Fully nonlinear second order elliptic equations : recent development
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 3-4, pp. 569-595.
@article{ASNSP_1997_4_25_3-4_569_0,
     author = {Krylov, Nicolai V.},
     title = {Fully nonlinear second order elliptic equations : recent development},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {569--595},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 25},
     number = {3-4},
     year = {1997},
     mrnumber = {1655532},
     zbl = {1033.35036},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1997_4_25_3-4_569_0/}
}
TY  - JOUR
AU  - Krylov, Nicolai V.
TI  - Fully nonlinear second order elliptic equations : recent development
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1997
SP  - 569
EP  - 595
VL  - 25
IS  - 3-4
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1997_4_25_3-4_569_0/
LA  - en
ID  - ASNSP_1997_4_25_3-4_569_0
ER  - 
%0 Journal Article
%A Krylov, Nicolai V.
%T Fully nonlinear second order elliptic equations : recent development
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1997
%P 569-595
%V 25
%N 3-4
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_1997_4_25_3-4_569_0/
%G en
%F ASNSP_1997_4_25_3-4_569_0
Krylov, Nicolai V. Fully nonlinear second order elliptic equations : recent development. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 3-4, pp. 569-595. http://www.numdam.org/item/ASNSP_1997_4_25_3-4_569_0/

[1] A.D. Aleksandrov, Dirichlet's problem for the equation Det ∥zij∥ = ϕ(z1, ... , zn, z, x1, ... , xn), Vestnik Leningrad Univ., Vol. 13, No. 1 (1958), 5-24 in Russian. | Zbl

[2] A.D. Aleksandrov, Research into maximum principle. VI, Izvestiya Vysshikh Uchebnykh Zavedenii, Ser. Math. No. 1 (1961), 3-20 in Russian. | MR

[3] A.D. Aleksandrov, Uniqueness conditions and estimates for solutions of the Dirichlet problem, Vestnik Leningrad. Univ., Vol. 18, No. 3 (1963), 5-29. English translation in Amer. Math. Soc. Transl. (2) Vol. 68 (1968), 89-119. | MR | Zbl

[4] B. Andrews, Evolving Convex Hypersurfaces, Thesis, Australian Nat. University, 1993. | MR

[5] S.V. Anulova - M.V. Safonov, Control of a diffusion process in a region with fixed reflection on the boundary, pp. 1-15 in "Statistics and Controlled Stoch. Processes", Steklov Seminars 1985-86, Vol. 2, Optimization Software Inc., New York, 1989. | MR | Zbl

[6] I. Ya. Bakel'Man, "Geometricheskie Metody Reshenia Ellipticheskikh Uravnenni", Nauka, Moscow, 1965 in Russian.

[7] G. Barles - P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymp. Anal., Vol. 4, No. 3 (1991), 271-283. | MR | Zbl

[8] S. Bernstein, Sur la généralization du problèms de Dirichlet. (Deuxième partie), Math. Annalen., Vol. 69 (1910), 82-136. | JFM | MR

[9] L.A. Caffarell, Interior a priori estimates for solutions of fully nonlinear equations, Annals of Math.130 No. 1 (1989), 189-213. | MR | Zbl

[10] L.A. Caffarelli, Interior W2,p -estimates for solutions of the Monge-Ampère equation, Annals of Math. 131 No. 1 (1990), 135-150. | MR | Zbl

[11] L.A. Caffarelli, The regularity of mappings with convex potentials, J. Amer. Math. Soc. Vol. 5 (1992), 99-104. | MR | Zbl

[12] L.A. Caffarelli, Boundary regularity of maps with convex potentials, Comm. Pure Appl. Math. Vol. 45 (1992), 1141-1151. | MR | Zbl

[13] L.A. Caffarelli - X. Cabré, "Fully Nonlinear Elliptic Equations", Colloquium Publications Vol. 43, American Math. Soc., Providence, RI, 1995. | MR | Zbl

[14] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, I. Monge-Ampère equations, Comm. Pure Appl. Math. Vol. 37 (1984), 369-402. | MR | Zbl

[15] L. Caffarelli - J.J. Kohn - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. Vol. 38 (1985), 209-252. | MR | Zbl

