kr we will use
divisors in which consist entirely of translates 8ij of 0. We will call such
divisors totally reducible divisors. These divisors have the convenient property
of having large multiplicity at several half periods and it is for these divisors

easy to figure out its multiplicity at any half period. The following lemma will
tell us which divisors in are totally reducible.

PROOF. The proof of the only if part follows easily from [16, Lemma 4.1.5].
The if part then follows from the fact that two different translates of 0 are
never linearly equivalent. D

We will in every case considered below show that the linear systems 
have no base points, so that the corresponding map is regular, we will

v

compute an equation of its image and we will determine which curves are

contracted (leading to a singular point of the image). We will denote the image
of the (-2)-curve Bij by and the image of by These images
can be points, straight lines or curves of higher degree. The incidence relations
between the thirty-two objects and Tij will follow easily from the incidence
relations on ,7r (see [12, Chapter 1]) which were classically represented in the
following compact form.

Table 4

The way in which the incidence is encoded in this table is this: the divisors Eij
are pairwise disjoint as well as the divisors Okl. Every divisor Eij meets

precisely six divisors Ok, and vice versa. Eij and Okl will meet precisely when
the indices i j and kl appear in Table 4 either in the same row or in the same
column (but not both!).
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5.1. - The linear system 12E) I

The first case is that of D = 2E), C = [20] . Some of the results in this
paragraph are classical but the proofs that we give provide the reader with
a good illustration of our approach, which also applies to the more complex
situations studied in the subsequent paragraphs.

The divisor D has multiplicity two at the six half-periods eoo, eol , ... , eos
and has multiplicity zero at the other half periods, in particular D is even and
all half periods are even. We picture D as follows.

By (8) every section of [2E)] is even, in agreement with Table 3, leading
to a line bundle .~l+ on Kr. If s denotes the section of [2E)] that cuts out 20
then Table 3 tells us that oo - s, ol - SUI, 02 - SU2 and 03 = S(UIU2 - W2)
span the space of sections of [20] .

PROPOSITION 5.2. The linear system 12E) is base-point-free hence leads to a
regular map ~~+ : JP&#x3E;3. The image of is a quartic surface whose
equation is given, in terms of the coordinates ol , i = 0, ..., 3, by

The map contracts the sixteen (-2)-curves Bij and maps the sixteen theta
curves to sixteen conics, leading to the classical 166-configuration on the Kummer
surface Kr. No other irreducible divisor is contracted by 

PROOF. Let us show that there are no points on :1r where all sections of [20]
vanish. First, if such a point X exists then s(X) = 0 hence X E 0. We know
that the points on the theta divisor are of the form [ P - oo] where P e r. Let
us suppose first that P ; oo and consider the curve X(t) = P + Q(t) - 200
where Q (o) - oo and Q (t) = (~, (t) , ,cc (t)) is given by (10) for t small and
different from zero. The polynomials u (,k), v(h) and w(h) which correspond to
X (t) are (for t # 0) computed from (13). The image of X = X(0) in projective
space is then given by
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in particular not all sections vanish at X. If X is the origin then we consider
a curve X(t) = [P(t) + Q(t) - 200] where P(t) and Q(t) are given as Q(t)
above and we find in a similar way that the origin gets mapped to (0 : 0 : 0 : 1 ) .
This shows that 1281 is base-point-free, hence [ is also base-point-free.

We now indicate how the equation (22) was found. Since 00 = 0 cannot
be a component of the image it suffices to find a relation between the functions
zo, - .. , z3 (see Table 3). This is easily done from the equations (21) which
define the affine part of the Jacobian: use the first two equations of (21) to
eliminate wo and w I linearly from the other equations and eliminate v I and v2
from these by expressing that the obvious identity (VIV2)2 = holds. The

resulting equation for between u 1, u 2 and W2 is rewritten at once in terms of

zo, ... , z3 . If we let Oi = szi , I = 0, ... , 3 then we find (22). In order to
conclude from this computation that the image is always (i.e., for all values
of the parameters ai which define a smooth curve) a quartic surface we only
need to show that the quartic polynomial in equation (22) is not a complete
square, because the image is certainly irreducible and has degree four. Let us

suppose that the right hand side Q of (22) is a complete square, Q = P2.
Since the coefficient of 9f in Q vanishes there is no term 02 in P and hence
no term in Q, i.e., 0. But then also the coefficient of Bo 81 in Q
vanishes, hence the coefficient of 9091 in P vanishes. This implies in turn that
the coefficient 2o-4 of 808182 in Q vanishes. The two conditions 
are however impossible when r is smooth.

