@article{ASNSP_1998_4_27_1_69_0, author = {Liskevich, Vitali and R\"ockner, Michael}, title = {Strong uniqueness for certain infinite dimensional {Dirichlet} operators and applications to stochastic quantization}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {69--91}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 27}, number = {1}, year = {1998}, mrnumber = {1658889}, zbl = {0953.60056}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1998_4_27_1_69_0/} }
TY - JOUR AU - Liskevich, Vitali AU - Röckner, Michael TI - Strong uniqueness for certain infinite dimensional Dirichlet operators and applications to stochastic quantization JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 SP - 69 EP - 91 VL - 27 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1998_4_27_1_69_0/ LA - en ID - ASNSP_1998_4_27_1_69_0 ER -
%0 Journal Article %A Liskevich, Vitali %A Röckner, Michael %T Strong uniqueness for certain infinite dimensional Dirichlet operators and applications to stochastic quantization %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1998 %P 69-91 %V 27 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1998_4_27_1_69_0/ %G en %F ASNSP_1998_4_27_1_69_0
Liskevich, Vitali; Röckner, Michael. Strong uniqueness for certain infinite dimensional Dirichlet operators and applications to stochastic quantization. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 27 (1998) no. 1, pp. 69-91. http://www.numdam.org/item/ASNSP_1998_4_27_1_69_0/
[1] An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal. 1 (1992), 307-317. | MR | Zbl
- Y - ,[2] Addendum to: An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal. 2 (1993), 195-198. | MR | Zbl
- - ,[3] Dirichlet operators via stochastic analysis, J. Funct. Anal. 128 (1995), 102-138. | MR | Zbl
- Y - ,[4] Ergodicity for the stochastic dynamics of quasi-invariant measures with applications to Gibbs states. SFB-343-Preprint 1996, To appear in: J. Funct. Anal. | MR | Zbl
- - ,[5] Dirichlet forms on topological vector spaces-construction of an associated diffusion process, Probab. Theory Related Fields 83 (1989), 405-434. | MR | Zbl
- ,[6] "Dirichlet forms, quantum fields and stochastic quantization. Stochastic analysis, path integration and dynamics", Research Notes in Mathematics, vol. 200, 1-21. Editors: K. D. Elworthy, J. C. Zambrini. Harlow: Longman 1989. | MR | Zbl
- ,[7] Classical Dirichletforms on topological spaces-Closability and Cameron-Martin formula, J. Funct. Anal. 88 (1990), 395-436. | MR | Zbl
- ,[8] Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Related Fields 89 (1991), 347-386. | MR | Zbl
- ,[9] Dirichlet form methods for uniqueness of martingale problems and applications, in: Stochastic Analysis. Proceedings of Symposia in Pure Mathematics Vol. 57, 513-528. Editors: M. C. Cranston, M. A. Pinsky. Am. Math. Soc.: Providence, Rhode Island 1995. | MR | Zbl
- ,[10] Girsanov transform for symmetric diffusions with infinite dimensional state space., Ann. Probab. 21 (1993), 961-978. | MR | Zbl
- - ,[11] Markov uniqueness and its applications to martingale problems, stochastic differential equations and stochastic quantization, C.R. Math. Rep. Acad. Sci. Canada XV (1993), 1-6. | MR | Zbl
- - ,[12] Markov uniqueness for a class of infinite dimensional Dirichlet operators, in: Stochastic Processes and Optimal Control. Stochastic Monographs 7 (eds. H. J. Engelbert et al.), pp. 1-26, Gordon&Breach, 1993. | MR | Zbl
- - ,[13] "Spectral methods in infinite dimensional analysis", Naukova Dumka, Kiev, 1988. | MR
- ,[14] Elliptic regularity and essential self-adjointness of Dirichlet operators on Rn, SFB-343 Preprint (1996). | MR
- - ,[15] Stochastic quantization offield theory in finite and infinite volume, J. Funct. Anal. 81 (1988), 184-206. | MR | Zbl
- - ,[16] Dirichlet Forms and Analysis on Wiener Space", de Gruyter, Berlin-New York, 1991. | MR | Zbl
- , "[17] Heat Kernels and Spectral Theory", Cambridge University Press, Cambridge-New York- New Rochelle-Melbourne-Sydney, 1989. | MR | Zbl
, "[18] Introduction to stochastic quantization, Preprint (1996).