[16] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III. Functions of the eigenvalues of the Hessian, Acta Math., Vol. 155, No. 3-4 (1985), 261-301. | MR | Zbl

[17] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for the degenerate Monge-Ampère equation, Revista Mat. Iberoamericana, Vol. 86, No. 1, 2 (1986), 19-27. | MR | Zbl

[18] L. Caffarelli - L. Nirenberg - J. Spruck, Nonlinear second order equations, IV. The Dirichlet problem for Weingarten surfaces, Comm. Pure Appl. Math. Vol. 41 (1988), 47-70. | MR | Zbl

[19] E. Calabi, Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jorgens, Michigan. Math. J. Vol. 5 (1958), 2. | MR | Zbl

[20] P. Cannarsa - F. Gozzi - H.T. Soner, A dynamic programming approach to nonlinear boundary control problems of parabolic type, preprint.

[21] S.Y. Cheng - S.T. Yau, On the regularity of the Monge-Ampère equation det (∂2u/ ∂xi∂xj) = F(x, u), Comm. Pure Appl. Math. Vol. 30 (1977), 41-68. | Zbl

[22] R. Courant - D. Hilbert, "Methods of Mathematical Physics", Vol. 2, Interscience Publishers, NY, 1962. | Zbl

[23] M.G. Crandall - H. Ishii - P.L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin Amer. Math. Soc. Vol. 27, No. 1 (1992), 1-67. | MR | Zbl

[24] P. Delanoë P., Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator, Ann. Inst. Henri Poincaré, Vol. 8, No. 5 (1991), 443-457. | Numdam | MR | Zbl

[25] L.C. Evans, Classical solutions offully nonlinear convex, second order elliptic equations, Comm. Pure Appl. Math., Vol. 25 (1982), 333-363. | MR | Zbl

[26] L.C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators, Trans. Amer. Math. Soc., Vol. 275 (1983), 245-255. | MR

[27] W. Fleming - M. Sooner, "Controlled Markov Processes and Viscosity Solutions", Springer Verlag, 1993. | MR | Zbl

[28] C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Diff. Geom. Vol. 32 (1990), 299-314. | MR | Zbl

[29] D. Gilbarg - N.S. Trudinger, "Elliptic Partial Differential Equations of Second Order", 2nd ed., Springer Verlag, Berlin, 1983. | MR | Zbl

[30] B. Guan, The Dirichlet problem for a class offully nonlinear elliptic equations, Comm. in PDE, Vol. 19, No. 3-4 (1994), 399-416. | MR | Zbl

[31] B. Guan, The Dirichlet Problem for Monge-Ampère Equations in non-Convex domains, preprint.

[32] B. Guan - Y.Y. Li, Monge-Ampère Equations on Riemannian Manifolds, preprint. | MR

[33] B. Guan - J. Spruck, Boundary value problem on Sn for surfaces of constant Gauss curvature, Annals of Math., Vol. 138 (1993), 601-624. | MR | Zbl

[34] N.M. Ivochkina, Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zapiski Nauchn. Sem. LOMI AN SSSR, Vol. 131 (1983), 72-79 in Russian. English translation in J. Soviet Math. Vol. 30, No. 4 (1985), 2287-2292. | MR | Zbl

[35] N.M. Ivochkina, Solution of the Dirichlet problem for curvature equation of order m, Math. Sbornik, Vol. 180 No. 7 (1989), 867-887 in Russian. English translation in Math.USSR-Sb., Vol. 67, No. 2 (1990), 317-339. | MR | Zbl

[36] N.M. Ivochkina, The Dirichlet problem for the equations of curvature of order m, English translation in Leningrad Math. J. Vol. 2 No. 3 (1991), 631-654. | MR | Zbl

[37] B. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mach. Anal. Vol. 101 No. 1 (1988), 1-27. | MR | Zbl

[38] J.J. Kohn - L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure and Appl. Math. Vol. 20, No. 4 (1967), 797-872. | MR | Zbl

[39] N.J. Korevaar, A priori interior gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. Henri Poincaré, Analyse non lineaire, Vol. 4 No. 5 (1987), 405-421. | Numdam | MR | Zbl

[40] N.V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 46 No. 3 (1982), 487-523. English translation in Math. USSR Izvestija, Vol. 20 No. 3 (1983), 459-492. | MR | Zbl