Since pij = 0 for 0  5 we have from Proposition 3.2 that C - Bij = 0
for any i, j, i.e., all (-2)-curves Bij are contracted, so that every Si j is a point.
On the other hand, if we denote by Cij the projection of the proper transform
of any of the theta curves 8ij then C - Ci = 0 - 8ij = 2 so the sixteen theta
curves map to sixteen conics 7~ and we get Kummer’s 166 configuration of
lines and conics on J’Cr C JP&#x3E;3. Explicit coordinates of the points Sij and the
conics T~ will be computed below.

Finally, we use the explicit sections to show that no other irreducible
divisor in Jr is contracted by Since such a divisor lies in the affine part
Jr B 8 we can write it as [P(t) + Q(t) - 200] where P(t) = (t), ~1 (t)) and
Q(t) = (~2(~). tt2(t))- If we assume that this curve is contracted by 0 then
u 1 = Ut = (UIU2 - w2)’ - 0 where the prime denotes derivative with respect
to t. Then

so that ~,1 (t) = ~.2 (t) = 0 or À1 (t) = À2(t). The first case does not correspond
to a divisor. In the second case we have that ~c.~l (t) = because the pair of
points (P, Q ) which corresponds to any point of different from the origin,
has the property that P # i Q ; from the explicit equations for 0 it follows

that 0 does not map such a curve to a single point. D

It should be remarked that the coefficients of the quartic (22) are expressed
in terms of the coefficients ai of the equation It 2 = f(h) for r and not in
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terms of the roots ki of f(h). As far as we know such an equation does not
appear in the classical literature.

In computing an equation for the quartic surface we could have used another
basis for the sections of [20]; note that each such choice corresponds to the
choice of a basis for p3. We will find a more symmetric equation by using the
singular points Eij, which are the images of the sixteen (-2)-curves Bij. For
0  i  j  5 we find from (14) that the polynomials which correspond to eij
are given by

so that for 0  i  j  5 the image Si j of Bij is given by the point

The coordinates of the other six points .60i, (0  i  5) are found as follows.
The sixteen translations over half periods descend to sixteen automorphisms of
the Kummer surface and of its image. Any such automorphism is induced by
an automorphism of the ambient space p3. With the ten half periods at hand
we can compute the matrices of these automorphisms: in order to compute
the matrix iok which goes with translation over eok, it suffices to express the
fact that the translation interchanges the following three pairs of points: Si j H
.6.., .6i. H Sjn and sin H Sjm (here {i, j, k, m, n} _ { 1, 2, 3, 4, 5}). It leads to
the following formula for rock

The matrices for the other translations Tkl are found from Tkl = rokroi. From

TOk(£ik) = we find that Eoi = (0 : 1 : -Xi : -a,i CJI,i ) from which we also
get that the origin in ~r is mapped to Soo = (0 : 0 : 0 : 1). This provides us
with the explicit coordinates of all singular points. Explicit equations for the
hyperplanes which cut out the conics Toi and Tij are found from the explicit
parametrization of these curves: using (18) we find at once that the section

vanishes once (hence twice) on Ooi giving the following equation for the

conic 7o~ (as sitting in the hyperplane fi = 0).
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Using (19) and (20) we find that

vanishes twice on 8ij giving the following equations for the quadrics Tij, (0 
i, j  5) (as sitting in the hyperplane fij = 0).

A natural way to pick coordinates which make the equation of the quartic
more symmetric is it take them such that four of the translations Tij correspond
to interchanging the base points of P~ in pairs. Clearly these four translations
must form a subgroup of the group of all translations over half periods. These
subgroups come in two types: either one picks as generators two half periods
on a single theta curve or one picks two generators on two distinct theta curves.
If four half periods are linked by a subgroup of the first type they are classically
said to form a Rosenhain tetrad; clearly there are eighty such tetrads. Otherwise
they are said to form a G5pel tetrad; there are sixty such tetrads. There is a

significant difference between these two types: if the vertices of a Rosenhain
tetrad are taken as base points then each of the four coordinate planes contains
one of the conics which is not true in the case of a Gopel tetrad. Indeed,
since each coordinate plane of a Rosenhain tetrad contains three points of one
of the conics Tij it must contain the whole conic.

For example, the images of the half periods eoo, eoi, eoj and eij form a
Rosenhain tetrad. If we take these as base points for P~ and we call to, tl, t2, t3
the new coordinates and we write Àij then

where ao = Àij, ai = and a2 = ÀjkÀjmÀjn. The other twelve singular
points have now the following coordinates (i, j, k, m, n are all different),

and the equation of the quartic takes the symmetric form
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· Notice that
this equation is precisely equation (5) in [16, p. 301] which was found by using
theta group techniques with an appropriate basis of sections of [20], in which
the action of the theta group related to this bundle is given by permutations
and sign changes.

The equation with respect to a Gopel tetrad, such as eoo, eOk, ei j , emn (all
indices different) is found in the same way.

It is clear that in the case of 20 ( no birational images of the Kummer
surface are obtained by looking at sections which vanish at one or several half
periods.

