@article{ASNSP_1997_4_25_1-2_27_0, author = {Ambrosio, Luigi and Soner, Halil Mete}, title = {A measure theoretic approach to higher codimension mean curvature flows}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {27--49}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 25}, number = {1-2}, year = {1997}, mrnumber = {1655508}, zbl = {1043.35136}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1997_4_25_1-2_27_0/} }
TY - JOUR AU - Ambrosio, Luigi AU - Soner, Halil Mete TI - A measure theoretic approach to higher codimension mean curvature flows JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 27 EP - 49 VL - 25 IS - 1-2 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1997_4_25_1-2_27_0/ LA - en ID - ASNSP_1997_4_25_1-2_27_0 ER -
%0 Journal Article %A Ambrosio, Luigi %A Soner, Halil Mete %T A measure theoretic approach to higher codimension mean curvature flows %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1997 %P 27-49 %V 25 %N 1-2 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1997_4_25_1-2_27_0/ %G en %F ASNSP_1997_4_25_1-2_27_0
Ambrosio, Luigi; Soner, Halil Mete. A measure theoretic approach to higher codimension mean curvature flows. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 1-2, pp. 27-49. http://www.numdam.org/item/ASNSP_1997_4_25_1-2_27_0/
[1] On the first variation of a varifold, Ann. of Math. 95 (1972), 417-491. | MR | Zbl
,[2] Level set approach to mean curvature flow in any codimension, J. Diff. Geom. 43 (1996), 693-737. | MR | Zbl
- ,[3] Front propagation and phase field theory, SIAM. J. Cont. Opt. 31 (1993), 439-469. | MR | Zbl
- - ,[4] Some results on minimal barriers in the sense of De Giorgi applied to motion by mean curvature, Rend. Atti Accad. Naz. XL, XIX (1995), 43-67. | MR | Zbl
- ,[5] Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mat. App. 6 (1995), 45-54. | MR | Zbl
- ,[6] Comparison results between minimal barriers and viscosity solutions for geometric evolutions, submitted to Ann. Sc. Norm. Sup., (1996). | Numdam | Zbl
- ,[7] Ginzburg-Landau vortices", Birkhäuser, Boston, 1994. | MR | Zbl
- - , "[8] The Motion of a Surface by its Mean Curvature", Princeton University Press, Princeton N. J., 1978. | MR | Zbl
, "[9] Functionals defined on measures and aplications to non equi-uniformly elliptic problems, Ann. Mat. Pura Appl. 159 (1991), 133-146. | MR | Zbl
- ,[10] Generation and propagation of interfaces by reaction diffusion equation, J. Diff. Eqs. 96 (1992), 116-141. | MR | Zbl
,[11] Su una teoria generale della misura (r - 1)-dimensionale in uno spazio a r dimensioni, Ann. Mat. Pura Appl. Ser IV 36 (1954), 191-213. | MR | Zbl
,[12] Nuovi teoremi relativi alle misure (r - 1)-dimensionali in uno spazio a r dimensioni, Ric. Mat. 4 (1955), 95-113. | MR | Zbl
,[13] Some conjectures on flow by mean curvature, in "Proc. Capri Workshop 1990", Benevento-Bruno-Sbordone (eds.), 1990.
,[14] Barriers, boundaries, motion of manifolds, "Lectures held in Pavia", 1994.
,[15] Developments of interfaces in Rn, "Proc. Royal Soc. Edinburgh" 116A (1990), 207-220. | Zbl
- ,[16] Évolution géométriques d'interfaces, C.R. Acad. Sci. Paris Sér. I Math. 309 (1989), 453-458. | MR | Zbl
- ,[17] Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992), 1097-1123. | MR | Zbl
- - ,[18] Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom. 20 (1984), 237-266. | MR | Zbl
,[19] Second fundamental form for varifolds and the existence of surfaces minimizing curvature, Indiana Univ. Math. J. 35 (1986), 45-71. | MR | Zbl
,[20] Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Diff. Geom. 38 (1993), 417-461. | MR | Zbl
,[21] Elliptic regularization and partial regularity for motion by mean curvature, Memoirs of AMS, Vol. 108, Number 520, (1994). | MR | Zbl
,[22] Lower bounds for generalized Ginzburg-Landau functionals, preprint. | MR
,[23] Scaling limits and regularity results for a class of Ginzburg-Landau systems, Ann. Inst. H. Poincaré, forthcoming. | Numdam | MR | Zbl
- ,[24] Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech. An. forthcoming. | MR | Zbl
- ,[25] Dynamics of Ginzburg-Landau vortices: the pinning effect, C.R. Acad. Sci. Paris 322 (1996), 625-630. | MR | Zbl
,[26] Solutions of Ginzburg-Landau equations and critical points of renormalized energy, Ann. Inst. Henri Poincare 12 (1995), 599-622. | Numdam | MR | Zbl
,[27] Some dynamical properties of Ginzburg-Landau votices, C.P.A.M. 49 (1996), 323-359. | MR | Zbl
,[28] Mathematical models of microstructure and the Calculus of variations, preprint MPI Leipzig, 1997.
,[29] Motion of vortex lines in the Ginzburg-Landau model, Physica D. 47 (1991), 353-360. | MR | Zbl
- ,[30] Weak convergence of completely additive functions on a set, Siberian Math. J. 9 (1968), 487-498.
,[31] Lectures on Geometric Measure Theory, Centre for Mathematical Analysis ", Australian National University, Canberra, 1984. | MR | Zbl
, "[32] Ginzburg-Landau equation and motion by mean curvature, I: convergence; II: development of the initial interface, J. Geometric Analysis (1993), to appear. | MR
,[33] On the asymptotic behaviour of minimizers of the Ginzburg-Landau model in 2 dimensions, Diff. and Int. Equations 7 (1994), 1613-1624. | MR | Zbl
,