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Elliptic Regularity and Essential Self-adjointness
of Dirichlet Operators on Rn

VLADIMIR I. BOGACHEV - NICOLAI V. KRYLOV

MICHAEL ROCKNER

One of the classical problems in mathematical physics is the problem of
essential self-adjointness for Dirichlet operators

with domain (:= all infinitely differentiable functions on R" with com-
pact support) on ~c,c), where A is a measure on with density p ~02,
with w and 0 (By definition = 0 if p(x) = 0).
The results obtained in [ 1 ], [8], [9], [ 11 ], [14], [25] have been important
steps in the investigation of this problem. One motivation to study this prob-
lem is that the operator -L is unitary equivalent to the Schrodinger operator
H := -A + V, V := O~p/~p, considered on (see, e.g., [1], [5])
where dx denotes Lebesgue measure on The corresponding isomorphism
L2 (~n ~ JL) - dx) is given by / ~ ~ . f. Conversely, if H = -A + V
is a Schrodinger operator on with lower bounded spectrum 
whose minimum is an eigenvalue E, then the isomorphism above holds for the
potential V - E (and cp := the ground state). Since this unitary equivalence
only holds for sufficiently regular cp, Dirichlet operators are also sometimes
called generalized Schrddinger operators. We emphasize that under the above
isomorphism in general domains change drastically. Hence known results on
the essential self-adjointness of H with domain on do
not apply. On the contrary in many cases the essential self-adjointness of
Dirichlet operators implies this property for Schrodinger operators (see e.g. [16,
pp. 217, 218]).

There are basically two different types of sufficient conditions known for
the essential self-adjointness of Dirichlet operators: global and local. A typical
global condition obtained in [14] is: IfJl I E L4 (II~n, ~,c) (provided p &#x3E; 0 a.e.).
The best local condition obtained so far has been found in [25] where p has
been required to be locally Lipschitzian and strictly positive if n &#x3E; 2 (and
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with even weaker conditions if n = 1, cf. Remark 2 below). In particular,
this means that f3 is locally bounded. One of our main results in this paper
(cf. Theorem 7 below) says that L is essentially self-adjoint provided that p
is merely locally bounded and locally uniformly positive (cf. below) and 1f31 ( E

for some y &#x3E; n (which as we shall show below, is equivalent to
1f31 I e cf. Corollary 8). The proof of Theorem 7 is based on an

elliptic regularity result (which is the first main result of this paper) giving 
regularity of distributional solutions of the elliptic equation L * F = 0, where
L f : := 0 f + B, V f) + c f . This result is formulated as Theorem 1 below.

As a consequence one gets Hi§j-regflarity of invariant measures for diffusion
processes with drifts satisfying certain mild local integrability conditions (which
extends a result from [3], [4] ). Finally, we note that for the above mentioned
special applications to Schrodinger operators H = - 0 -~- V, of course, one
still needs corresponding information about the ground state w to ensure that

Throughout this paper, Q is a (fixed) open subset of JRn, and for r E

(-00, (0) and p &#x3E; 1, denotes the class of (generalized) functions u
on 2, such that E dx) for every 1fr E These spaces
coincide with the usual Sobolev spaces for integer r &#x3E; 1. All properties of these
spaces which are needed below can be found, for instance, in [23]. If v is a

signed measure, then by where X := 
and v) := Iv!). If, in addition, v « dx, then we write v instead
of Furthermore, ( , ) denotes the Euclidean inner product on R" and I. [
the corresponding norm.

THEOREM 1. Let n &#x3E;: 2 and let JL, v be (signed) Radon measures on Q. Let

B = (Bi ) : Q ~ c : maps such that IBI, c e i,c,). Assume
that

where

Then:

(i) A E for any p &#x3E; 1 and E &#x3E; 0. Here 1 - n(p - 1)/p &#x3E; 0

if p E [ 1, and, in particular, it admits a density F E Lp, (0, dx) for any

(ii) I JL) and v E L1 ~~n Y+2~ (SZ, dx) where n &#x3E;
y &#x3E; 1, then F := dg E for any p E [l, n/(n - y + 1)). In

particular, F E dx) for any p E [ l , n / (n - y)), where (here and

~ ~ ~ 

below) nny = oo, if y = n.
(iii) If y &#x3E; n and either.
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then it admits a density and, in particular

REMARK 2 (i) There is a similar regularity result for n = 1 (whose proof
is easier and, in fact, quite elementary). Therefore, Theorem 7 and Corollary 8
below also hold in this case. However, our conditions there for n = 1 are then
obviously equivalent to: E and (the continuous version of) p
is strictly positive. But under these conditions in the special case n = 1 both
results are already contained in [25]. So, we state and prove our results only
for n &#x3E; 2.