5.2. - The linear system 13 E) I

In the case D = 30 we will find several different projective images of the
Kummer surface of Jr. Since D has odd multiplicity at the origin it is an
odd section and the half periods eoo, eol, ..., e05 are even while the other ten
half periods are odd. If follows from Lemma 5.1 that the linear system 
contains besides 30 another fifty totally reducible divisors:

The ten divisors D+ and the ten divisors Di are even since their multiplicity
at the origin is two or zero, while the fifteen divisors D- and the fifteen
divisors D’ are odd, their multiplicity at the origin being one or three. Here

is a picture of a particular D+ and D-.

We denote their projections on by C+ and C-. It follows from (4) that
= 4 and hO(C-) = 5. This leads to two maps ~~+ : ~ and

: P4; we will investigate later in this paragraph the subsystem
defined by odd sections that vanish at one of the odd half periods.
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We first investigate the map q5m+ - We find from Table 3 four independent
even sections in [30] and accordingly we define

where s denotes the section that cuts out 30. The six half periods on 8 are
even and the other ten half periods are odd.

PROPOSITION 5.3. The linear system 13 E) I+ has only the ten odd half periods
as base points; however, it defines a regular map Om+ : JP&#x3E;3. Its image is a
quartic surface whose equation is given in terms of the coordinates 8i , i = 0, ... , 3
by

contracts the (-2)-curves Bi which correspond to the six even half periods
and maps the ten other (-2)-curves Bi to lines. The image of a has degree three
while the other theta curves map to lines. No other curves are contracted 

PROOF. If X E ~r is a half period that does not belong to 0 then (13)
implies that the corresponding polynomial v(h) is zero, so that all sections,
given by (26) vanish and X belongs to the base locus of 1301+. Suppose that
we have another affine point X where all sections vanish, X = [P + Q - 200].
If ~,(P) ~ h(Q) then vi = (~(1’) - ~(6))/(~(~) - À(Q» = 0 implies, ~(P) =
&#x3E;( Q). Further v2 = À(Q» = 0 implies that
~(P) = ~u ( Q ) = 0, which contradicts the fact that X is not a half period.
If À(P) = h(Q) then vl = f’(~,(P))/(2~c(P)) - 0 implies f’(~,(P)) - 0
and v2 - ~(P)/’(~(P))/(2/~(P)) = 0 implies /~(P) = 0, again a
contradiction. In order to see what happens to the corresponding linear system
./1~l+ at Bij we take a curve X(t) = [P(t) + Q(t) - 2oo], with P(0) = coi and
Q (~) _ ~~ ~ 

~ 

where cf = 7~ 0. The factor a was introduced here to represent
the different directions at eij, which become points of the exceptional divisor Eij
and of Bij. Computing (13) for these curves and taking the limit t - 0 for
their images in p3 we find
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(* is a finite number that is easily computed but whose value is not important
for us) so that for any a there is at least one section which is non-zero. Notice
that we don’t need to consider the value a = oo because of the symmetric
role of P and Q. To show that no base point of 1381+ lies on e, proceed as
in the proof of Proposition 5.2: first consider X(t) = [P + Q(t) - 200] where
P E r B {00} and take Q(t) = (À(t), E r) to be given by (10). If we
evaluate the map v2 : U1 V2 - U2VI : (WI + ul)v2 - (W2 + UIU2)VI) at X(t)
and take the limit for t - 0 then we find (1 : -~, ( P ) : ~, ( P )2 : *) (again the
(finite) value of * is irrelevant). This shows that, besides possibly the origin,
no point on the theta divisor is contained in the base locus of [M+ [ . Letting
P (t) as well as Q (t) be given by (10) one check in a similar way that the
origin is also not contained in the base locus, i.e., the base locus of I is

empty and q§ M+ is regular.
An equation for the image of is computed as follows. Use the

first three equations in (21) to eliminate all wi linearly and use the first three
equations of (26) to eliminate v2 and u 2 . From the remaining equations
in (21) and (26) eliminate first s to obtain two equations in u I one of which is
linear. Elimination of u 1 gives the announced equation for the quartic. It can
be shown as in the proof of Proposition 5.2 that this quartic is not a complete
square; this will be however most obvious after we have rewritten the equation
in a more symmetric form, so we will not do this verification at this point.

We have that pi = 0 at the six even half periods eoi and pi = 1 at the ten
odd half periods so, using Proposition 3.2, we find that the image of 15m+ will
have six singular points and will contain ten disjoint lines, coming from the
(-2)-curves. Since 0 does not contain any of the odd half periods, Formula (6)
implies that the image of 0 under ø M+ is a cubic curve which passes through
the six singular points; the other theta curves all contain precisely four odd half
periods so these curves map to fifteen lines.

