@article{ASNSP_1997_4_25_3-4_713_0, author = {M\"uller, Stefan and Struwe, Michael and \v{S}ver\'ak, Vladimir}, title = {Harmonic maps on planar lattices}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {713--730}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 25}, number = {3-4}, year = {1997}, mrnumber = {1655538}, zbl = {1004.58007}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1997_4_25_3-4_713_0/} }
TY - JOUR AU - Müller, Stefan AU - Struwe, Michael AU - Šverák, Vladimir TI - Harmonic maps on planar lattices JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 713 EP - 730 VL - 25 IS - 3-4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1997_4_25_3-4_713_0/ LA - en ID - ASNSP_1997_4_25_3-4_713_0 ER -
%0 Journal Article %A Müller, Stefan %A Struwe, Michael %A Šverák, Vladimir %T Harmonic maps on planar lattices %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1997 %P 713-730 %V 25 %N 3-4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1997_4_25_3-4_713_0/ %G en %F ASNSP_1997_4_25_3-4_713_0
Müller, Stefan; Struwe, Michael; Šverák, Vladimir. Harmonic maps on planar lattices. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 3-4, pp. 713-730. http://www.numdam.org/item/ASNSP_1997_4_25_3-4_713_0/
[1] Weak convergence of Palais-Smale sequences for some critical functionals, Calc. Var. 1 (1993), 267-310. | MR | Zbl
,[2] On the singular set of stationary harmonic maps, Manusc. Math. 78 (1993), 417-443. | MR | Zbl
,[3] Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. | MR | Zbl
- - - ,[4] On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math. 46 (1993), 1041-1091. | MR | Zbl
- ,[5] Partial regularity for stationary harmonic maps into spheres, Arch. Rat. Mech. Anal. 116 (1991), 101-113. | MR | Zbl
,[6] Hp spaces of several variables, Acta Math. 129 (1972), 137-193. | MR | Zbl
- ,[7] Weak Convergence of Wave Maps from (1 +2)-Dimensional Minkowski Space to Riemannian Manifolds, Invent. Math. (to appear). | MR | Zbl
- - ,[8] Weak Compactness of Wave Maps and Harmonic Maps, preprint (1996).
- - ,[9] Regularité des applications faiblement harmoniques entre une surface et une variteé Riemannienne, C. R. Acad. Sci. Paris Ser. I Math. 312 (1991), 591-596. | MR | Zbl
,[10] The concentration compactness principle in the calculus of variations, the limit case, part II, Rev. Mat. Iberoam. 12 (1985), 45-121. | MR | Zbl
,[11] Global Existence of Wave Maps in 1 + 2 Dimensions for Finite Energy Data, Top. Methods Nonlinear Analysis, 7 (1996), 245-259. | MR | Zbl
- ,[12] Spatially Discrete Wave Maps in 1+2 Dimensions, in preparation.
- ,