@article{ASNSP_1999_4_28_4_651_0, author = {Giacomoni, Jacques and Jeanjean, Louis}, title = {A variational approach to bifurcation into spectral gaps}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {651--674}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 28}, number = {4}, year = {1999}, mrnumber = {1760535}, zbl = {0961.35032}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1999_4_28_4_651_0/} }
TY - JOUR AU - Giacomoni, Jacques AU - Jeanjean, Louis TI - A variational approach to bifurcation into spectral gaps JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1999 SP - 651 EP - 674 VL - 28 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1999_4_28_4_651_0/ LA - en ID - ASNSP_1999_4_28_4_651_0 ER -
%0 Journal Article %A Giacomoni, Jacques %A Jeanjean, Louis %T A variational approach to bifurcation into spectral gaps %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1999 %P 651-674 %V 28 %N 4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1999_4_28_4_651_0/ %G en %F ASNSP_1999_4_28_4_651_0
Giacomoni, Jacques; Jeanjean, Louis. A variational approach to bifurcation into spectral gaps. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 28 (1999) no. 4, pp. 651-674. http://www.numdam.org/item/ASNSP_1999_4_28_4_651_0/
[1] Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations 96 (1992), 89-115. | MR | Zbl
- ,[2] Critical point theorems for indefinite functions, Invent. Math. 52 (1979), 241-273. | MR | Zbl
- ,[3] Free vibrations for a nonlinear wave equation and a theorem of P. H. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), 667-689. | MR | Zbl
- - ,[4] Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939-963. | MR | Zbl
- ,[5] "Un problème variationnel fortement indéfini sans compacité", Ph. D. Thesis, EPFL, Lausanne, 1992.
,[6] Bifurcation from the essential spectrum towards regular values, J. Reine Angew. Math. 445 (1993), 1-29. | MR | Zbl
- ,[7] Minimax characterisation of solutions for a semi-linear elliptic equation with lack of compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 377-404. | Numdam | MR | Zbl
- ,[8] Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 (1993), 179-186. | MR | Zbl
- - ,[9] A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), 133-160. | MR | Zbl
- - ,[10] Stationnary states of the nonlinear Dirac equation: a variational approach, Comm. Math. Phys. 171 (1995), 323-350. | MR | Zbl
- ,[11] Bifurcation from the essential spectrum for nonlinear pertubations of Hill's equation, In "Differential Equations-Stability and Control " S. ELAYDI (ed.), Marcel Dekker, New York, 1990, pp. 219-226. | Zbl
,[12] Lacunary bifurcation for operator equations and nonlinear boundary value problems on RN, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 237-270. | MR | Zbl
,[13] Solvability of nonlinear equations in spectral gaps of the linearisation, Nonlinear Anal. 19 (1992), 145-165. | MR | Zbl
- ,[14] Existence and bifurcation of solutions for nonlinear pertubations of the periodic Schrödinger equation, J. Differential Equations 100 (1992), 341-354. | MR | Zbl
- - ,[15] First order elliptic system and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), 483-503. | MR | Zbl
- ,[16] Bifurcation into gaps in the essential spectrum, J. Reine Angew. Math. 409 (1990), 1-34. | MR | Zbl
- ,[17] Bifurcation of homoclinic solutions for Hamiltonian systems, in preparation.
,[18] Solution in spectral gaps for a nonlinear equation of Schrödinger type, J. Differential Equations 112 (1994), 53-80. | MR | Zbl
,[19] "Approche minimax des solutions d'une équation semi-linéaire elliptique en l'absence de compacité", Ph. D. Thesis, EPFL, Lausanne, 1992.
,[20] On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on RN, Proc. Roy. Soc. Edinburgh, to appear. | Zbl
,[21] Local conditions insuring bifurcation from the continuous spectrum, Math. Z., to appear. | MR | Zbl
,[22] Bounded Palais-Smale mountain-pass sequences, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 23-28. | MR | Zbl
- ,[23] Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations 3 (1998), 441-472. | MR | Zbl
- ,[24] Variational Methods", Springer, Second Edition, 1996. | MR | Zbl
, "[25] "Bifurcation into spectral gaps", Société Mathématique de Belgique, 1995. | MR | Zbl
,[26] Bifurcation into spectral gaps for a noncompact semilinear Schrödinger equation with nonconvex potential, Preprint.
,[27] Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations 21 (1996), 1431-1449. | MR | Zbl
- ,[28] Minimax Theorems", Birkhaüser, Boston, 1996. | MR | Zbl
, "