(ii) Note that since c E p) and v is a Radon measure, the assumptions
on c, v in Theorem 1 (ii) are automatically fulfilled, if y  2, provided v « dx.

To prove Theorem 1 we use the following lemma.

(iii) If A is a Radon measure on Q, then J1 E (S2) whenever p &#x3E; 1 and
m &#x3E; n(1 - 1/p).

PROOF. Assertion (i) is well-known. Specifically, its first statement is a

well-known elliptic regularity result and the second statement follows from the
boundedness of Riesz’s transforms. Assertion (ii) is just the Sobolev imbedding
theorems (see [23]). Assertion (iii) follows from these imbedding theorems
since, for regular sub-domains U of Q, C C(U) if qm &#x3E; n whence

by duality the space contains all finite measures
on U. 0

PROOF OF THEOREM 1. (i): We have that in the sense of distributions

on Q. Here by Lemma 3 (iii), the right-hand side belongs to /7~ ~ B~) if

m &#x3E; n(I - 1 / p) . By Lemma 3 (i) we conclude It E which leads
to the result after substituting m = n ( 1 - 1 / p) + ~ .
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Before we prove (ii), (iii) we need some preparations. Fix a pi &#x3E; 1 and
assume that F := dx E dx). (Such p, exists by (i).) Define

and observe that owing to the inequalities 1  y and PI &#x3E; 1, we have 1  r 

y. Next, starting with the formula

and using H61der’s inequality (with s = r ( &#x3E; 1 ) and t : := S S 1 = 1-) andr y -r

the assumptions IBIIFl1/Y E and F e we get that
Bi F e By Lemma 3 (i)

(ii): set

and note that ~&#x3E;l4~/&#x3E;2~~~,in particular, q  y in any case. Hence

repeating the above argument with c, y /2, q replacing y, r, respectively
we obtain that

Fix p 1 &#x3E; 1 such that F = dx E and let r, q be as in (4), (6),
correspondingly. Since y  n we have that q  n, which by (7) and Lemma
3 (ii) resp. (iii) yields cF E (Q) if q &#x3E; 1 resp. cF e for

any S E (1, n/(n - 1)) 
It turns out that if p 1  n / (n - y), then

Indeed, if q &#x3E; 1, then (8) follows from the fact that if pi 1 E (1, n / (n - y ) ) the
inequality r  nq / (n - q ) holds. If q - 1, then y  2 and (8) follows from
the fact that r  n/(n - y + 1)  n/(n - 1) for pi  n/(n - y).

Finally by Lemma 3 (ii) we have v E if y &#x3E; 2 andY Y loc

v E for any S E (1, n / (n - 1 ) ) if y  2. In the same way as above,
v E 1 (Q) whenever 1  p 1  n / (n - y). This along with (5) and (8) shows
that the right-hand side of (3) is now in Hi~ 1 (S2). By Lemma 3 (i) we have
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and by Lemma 3 where

Thus we get

and

One can easily check that p2 = f (PI) &#x3E; p 1 if p 1  n / (n - y ), and that the
only positive solution of the equation q = f (q ) is q = n / (n - y). Therefore,
by taking PI from ( 1, n/ (n - 1)), which is possible by (i), and by defining
= we get an increasing sequence of pk t n / (n - y), which implies

that F for any p  n / (n - y ) .
But as n=/(n - y), r(pk) (defined according to (4)) increasingly

converges to 
- -

By (9) this proves (ii).
(iii): First we consider case (b) in which [B[ I E c E 

E Lloc dx). By the last assertion in (ii) we have F E
for any (finite) p 1 &#x3E; 1. Let r : := be defined as in (4). Then

1  r  y and (5) holds. Set

2  n  y, implies &#x3E; 1. Therefore, (since p 1 &#x3E; 1) it follows that 1  q 

Hence repeating the arguments that led to (5) with c, replacing ,

y, r respectively we obtain cF E dx), thus cF E by
Lemma 3 (ii). Observe that when pi --~ oo, we have r t y, q t nY/(n + y),
and q) t y. Therefore, combining this with our assumption that

v E which by Lemma 3 (ii) is contained in by
taking pi large enough, we see that the right-hand side in (3) is in (Q)
for any E E (0, / 2013 1). By Lemma 3 (ii) we conclude F E and since

y &#x3E; n, the function F is locally bounded. Now we see that above we can
take PI = oo and therefore the right-hand side of (3) is in (~2), which
by Lemma 3 (i) gives us the desired result.