Finally, suppose that some irreducible curve, which is different from the
(-2)-curves, is contracted. Since it is different from the theta divisor it intersects
the affine part Jr B 0 and can be written as X(t) = [P(t) +- Q(t) - 200]
where P (t) = (t), and Q (t) = (À2(t), As in the proof of
Proposition 5.2 we may assume that À1 (t) ~= X2 (t) and ~1 (t) =I- ~c2 (t). Let us
assume that the whole curve is mapped to the single point (1 : cl : c2 : C3)-
Solving for h2 and ~2 we find that .

Since = for i = 1, 2 we find that satisfies an algebraic
equation of degree eight with leading term (c2 - cl )~,g (t) . Then C2 = C2 I because
otherwise À1 (t) and hence also 1 (t), k2 (t) and are constant. However, if
c2 = ci then = 0 so that the curve corresponds to one of the theta curves.
As we have seen, these theta curves map to lines, not to points. Therefore no
such curve is contracted by D
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We will now construct coordinates for p3 with respect to which the equation
of the quartic takes a completely symmetric form. First we show that any four of
the singular points EOO, £01, ... , E05 can be taken as base point for p3. Since Too
is a cubic curve and passes through all six singular points it will be planar as
soon as four of the singular points are coplanar. Then all six singular points
are coplanar and hence also the fifteen lines 0  j  5, which join
these singular points. Then these lines would have intersection points besides
the singular points, which is impossible. We will take the points £01, ... , So4 as
base points for p3, so we need to find the coordinates of these points. Notice
that they are given by Eoi = Tij We do this by first computing the sections
which cut out the divisors D+. If we express that a section

vanishes on Ooi and 80j (using the parametrization (18) of then we find

and we obtain that

is (up to a constant) the only even section that vanishes on Ooi and Since
we know that there exists an even section which vanishes in addition on eij this
section must also vanish on The latter fact can of course also be verified

directly using (19) and (20). If we intersect the quartic surface (27) with the
hyperplane 92 = then we find the equations for the four lines
Toi, Toj, Tij and Fij. On the one hand we get from it that a parametrization for
T’oi ( 1 5) is given by (t E P)

On the other hand we find two factors which give the following equations for
for Tij and Fij (to see that it is the first one which corresponds to Tij and not
the second one, one can use e.g. (19) and (20)):

This leads to (1 : -,ki : X? and ~oo = ~n7o~ =(0:0:
0 : 1 ) . Now take the points ~01...’ .~04 as base points and call the corresponding
coordinates tl , ... , t4 then the quartic takes the following symmetric form



378

where - { 1, 2, 3 , 4, 5 } . Since all terms in the new equation of
the quartic are of the form this equation can never be an exact square
providing a simple proof for our earlier claim that the image of is a

quartic. With respect to the new basis for p3 the singular points oo and E05
have the following coordinates:

Using the coordinates of £00, ... , £05 the new equations of the lines T~ are

immediately computed because T~ passes through £0; and goj.
We now investigate the map q5-. Table 3 gives us five independent sections

of [3E)]. Still denoting by s the section that cuts out 30, we define oo = s, ol =
SUI, 02 = SU2, 93 = S(UIU2 - W2) and o4 = S(UIW2 -f- U2WI + 2UIU2WO)/2.

- 

PROPOSITION 5.4. The linear system 1381- is base-point-free, hence 
Kr - P4 is a regular map. The image of this map is a complete intersection
of a quadric and a cubic hypersurface whose equations are given, in terms of the
coordinates Oi, i = 0, ... , 4 by

and

The theta divisor 0 and the ten (-2)-curves 1  i  j  5 corresponding
to the even half periods are the only divisors which are contracted by ØM-’ while
the other six exceptional divisors 0  i  5, map to lines and the other theta
curves map to conics.

PROOF. The proof that the linear system 1281+ is base-point-free applies
verbatim to the present case because the sections 00, - - - , 83 are defined in

exactly the same way. The defining equation of o4 is easily rewritten in terms
of the other Oi giving the above equation of the quadric. Now obviously the
quartic equation (22) holds between the sections, but that does not mean that the
homogeneous ideal of the image is generated by the quadratic and the quartic
polynomials. Indeed, if we add the quadratic polynomial in (30), multiplied
by + SiS3 -~- 02 + to the left hand side of the

quartic (22) then the result is divisible by So and we are left with the cubic

equation (30). Since the degree of the image is six the image is the complete
intersection of the quadric and cubic hypersurface. Moreover, since Ø[28] does
not contract any curves besides the curves Bi we can at least conclude that
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besides the Bi no curve that intersects the affine part Jr B E) is contracted. In
this case Pij = 0 for 1  i  j  5 (corresponding to the ten odd half periods)
and poi - 1 for 0  i  5 (corresponding to the other half periods). (6) shows
that 0 is contracted by Om- and the same is true for the exceptional divisors

1  j  5. The remaining theta curves and exceptional divisors map
to fifteen conics and six lines respectively. Notice that these six lines pass
through a single singularity of the image. D

