@article{ASNSP_1997_4_25_1-2_1_0, author = {Acanfora, Fausto and Mortola, Stefano}, title = {Non semicontinuous quadratic integral functionals with continuous coefficients}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {1--9}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 25}, number = {1-2}, year = {1997}, mrnumber = {1655506}, zbl = {1015.49013}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1997_4_25_1-2_1_0/} }
TY - JOUR AU - Acanfora, Fausto AU - Mortola, Stefano TI - Non semicontinuous quadratic integral functionals with continuous coefficients JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 1 EP - 9 VL - 25 IS - 1-2 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1997_4_25_1-2_1_0/ LA - en ID - ASNSP_1997_4_25_1-2_1_0 ER -
%0 Journal Article %A Acanfora, Fausto %A Mortola, Stefano %T Non semicontinuous quadratic integral functionals with continuous coefficients %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1997 %P 1-9 %V 25 %N 1-2 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1997_4_25_1-2_1_0/ %G en %F ASNSP_1997_4_25_1-2_1_0
Acanfora, Fausto; Mortola, Stefano. Non semicontinuous quadratic integral functionals with continuous coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 1-2, pp. 1-9. http://www.numdam.org/item/ASNSP_1997_4_25_1-2_1_0/
[1] Semicontinuity, relaxation and integral representation in the calculus of variations", Longman Scientific & Technical, 1989. | MR | Zbl
, "[2] Some properties of Γ-limits of integrals functionals, Ann. Mat. Pura Appl. 122 (1979), 1-60. | Zbl
- ,[3] An Introduction to Γ-convergence", Birkhäuser, 1993. | Zbl
, "[4] Integral representation on BV(Q) of r-limits of variational integrals, Manuscripta Math. 30 (1980), 387-413. | MR | Zbl
,[5] L2-lower semicontinuity of functionals of quadratic type, Ann. Mat. Pura Appl. 129 (1981), 305-326. | MR | Zbl
- ,[6] La Méthode Métrique en Calcul des Variations", Hermann, Paris, 1941. | Zbl
, "[7] On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc. 101 (1961), 139-167. | MR | Zbl
,