[41] N.V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations in a domain, Izvestija Akad. Nauk SSSR, ser. mat., Vol. 47 No. 1 (1983), 75-108. English translation in Math. USSR Izvestija Vol. 22 No. 1 (1984), 67-97. | MR | Zbl

[42] N.V. Krylov, On degenerate nonlinear elliptic equations II, Matematicheski Sbornik, Vol. 121 No. 2 (1983), 211-232 in Russian. English translation in Math. USSR Sbornik Vol. 49 No. 1 (1984), 207-228. | MR

[43] N.V. Krylov, On estimates for the derivatives of solutions of nonlinear parabolic equations, Doklady Acad. Nauk SSSR, Vol. 274 No. 1 (1984), 23-26. English translation in Soviet Math. Dokl. Vol. 29 No. 1 (1984), 14-17. | MR | Zbl

[44] N.V. Krylov, "Nonlinear Elliptic and Parabolic Equations of Second Order", Nauka, Moscow, 1985 in Russian. English translation: Reidel, Dordrecht, 1987. | MR | Zbl

[45] N.V. Krylov, Some new results in the theory of nonlinear elliptic and parabolic equations, Proceed. of Intern. Congr. of Math., Berkeley Vol. 2 (1986), 1101-1109. | MR | Zbl

[46] N.V. Krylov, Smoothness of the value function for a controlled diffusion process in a domain, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 53 No. 1 (1989), 66-96 in Russian. English translation in Math. USSR Izvestija Vol. 34, No. 1 (1990), 65-96. | MR | Zbl

[47] N.V. Krylov, On first quasiderivatives of solutions of Itô's stochastic equations, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 56 No. 2 (1992), 398-426 in Russian. English translation in Math. USSR Izvestija Vol. 40 (1993). | MR | Zbl

[48] N.V. Krylov, "Lectures on Fully Nonlinear Second Order Elliptic Equations", Vorlesungsreihe No. 29, Rheinische Friedrich-Wilhelms-Universität, Sonderforschungsbereich 256, Bonn, 1993, 85.

[49] N.V. Krylov, Interior first order derivative estimates for solutions of nonlinear degenerate elliptic equations with constant coefficients, Comm. in PDE, Vol. 18 No. 1-2 (1993), 1-40. | MR | Zbl

[50] N.V. Krylov, On the general notion of fully nonlinear second order elliptic equation, Trans. Amer. Math. Soc. Vol. 347 No. 3, (1995), 857-895. | MR | Zbl

[51] N.V. Krylov, A theorem on degenerate elliptic Bellman equations in bounded domains, Differential and Integr. Eq. Vol. 8 No. 5 (1995), 961-980. | MR | Zbl

[52] N.V. Krylov - M.V. Safonov, An estimate of the probability that a diffusion process hits a set of positive measure, Doklady Acad. Nauk SSSR Vol. 245 No. 1 (1979), 18-20. English translation in Soviet Math. Dokl. Vol. 20 No. 2 (1979), 253-255. | MR | Zbl

[53] N.V. Krylov - M.V. Safonov, A certain property of solutions ofparabolic equations with measurable coefficients, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 44 No. 1 (1980), 161-175. English translation in Math. USSR Izvestija, Vol. 16, No. 1 (1981), 151-164. | MR | Zbl

[54] H.J. Kuo - N.S. Trudinger, Discrete methods for fully nonlinear elliptic equations, SIAM J. on Numer. Anal. Vol. 29 (1992), 123-135. | MR | Zbl

[55] H.J. Kuo - N.S. Trudinger, On the discrete maximum principle for parabolic difference operators, Math. Modelling and Numer. Anal. Vol. 27 No. 6 (1993), 719-737. | Numdam | MR | Zbl

[56] H.J. Kushner - P.G. Dupuis, "Numerical Methods for Stochastic Control Problems in Continuous Time", Springer-Verlag, 1992. | MR | Zbl

[57] N. Kutev, On the solvability of Monge-Ampère type equations in non-uniformly convex domains, Math. Z. Vol. 208 (1991), 167-176. | MR | Zbl