Again a more symmetric equation is obtained by choosing some of the
singular points as base points, namely we choose £12, £23, £34, E45 and E15 as

base points. Using (14) we find that the old coordinates of E1~ are given by

If we define ti to be the coordinates with respect to these five points then the
equation of the quadric becomes

while the equation of the cubic becomes

Since the constants A and B are quite complicated when expressed in terms
of the Xi we do not record their expressions here. Finally, let us compute the
sections that cut out the image of the divisors D-. This is done as in the case
of D+: such a section must be of the form

and it should vanish on Tpk and Tmn, where j, k, m, n} _ {l, 2, 3, 4, 5}.
If we normalize E = 1 then we get by using (19) and (20)

In the case of 13E)I- we can restrict ourselves to the sections with prescribed
vanishing at the half periods. Every section of 13E)I- vanishes an odd number
of times at the even half periods so that a prescribed vanishing at one of these
half periods would imply that we consider Me for v = (0,..., 3,..., 0). Then
formula (3.2) leads to dim IMV = 9/2-~ 1-14/4 = 2, so the corresponding map
can never be birational. Therefore we consider an odd half period 1 :5 i, j  5
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and define v = (0,..., 2, ... , 0) (the 2 being at position i j ). Formula (3.2)
now leads to dim 1M; I = 4, hence Omv maps to p3. Using the fact that

u I = 2013~ 2013 ~ == and u2 = = G2,ij at eij we find from Table 3 that
the following four independent sections vanish at eij.

We describe Om v and its image in the following proposition.
PROPOSITION 5.5. The linear system IMV I is base-point-free, hence O.A4 v

I~3 is regular. It contracts ten divisors, to wit the nine exceptional divisors
Bkl corresponding to the even halfperiods, but not Bij, and the theta divisor E&#x3E;. The
image is a quartic which contains six lines Soi (0  i  5) which are collinear at T
and it contains sixteen conics, one of which is the image 9 of Boo.

PROOF. Using (11) for the half period eij it follows at once that the image
of Bij is a conic; alternatively this is seen from pij - vi~ = 2. Then (32)
implies that the only possible base points coorespond to s - 0, the theta
divisor. Using (10) we see that the theta divisor gets mapped to the single
point (0 : 0 : 0 : 1); using (11) for any of the other nine even half periods
it follows that each gets contracted. The verification that the odd half periods
map to lines and that the other theta curves map to conics is similar. Let us
assume that some other divisor D gets mapped to the point (a : b : c : d) E I~3
and let us show how this leads to a contradiction (assuming r smooth). We
can parametrize D as [P(t) -E- Q(t) - 200] where P (t) = (À1(t), and

Q(t) = (À2(t), ~c,c2 (t)). Then we look for solutions of

with a,..., d constant. The case a = b = 0 can be excluded at once because
it does not correspond to a curve. Similarly when = ki and a = 0.
If À1(t) = Xi, so that = 0 then we may therefore assume that a = 1.

Then the first two equations in (33) imply b = Xi and = À2(t) - Àj. The
third equation in (33) then leads to ~.2 (t) = Xi or -k2(t) = Àj, which are both
unacceptable, or to the following linear equation in Â2(t):
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If X2 (t) is not constant then it can only satisfy the above equation if both
coefficients are zero, which happens for no value of c. By symmetry we can
also exclude the case À1(t) = Àj- Also the case b = 1 can be excluded
because it leads to the previous cases b = Xi or b = Àj. We treated these
special cases because À1(t) - À¡, and b + À1 I appear frequently as
factors in the two cases considered next. The first one corresponds to the general
case in which a = 0. Then we can take b = 1 and the first two equations
lead to Àl = -h2 + hj and k = -(h2 - À¡)(À2 - kj)- If we substitute this
in the third equation of (33), we find a monic equation in À2(t) with constant
coefficients, which leads to À1 (t) and À2(t) being constant, a contradiction. The
second case corresponds to the generic case a # 0. Taking a = 1 we find h (t) =
-(À1 (t) - ~~ ) (~.1 (t) - ~.~ ) l (~ 1 (t) + b) and h2 (t) = (.ki + + b)/(À1 + b) - b.
If we substitute this in the third equation of (33), we find an equation for À2(t)
which depends on b and c. As before one finds that if r is non-singular there
are no values for b and c such that all coefficients of this polynomial are zero.
A proof that the image is a quartic and an explicit equation for it will be given
below. D

Since the roots Xi of f will appear explicitly in the equation of the quartic
we will not write down the equations in terms of the o¡ but we pass at once
to a set of natural coordinates, which will give the equation of the quartic a
symmetric form. The conic intersects the lines and T J in three points
(which are not collinear) and these points are independent of the image T of O
(which is a singular point). We will take these points as basis points for p3.
To do this we first need to find their coordinates, which is done in this case
as follows. We use (18) to compute the images of E)oi and we take the limit