- ,[19] Uniqueness and non-uniqueness of singular diffusion operators, Doktorarbeit, Bielefeld (1997). | Zbl
,[20] Dirichlet Forms and Symmetric Markov Processes", de Gruyter, Berlin- New York,1994. | MR | Zbl
- - , "[21] Existence, uniqueness and ergodicity for stochastic quantization equations, Preprint (1995). | MR
- ,[22] Quantum Physics: A Functional Integral Point of View", New York/Heidelberg/Berlin: Springer 1996. | MR
- , "[23] Exponential integrability and applications to stochastic quantization, Preprint (1996). | MR
- ,[24] On the stochastic quantization of field theory, Comm. Math. Phys. 101 (1985), 406-436. | MR | Zbl
- ,[25] Large deviation estimates in the stochastic quantization of Φ42, Comm. Math. Phys. 130 (1990), 111-121. | Zbl
- ,[26] On a class of stochastic reaction-diffusion equations in two space dimensions, J. Phys. A 24 (1991), 4123-4128. | MR | Zbl
- ,[27] "Lectures on elliptic and parabolic equations in Hölder spaces", Graduate Studies in Mathematics, Vol. 12. American Mathematical Society, 1996. | MR | Zbl
,[28] Non-homogeneous boundary value problems and applications, in: Grundlehren Math. Wiss., Berlin: Springer, 1972. | Zbl
- ,[29] Some problems on Markov semigroups, in: Schrödinger operators, Markov semigroups, wavelet analysis, operator algebras Mathematical topics Advances in partial differential equations 11, pp. 163-217 (eds M.Demuth at al.) Akademie Verlag, Berlin, 1996. | MR | Zbl
- ,[30] Smoothness estimates and uniqueness for the Dirichlet operator, in: Operator Theory: Advances and Applications 70 (1994), 149-152. | MR | Zbl
,[31] Dirichlet operators: a priori estimates and the uniqueness problem, J. Funct. Anal. 109 (1992), 199-213. | MR | Zbl
- ,[32] Introduction to the Theory of (Non-symmetric) Dirichlet Forms, Springer-Verlag, Berlin-Heidelberg -New York- London- Paris-Tokyo, 1992. | MR | Zbl
- , "[33] Martingale problems for stochastic PDE's. Preprint (1997), To appear in: Stochastic partial differential equations: Six Perspectives. Editors: R. Carmona, B. L. Rozowski. AMS Series Monographs and Reviews. | Zbl
- ,[34] Stochastic approach to Euclidean field theory (Stochastic quantization), in: New perspectives in Quantum Field Theory. Editors: J. Abad, M. Asorey, A. Cruz. Singapore: World Scientific, 1986. | MR
,[35] R. NAGEL (editor), "One-Parameter Semigroups of Positive Operators", Lecture Notes in mathematics 1184, Springer-Verlag, Berlin-Heidelberg- New York, 1986. | MR | Zbl
[36] The free Markov field, J. Funct. Anal. 12 (1973), 211-227. | MR | Zbl
,[37] Perturbation theory without gauge fixing, Scienta Sinica 24 (1981), 383-496. | MR
- ,[38] "Methods of Modem Mathematical Physics IV", Analysis of Operators. Orlando, FL: Academic Press, 1978. | Zbl
- ,[39] Specifications and Martin boundaries for P (ϕ)2-random fields, Comm. Math. Phys. 106 (1986), 105-135. | Zbl
,[40] On uniqueness of generalized Schrödinger operators and applications, J. Funct. Anal. 105 (1992), 187-231. | MR | Zbl
- ,[41] Uniqueness of generalized Schrödinger operators and applications II, J. Funct. Anal. 119 (1994), 455-467. | MR | Zbl
- ,[42] Finite dimensional approximation of diffusion processes on infinite dimensional state spaces, Stochastics Stochastics Rep. 57 (1996), 37-55. | MR | Zbl
- ,[43] An example of regular (r, p)-capacity and essential self-adjointness of a diffusion operator in infinite dimensions, J. Math. Kyoto Univ. 35 (1995), 639-651. | MR | Zbl
,[44] The P(ϕ)2-Euclidean (Quantum) Field Theory", Princeton, NJ: Princeton University Press, 1974. | Zbl
, "[45] (Non-symmetric) Dirichlet operators on L1: existence, uniquness and associated Markov processes, SFB-343-Bielefeld Preprint (1997).
,[46] On the essential self-adjointness of generalized Schrödinger operators, J. Funct. Anal. 61 (1985), 98-115. | Zbl
,[47] Generalizations of Gross' and Minlos' theorems", in: Séminaire de Probabilités XXII, (J. Azema et. al.), 395-404, Lect. Notes in Math. 1372. Berlin: Springer, 1989. | Numdam | MR | Zbl
, "