[58] N. Kutev, On the solvability of Dirichlet's problem for a class of nonlinear elliptic and parabolic equations, International Conference on Differential Equations, Barselona, 26-31 August 1991, Eds: C. Perelló, C. Simó and J. Solà-Morales, World Scientific, Singapore- New Jersey-London-Hong Kong Vol. 2, 666-670. | MR | Zbl

[59] H. Lewy, A priori limitations for solutions of Monge-Ampère equations I, II, Trans. Amer. Math. Soc. Vol. 37 (1935), 417-434; Vol. 42 (1937), 365-374. | JFM | MR

[60] G.M. Liberman - N.S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. Amer. Math. Soc. Vol. 295 No. 2 (1986), 509-546. | MR | Zbl

[61] M. Lin - N.S. Trudinger, The Dirichlet Problem for the Prescribed Curvature Quotient Equations, preprint, 1994. | MR

[62] P.L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part III. Uniqueness of viscosity solutions of general second order equations, J. Funct. Anal. Vol. 86 (1989), 1-18. | MR | Zbl

[63] P.L. Lions - N.S. Trudinger, Neumann problems for uniformly elliptic Bellman equations, Math. Z., Vol. 191 (1985), 1-15. | MR | Zbl

[64] P.L. Lions - N.S. Trudinger - J.I.E. Urbas, The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math. Vol. 39 (1986), 539-563. | MR | Zbl

[65] H. Minkowski, Volumen und Oberfläche, Math. Ann. Vol. 57 (1903). | JFM | MR

[66] C. Miranda, Su un problema di Minkowski, Rend. Sem. Mat. Roma Vol. 3 (1939). | JFM | MR | Zbl

[67] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. Vol. 6 (1953). | MR | Zbl

[68] O.A. Oleinik - E.V. Radkevich, "Second Order Equations with Nonnegative Characteristic form", Itogi Nauki, Mat. Analiz 1969, VINITI, Moscow, 1971 in Russian. English translation: Amer. Math. Soc., Plenum Press, Providence R.I., 1973. | MR

[69] A.V. Pogorelov, Regularity of convex surfaces with prescribed Gaussian curvature, Matem. Sbornik Vol. 31, 1 (1952), 88-103 in Russian. | MR | Zbl

[70] A.V. Pocorelov, Monge-Ampère equations of elliptic type, Izd-vo Kharkovskogo Un-ta, Kharkov, 1960 in Russian. English translation: Noordhoff, Groningen, 1964. | MR | Zbl

[71] A.V. Pocorelov, The Dirichlet problem for the n-dimensional analogue of the Monge-Ampère equation, Dokl. Akad. Nauk SSSR Vol. 201 No. 4 (1971), 790-793 in Russian. English translation in Soviet Math. Dokl. Vol. 12 (1971), 1727-1731. | MR | Zbl

[72] A.V. Pogorelov, "The Minkowski Multidimensional Problem", Nauka, Moscow, 1975 in Russian. English translation: J. Wiley, New York, 1978. | MR | Zbl

[73] G. Pragarauskas, Uniqueness of the solution of the Bellman equation in the case of general controlled random processes, Lit. Mat. Sbornik Vol. 22 No. 2 (1982), 137-156 in Russian. English translation in Lithuanian Math. J. Vol. 22 No. 2 (1982), 160-168. | MR | Zbl

[74] G. Pragarauskas, Approximation of controlled solutions of Itô equations by controlled Markov chains, Lit. Mat. Sbornik Vol. 23 No. 1 (1983), 175-188 in Russian. English translation in Lithuanian Math. J. Vol. 23 No. 1 (1983), 98-108. | MR | Zbl

[75] M.V. Safonov, Harnack inequality for elliptic equations and the Hölder property of their solutions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) Vol. 96 (1980), 272-287 in Russian. English translation in J. Soviet Math. Vol. 21 No. 5 (1983), 851-863. | MR | Zbl

[76] M.V. Safonov, On the classical solution of Bellman's elliptic equations, Dokl. Akad. Nauk SSSR, Vol. 278 No. 4(1984), 810-813 in Russian. English translation in Soviet Math. Dokl. Vol. 30 No. 2 (1984), 482-485. | MR | Zbl

[77] M.V. Safonov, Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients, Matem. Sbornik Vol. 132 No. 2 (1987), 275-288 in Russian. English translation in Math. USSR Sbornik Vol. 60 No. 1 (1988), 269-281. | MR | Zbl