(i ~ j ). This gives us the following coordinates:

Using (19) and (20) we find the image of 8ij and the limit for h - oo gives
the following intersection point:

Also recall that 0 is mapped to T = (0 : 0 : 0 : 1). If we take the following
points as base points for p3 (in that order)

and we denote the corresponding coordinates (properly scaled) by to, ..., t3 then
we find the following equation for the quartic:
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where

Now we can easily see that ~ is birational: if the equation of the quartic is a
square then the coefficient in to of degree zero is a square hence +

+ (ai - ai + + t2t3 + t3 tl ) and tl t2 + t2t3 -E- are proportional. In
particular a = 0 so that Xi = Xj which is impossible since r is non-singular.

It was pointed out to us by the referee that a quartic Kummer surface in p3
with ten singular points was considered recently by J. E. Rosenberg (see [24]).
Our surfaces are however different, because our surfaces correspond to blowing
down 9 exceptional divisors Ei and the theta divisor, while the ones that appear
in [24] correspond to blowing down 10 exceptional divisors Ei.

5.3. - The linear system 1481 [

In this case all half periods are even and Lemma 5.1 implies that up to
a translation over a half period the only totally reducible divisors in 14E) I are,

besides 40, the following

Below we give a picture of particular divisors D+ and D_ . One sees that the
four curves in D+ intersect in twelve nodes while the curves in D- intersect
in four triple points. The divisors D+ and D’ are even while the divisors D-
and D’ are odd.
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We denote by C- the projection of p*D- on Kr and we write ~- for 0[c-].
By (3.2) we have that C) = 6. We denote by s the section that cuts
out [40] and we find from Table 3 that the following sections 9°, ... , 95 provide
a basis for the odd sections of 40.

In this case we easily find

PROPOSITION 5.6. X -~ p5 is an isomorphism onto its image. The
images Eij and Tij form two groups of sixteen disjoint lines, each line intersecting
six lines of the other group.

PROOF. Comparing the section 80, ... , ,05 to the sections that were used in
the case of 0+ for 3 O we see that no affine point can be a base point. We
will compute below an equation for the image of theta, which is a line since
pi = 1 for all i. So I C I is basepoint-free. Moreover, since the only divisor
which was contracted by 0+ in the case of 30 was 0, which is not contracted
in this case, ø - is an isomorphism. pi - 1 for all i, hence all (-2)-curves
are mapped to (disjoint) lines; their equations will be computed below. Also

= 4 - 6/2 = 1 so all theta curves are mapped to sixteen disjoint lines. D

We will find the relations between the oi by expressing the fact that the
image contains a whole configuration of lines, coming from the theta curves 8ij
and the (-2)-curves Bi. The lines Tij (where i and j are not both zero) can
be computed explicitly using the parametrizations for the divisors 8ij. For Toi
(i ~ 0) we find by using (18) the following parametrization (t E P):

For 2~~ (i, j =,4 0) use (19) and (20) to find

Note that we cannot compute the lines gij in this way because all the functions vi
vanish at the half periods. However, any quadric which vanishes at the lines Tij
must also vanish at the lines Fij because every line gij has six points lying on
the lines Tij. It is now easy to find and solve the (linear) conditions on aij for
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otij vi vj to vanish on the lines we get the following set of independent
quadrics:

Note that again these equations do not involve the roots Xi of f(h) explicitly.
We will see that by using the Xi explicitly we can make the equations much
more symmetric. Before we can do this we need to compute the equations for
the other lines (Too and all gij) and the ninety-six intersection points of the
configuration. The following lemma provides an effective way to do this.

LEMMA 5.7. The hyperplane section which vanishes on the lines Toj
and Tij also vanishes on the lines £00, Eol , and £ij

PROOF. The points eoo, eoi, eoj and eij are triple points of the divisor Ooo +
80i+80j+8ij hence the lines goo, .60i, £OJ and £ij have three points in common
with the hyperplane that vanishes on Too, Toi, Toj and o

In fact, since the degree of is eight the hyperplane section must
consist exactly of these eight lines. It is now easy to do the computation: since
this hyperplane section is given as in (28) by 0’2,ijOO - + 02 = 0 it suffices
to intersect the quadrics with the hyperplane

which amounts to solving the equations of the quadrics linearly for the remaining
variables. Besides the lines Toi, and Tij for which we gave the equations
above we also find the following lines

We have added the right labels already: to identify which is which one may
consider different values of i and/or j, identifying the last three lines; to dis-
tinguish Too from ~oo it suffices to check that Too does not intersect any of the
lines Tij.
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Our next task is to find the coordinates of the ninety-six intersection points
of the configuration. We will need them to simplify the equations of our
quadrics. If we denote

then we find for any indices such that j, k, m, n } = { 1, 2, 3, 4, 5 }

These points are used to compute the sixteen projective tranformations rij which
come from the sixteen translations on Jr over half periods; it actually suffices
to compute the The transformation should map the following seven
points

to

(in that order), and similar for the other translations. If we introduce the

following abbreviation
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then we find that the matrix for roi is given by (Ai Bi ), where

The matrices ïij commute pairwise so they can be simultaneously diagonalized.
The eigenvalues are given by where w; = TIj:¡fi and a complete
set of common eigenvectors for all ïij is given by

where i = 1,..., 5. If we let W denote the matrix whose columns are the
vectors Wi (properly normalized) and define X = W-1 V then then equations
of the three quadrics take the following symmetric form.

