@article{ASNSP_1998_4_26_2_357_0, author = {Jiang, Tan and Yau, Stephen S.-T.}, title = {Intersection lattices and topological structures of complements of arrangements in $\mathbb {CP}^2$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {357--381}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 26}, number = {2}, year = {1998}, mrnumber = {1631597}, zbl = {0973.32015}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1998_4_26_2_357_0/} }
TY - JOUR AU - Jiang, Tan AU - Yau, Stephen S.-T. TI - Intersection lattices and topological structures of complements of arrangements in $\mathbb {CP}^2$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1998 SP - 357 EP - 381 VL - 26 IS - 2 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1998_4_26_2_357_0/ LA - en ID - ASNSP_1998_4_26_2_357_0 ER -
%0 Journal Article %A Jiang, Tan %A Yau, Stephen S.-T. %T Intersection lattices and topological structures of complements of arrangements in $\mathbb {CP}^2$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1998 %P 357-381 %V 26 %N 2 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1998_4_26_2_357_0/ %G en %F ASNSP_1998_4_26_2_357_0
Jiang, Tan; Yau, Stephen S.-T. Intersection lattices and topological structures of complements of arrangements in $\mathbb {CP}^2$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 26 (1998) no. 2, pp. 357-381. http://www.numdam.org/item/ASNSP_1998_4_26_2_357_0/
[1] The cohomology ring of the colored braid group, Mat. Zametki 5 (1969), 227-231; Math. Notes 5 (1969), 138-140. | MR | Zbl
,[2] Sur les groups de tresses, In: "Séminaire Bourbaki 1971/73", Lecture Notes in Math. 317, Springer-Verlag, Berlin, 1973, pp. 21-44. | Numdam | MR | Zbl
,[3] Monodromy of hypergeometric functions and non-lattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5-89. | Numdam | MR | Zbl
- ,[4] Arrangement and cohomology, preprint, 1996.
,[5] The cohomology andfundamental group of a hyperplane complement, Contemp. Math. 90 (1989), 55-72. | MR | Zbl
,[6] On the algebra associated with a geometric lattice, Adv. Math. 80 (1990), 152-163. | MR | Zbl
,[7] Homotopy types of line arrangements, Invent. Math. 111 (1993), 139-150. | MR | Zbl
,[8] General theory of hypergeometric functions, Soviet. Math. Doklady 33 (1986), 573-577. | MR | Zbl
,[9] Arrangements of lines and algebraic surfaces, In: "Arithmetic and Geometry," Vol. II, Progress in Math. 36, Birkhauser, Boston, 1983, pp. 113-140. | MR | Zbl
,[10] Topological and differential structures of the complement of an arrangement of hyperplanes, Proc. Sympos. Pure Math. 54 (1993), Part2, 337-357. | MR | Zbl
- ,[11] Diffeomorphic type of the complement of arrangement of hyperplanes, Compositio Math. 92 (1994) 133-155. | Numdam | MR | Zbl
- ,[12] Topological invariance of intersection lattices of arrangements in CP2, Bull. Amer. Math. Soc. 39 (1993), 88-93. | MR | Zbl
- ,[13] Simply connected algebraic surfaces of general type, Invent. Math. 89 (1987), 601-643. | MR | Zbl
,[14] The topology of normal singularities of an algebraic surfaces and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961). | Numdam | MR | Zbl
,[15] A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299-344. | MR | Zbl
,[16] Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189. | MR | Zbl
- ,[17] Unitary reflection groups and cohomology, Invent. Math. 59 (1980), 77-94. | MR | Zbl
- ,[18] Arrangements of Hyperplanes, Springer-Verlag, Berlin, 1992. | MR | Zbl
- ,[19] private communication, 1988.
- ,[20] On the fundamantal group of the complement of a complex hyperplane arrangement, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 13 (1994).
,[21] Ein Klasse von 3-dimensionalen Mannigfaltigkeiten, Invent. Math. 3 (1967), 308-333; 4 (1967), 87-117. | MR | Zbl
,[22] On irreducible 3-manifolds that are sufficiently large, Ann. Math. 87 (1968), 56-88. | MR | Zbl
,[23] Gruppen mit Zentrum and 3-dimensionale Mannigfaltien, Topology 6 (1967), 505-517. | MR | Zbl
,