[78] M.V. Safonov, On the classical solution ofnonlinear elliptic equations of second order, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 137 No. 2 (1988), 184-201 in Russian. English translation in Math. USSR Izvestija Vol. 33 No. 3 (1989), 597-612. | MR | Zbl

[79] D. Tataru, Viscosity solutions for Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl. Vol. 163 (1992), 345-392. | MR | Zbl

[80] D. Tataru, Viscosity solutions for the dynamic programming equations, Applied Math. and Optimiz. Vol. 25 (1992), 109-126. | MR | Zbl

[81] N.S. Trudinger, Fully nonlinear, uniformly elliptic equations under natural structure conditions, Trans. Amer. Math. Soc. Vol. 278 No. 2 (1983), 751-769. | MR | Zbl

[82] N.S. Trudinger, Hölder gradient estimates for fully nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh, Sect. A Vol. 108 (1988), 57-65. | MR | Zbl

[83] N.S. Trudinger, On the twice differentiability of viscosity solutions of nonlinear elliptic equations, Bull. Austral. Math. Soc. Vol. 39 (1989), 443-447. | MR | Zbl

[84] N.S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rat. Mech. Anal. Vol. 111 No. 2 (1990), 153-179. | MR | Zbl

[85] N.S. Trudinger, A priori bounds and necessary conditions for solvability ofprescribed curvature equations, Manuscripta Nath. Vol. 67 (1990), 99-112. | MR | Zbl

[86] N.S. Trudinger - J.I.E. Urbas, The Dirichlet problem for the equation ofprescribed Gauss curvature, Bull. Aust. Math. Soc. Vol. 28 (1983), 217-231. | MR | Zbl

[87] N.S. Trudinger - J.I.E. Urbas, On second derivatives estimates for equations of Monge-Ampère type, Bull. Austral. Math. Soc. Vol. 30 (1984), 321-334. | MR | Zbl

[88] K. Tso, Deforming a hypersurface by its Gauss-Kroneker curvature, Comm. Pure and Appl. Math Vol. 38 (1985), 867-882. | MR | Zbl

[89] J.I.E. Urbas, " Elliptic Equations of Monge-Ampère Type", PhD thesis, Australian Nat. University, 1984.

[90] J.I.E. Urbas, Global Hölder estimates for equations of Monge-Ampère type, Invent. Math. Vol. 91 (1988), 1-29. | MR | Zbl

[91] J.I.E. Urbas, Regularity of generalized solutions of Monge-Ampère equations, Math. Zeit. Vol. 197 (1988), 365-393. | MR | Zbl

[92] J.I.E. Urbas, On the existence of nonclassical solutions for two classes offully nonlinear elliptic equations, Indiana Univ. Math. J. Vol. 39 No. 4 (1990), 355-382. | MR | Zbl

[93] J.I.E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Zeit. Vol. 205 (1990), 355-372. | MR | Zbl

[94] J.I.E. Urbas, Regularity of almost extremal solutions of Monge-Ampère equations, Proc. Royal Soc. Edinburgh A Vol. 117 (1991), 21-29. | MR | Zbl

[95] J.I.E. Urbas, Boundary regularity for solutions of the equation of prescribed Gauss curvature, Ann. Inst. Henri Poincaré, Analyse non lineaire Vol. 8 No. 5 (1991), 499-522. | Numdam | MR | Zbl

[96] J.I.E. Urbas, An expansion of convex hypersurfaces, J. Diff. Geom. Vol. 33 (1991), 91-125; corrections to, ibid. Vol 35, 763-765. | MR

[97] J.I.E. Urbas, Nonlinear Oblique Boundary Value Problems for two Dimensional Curvature Equations, preprint.

[98] Wang Lihe, On the regularity theory offully nonlinear parabolic equations I-III, Comm. Pure Appl. Math. Vol. 45 (1992), 27-76, 141-178, 255-262. | MR | Zbl

[99] Wang Rouhuai - Wang Guanglie, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeastern Math. J. Vol. 8 No. 4 (1992), 417-446. | MR | Zbl

[100] Wang Rouhuai - Wang Guanglie, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs. Vol. 6 No. 3 (1993), 237-254. | MR | Zbl