Of course one can get rid of all factors oi but we will not do this because
it makes the coordinates of the ninety-six points more complex. It is easy to

compute that these points have now the following coordinates.

where the plus signs correspond to the origin resp. the points p©b. For the other
points p~~ the i -th and j -th coordinates get a minus sign; notice that in this
way all possible signs appear! The translation over a half period wi + why is
now just given by flipping the sign of the i -th and j-th coordinates. This fact
is useful in computing the new parametrizations of the thirty-two lines: one

easily finds that and 800 are given by

and for the other lines and 8ij it suffices to add a minus sign in the i -th

and j -th coordinates. In particular we have the following proposition:
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PROPOSITION 5.8. The involution (to, t1, t2, t3, t4, t5, t6) « (-to, t1, t2, t3, t4,
ts, t6) restricts to an automorphism of the K-3 surface which interchanges the two
families of sixteen lines.

In the case of the odd sections of [40] one can ask for higher vanishing
at one of the half periods eij and find a quartic in p3. It is easy to verify
that in this case the image has six singular points which come from the six
theta curves passing through that point. The exceptional divisor E;j maps to
a curve of degree three and all the theta curves and exceptional divisors are
mapped to lines. Compare this to the case of ~+ for 30: it is exactly the
"dual". Computing the image one finds exactly the same image as in the latter
case. The reason for this is that, as we have seen, the K-3 surface carries an

automorphism which interchanges the two families of sixteen lines.
We finally consider the case of even sections of 40. Since 0+ leads

to a Kummer surface in we will restrict us here to a case in which we

prescribe the vanishing (of order at least two since all half periods are even)
at the points and eij. Notice that these points form a group. The
corresponding Kummer surface was extensively studied by Tomasz Szemberg
(see [27]). We will give here the explicit calculation of the projective image,
because the equations which were obtained by algebraic geometric methods
in [27] are less explicit and its coefficients are not expressed in terms of the
underlying curve. We define v = (2, 2, 2, 2, 0, ... , ... , 0) (the first four half

periods being eoo, and It is easy to verify that formula (3.2) leads
to dim ( = 6, hence maps to p5.v 

v

PROPOSITION 5.9. The linear system IMtl [ is base-point-free, hence v :
Kr - p5 is regular. It contracts twelve divisors, to wit all exceptional divisors Bkl
except Boo, Bpi , 9 Boj and Bij, which are mapped to conics. The image is a complete
intersection of three quadrics which can be taken as follows.

where ~p (~,) ° (~, - Àk)(À - Àm)(À - 

PROOF. We only indicate how (37) was computed and refer for the other
statements to [27]. There is a natural choice for the six sections, namely for
each pair of the curves 8oi, 80j and 8ij we consider the even section
of 40 which vanishes twice at this pair of curves. Since such a pair passes
through the points eoo, eoi, eoj and eij these sections have the right vanishing
properties. Notice that these sections can be constructed from the sections

of [20] by taking the tensor products ti ® tj, 0  j  3, where to, tl , t2, t3
are the sections that vanish twice at one of the four curves. If we define
u i = to (9 ti for i = 1, 2, 3 and vi = tj (g) tk where k } = { 1, 2, 3 } then



388

we have two obvious quadratic equations 1 = u 2 v2 - It remains to
find a third quadric. The quickest way to do this is by using the equation
of the Kummer surface (22), rewritten in terms of the basis for

H°(Jr, [28]). It follows from (23) and (24) that this leads to the following
change of coordinates:

If we substitute this in (25) and define = (À - hn) then
we find the following equation for the classical Kummer quartic.

By defining ui and vi as appropriate multiples of i and i we get (37). D

6. - Appendix

For comparison we give a more conceptual (but longer) proof of the fact
that in the case £ = 40, v = 0 the map is an isomorphism and that its

image is the complete intersection of three quadrics (see Section 5.3). This

proof is based on Saint-Donat’s Theorem 2.2 and works only in the generic
case. We will use the notation of Section 5.3.

