@article{ASNSP_1998_4_26_2_383_0, author = {Kajitani, Kunihiko and Mikami, Masahiro}, title = {The {Cauchy} problem for degenerate parabolic equations in {Gevrey} classes}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {383--406}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 26}, number = {2}, year = {1998}, mrnumber = {1631601}, zbl = {0920.35067}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1998_4_26_2_383_0/} }
TY - JOUR AU - Kajitani, Kunihiko AU - Mikami, Masahiro TI - The Cauchy problem for degenerate parabolic equations in Gevrey classes JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 SP - 383 EP - 406 VL - 26 IS - 2 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1998_4_26_2_383_0/ LA - en ID - ASNSP_1998_4_26_2_383_0 ER -
%0 Journal Article %A Kajitani, Kunihiko %A Mikami, Masahiro %T The Cauchy problem for degenerate parabolic equations in Gevrey classes %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1998 %P 383-406 %V 26 %N 2 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1998_4_26_2_383_0/ %G en %F ASNSP_1998_4_26_2_383_0
Kajitani, Kunihiko; Mikami, Masahiro. The Cauchy problem for degenerate parabolic equations in Gevrey classes. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 26 (1998) no. 2, pp. 383-406. http://www.numdam.org/item/ASNSP_1998_4_26_2_383_0/
[1] The Method of Newton's Polyhedron in the Theory of Partial Differential Equations", Kluwer Academic Publisher, Dordrecht-Boston-London 1992. | MR | Zbl
- , "[2] Well-Posedness of the Cauchy problem for some evolution equations, Publ. Res. Inst. Math. Sci. 9 (1974), 613-629. | MR | Zbl
,[3] The Hyperbolic Cauchy Problem", Lecture Notes in Math. 1505, Springer-Verlag, Berlin, 1991. | MR | Zbl
- , "[4] On global real analytic solutions of the Degenerate Kirchhoff Equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 21 (1994), 279-297. | Numdam | MR | Zbl
- ,[5] Sur des conditions nécessaries pour les équations en évolution pour gue le problème de Cauchy soit bien posé dans les classes de fonctions C∞ I, J. Mat. Kyoto Univ. 30 (1990), 671-703. | Zbl
,[6] Sur des conditions nécessaries pour les équations en évolution pour gue le problème de Cauchy soit bien posé dans les classes de fonctions C∞II, J. Mat. Kyoto Univ. 31 (1991), 1-32. | Zbl
,[7] The Analysis of Linear Partial Differential Operators III", A Series of Comprehensive Studies in Math. 274, Springer-Verlag, Berlin, 1985. | MR | Zbl
, "[8] The Cauchy problem for degenerate parabolic equations and Newton polygon, Funkcial. Ekvac. 39 (1996), 449-468. | MR | Zbl
,[9] Degenerate parabolic differential equations-Necessity of the wellposedness of the Cauchy problem, J. Math. Kyoto Univ. 14 (1974), 461-476. | MR | Zbl
,[10] The symbol calculus for the fundamental solution of a degenerate parabolic system with applications, Osaka J. Math. 14 (1977), 55-84. | MR | Zbl
,