PROPOSITION 6.1. If A = ,7r is generic then the linear system I C- has no base
points and leads to a regular map io- : Kr - 

PROOF. It follows from (4) that C2 = 8 so it suffices to show, according to
Theorem 2.2, that IC-1 [ has no fixed components. None of the curves can
belong to the base locus because, if we increase one of the vi to three then
the number of sections drops. If some other divisor is a fixed component of
I C- I then there is a symmetric divisor D on A such that every odd section of
H°([D_]) vanishes on D. Since D is actually totally symmetric it is linearly
equivalent to O , 20 , 3 O or 40 and we have a basis {ss 1, ... , SS6) of H° ([D_ ]),
D being cut out by s. Then the sections s2, s3 , s6 } represent a linearly
independent set of sections with the same parity (either even or odd) in either
H° (3 O), H° (20) or HO(8). Which is impossible. 0

kr 
PROPOSITION 6.2. If A = ,7r is a generic Jacobi surface then the map l/J- :

Kr - birational.



389

PROOF. We show that we are not in one of the exceptional cases of Saint-
Donat’s Theorem (Theorem 2.2). Let us first assume that Kr contains an
irreducible curve C’ for which g (C’) - 1 and C’ . C- = 2. Then there is a

symmetric divisor D’ on A such that

Since C’2/2 -~ 1 = g(C’) = 1 we get C’~ = 0 and D’2 = ~c,ci (D’)2. Then
Formula (6) implies (for D = D- - 40) that the intersection 8 . D’ is given
by

The Hodge inequality (see [11, p. 368]) 02D’2  (0 . D’)2 and the Cauchy-
Schwarz inequality (1c,ci (D’))2  16 16 ,ci (D’)2 then lead to1= 1 - 1= 1

an equality, which is easily rewritten as

This means that each of the ~ci (D’) must be either zero or one; if n of them
are equal to one and the other ones are equal to zero then (40) reduces to

2. Then 8 . D’ is only an integer for n = 0 in which case 0 - D’ - 1, an
impossibility if A is generic. This excludes the first case of the Saint-Donat
Theorem.

We now assume that contains a divisor C’ such that g (C’) - 2 and
C- - 2C’. Then C- . C’ = 2C’2 = 4. If we define D’ as in (38) then we find
as before 

-- --

and proceed as in the first part of the proof: we apply the Hodge and Cauchy-
Schwarz inequalities to get

This inequality is easily rewritten as

which has no solution. Thus, both exceptional cases of Theorem 2.2 are ex-
cluded and ~- is birational. 0
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PROPOSITION 6.3. If A = Jr is generic then the birational map q5- : p5
is an embedding of the smooth Kummer surface Kr in IfD5.

PROOF. Since we know from the previous proposition that ~_ is birational
it suffices to show that no curve is contracted. If Bj = 7r,,(2Ej) were contracted
then

a contradiction. Assume now that an irreducible divisor C’ on Kr, different
from the curves Bj, is contracted. There exists a symmetric divisor D’ on
A such that Jr*(C’) = p*(D’) - This leads to the following
contradiction:

In the first inequality in (41) we used the Cauchy-Schwarz inequality and in the
second one we used that C’2 &#x3E; 0. The third inequality follows from Hodge’s
inequality (cfr. supra) and the equality in (41) follows from

This shows that no curve is contracted hence ~- is an isomorphism onto his
image. D

We finally show that the image is of ~- is defined by quadratic equations.
PROPOSITION 6.4. If A = Jr is generic then the image given by

an intersection of quadrics, in particular it is a complete intersection.

PROOF. We exclude the exceptional cases of Theorem 2.3. First, assume that
there exists an irreducible curve C’ such that g (C’) = 1 and C’ . C- = 3. There
exists a symmetric divisor D’ on A such that 7r * (C’) = 
and we find C’2 = 0, H2 = E16 2 and e . 2 -f- 1 ,,6 1 Ai leadingand we find = 0, H t 1 i 

and E).D’= 
2 4 a 1 (D’), leading

to the following inequality for the 

Since every term is at least equal to 9/64 all must be equal to 0 or 1.

If we assume that n of them are equal to 1 and the others are zero then (42)
reduces 9 which gives only integer solution for 0 - H when n = 2 or
n = 6. If n = 6 then 0 - D’ = 3 which is impossible on a generic Jacobian.
If n = 2 then 0 ’ D’ = 2 so that D’ is algebraically equivalent to e, so D’
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is a translate of 0. Since D’ is symmetric it must be a translate of 8 over a
half period. Now the equation p* H = 7r*D + El + E2 tells us that H has even
multiplicity at all half periods except at two half periods, which is impossible,
excluding the first exceptional case.

Second, let us assume that contains two curves C’ and C" such that

g (C’) = 2, g (C") = 0, C’. C" = 1 and C- - 2C" + C". Then

implying that C" is a contracted curve for 4&#x3E;-. We have seen however in

Proposition 6.3 that no curve is contracted, excluding the second exceptional
case. D

For a generalization to higher genus we refer to [7].
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