In the remaining case (a) we take PI &#x3E; y/(y 2013 1) and assume that F E
Lpl (0 , dx). Then instead of (4) and (10) we define
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and observe that owing to p 1 &#x3E; y/(y - 1) we have r &#x3E; 1, which (because
PF~ allows us to apply Holder’s inequality starting with IBFlr =

to conclude that (5) holds. Since c E /.i), resp. ny &#x3E; 1

and +F I = q -1, we also have that c F E Obviously,n+Y lo

q  n. As in part (ii) this yields that c F E Hlo  n q ’ -1 ( S2 ) if q &#x3E; 1 and

c F E for any S E (1, n / (n - 1 ) ) if q - 1. We claim that (8) holds
(with r = r(pi) as in (11) for all pi &#x3E; y/(y - 1), ny/(ny - n - y).

Indeed, if q &#x3E; 1, then = r. If q = 1, then 
But since y), we have pi 1  y), which is
equivalent to the inequality r  n / (n - 1 ) .

Thus, since v E dx) C C (because r 
y), it follows by Lemma 2 (i) that:

Provided r  n the latter in turn by Lemma 3 (ii) implies that
Summarizing we have thus shown:

and

and

where

Also notice that y / (y - 1)  n / (n -1 )  so that by (i) we can take a pi 1
to start with. Then starting with PI close enough to n / (n -1 ), by iterating (13)
we always increase p by a certain factor &#x3E; 1. While doing so we can obviously
choose the first p so that the iterated p’s will be never equal to n y / (n y - n - y)
and the corresponding r’s will not coincide with n. Then after several steps
we shall come to the situation where r &#x3E; n, and then we conclude from (12)
that F is locally bounded (one cannot keep iterating (13) infinitely having the
restriction r  n). As in case (b) one can now easily complete the proof. 0

REMARK 4 (i) For sufficiently regular F with no zeros operators of the type
considered above become special cases of operators L = Ei,j -f- q.
Additional information (including further references) about the essential self-

adjointness of such operators, however, considered on L2(Rn, dx) can be found
in [8], [15].

(ii) In a forthcoming paper the parabolic case will be studied. It is, however,
immediate from Theorem 1 that if t « pt is differentiable such that !At is a
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Radon measure, then for fixed t the densities Ft of w.r.t. dx exist and all

respective assertions in Theorem 1 hold for Ft.
(iii) Note that the only property of the operator Lo := A used above

was the one mentioned in Lemma 3 (i), i.e., that u E provided
Lou E It is known (see, e.g., [21, p. 270]) that this holds for

arbitrary non-degenerate second order elliptic operators with smooth coefficients.
Therefore, Theorem 1 remains valid if we replace A by any non-degenerate
second order elliptic operator Lo with smooth coefficients. Moreover, as a

thorough inspection of the proof of Theorem 4.2.4 in [22] shows, one can relax
the assumption about the smoothness of the coefficients of Lo here even more.
Note, in particular, that Theorem 1 extends to elliptic second order operators on
smooth Riemannian manifolds with non-degenerate smooth second order parts.

(iv) It should be noted that the elliptic equations discussed here cannot be
reduced to those considered e.g. in [10], [13], [18], [24]. There are two major
differences. The first is that the solutions considered there by definition are
supposed to be in Hlocl (R"). Secondly, our integrability conditions for B are
w.r.t. a measure Jvt which is a solution of our equation. For this reason, B need
not be locally Lebesgue integrable; e.g. if p is given by the density x2 exp(-x2)
on ~1, then it solves our elliptic equation with B(x) = fl(x) = -2x + 2/x. Of
course, Theorem 1 (iii) shows that under sufficient integrability conditions our
solutions become solutions also in the sense of the above mentioned references.

However, in general we get a wider class of solutions. Note also that in our

setting due to the weak assumptions on B the elliptic regularity does not imply
that solutions belong to the second Sobolev class (e.g. any it = pdx with
p E satisfies (1) with B := V p / p, c := 0, v := 0).

The next example shows that assertion (iii) of Theorem 1 fails if n + 8 is

replaced by n - e. (Then F does not even need to be in 

EXAMPLE 5. Let n &#x3E; 3 and

where a = n - 3. Then the function F (x ) = (er - e -r ) r - ~n -2~ , r - ~ lxi, is

locally dx-integrable and L* F = 0 in the sense of distributions, but F is not in

L,2,1 n) Here B(x) _ = and IBI [ E dx)
for all E &#x3E; 0. In a similar way, if there is no "-F" in the equation above,
then the function F(x) = r-~n-3~ has the same properties.

PROOF. Observe that Fxi , are locally dx-integrable. Therefore, the

equation L*F = 0 follows easily from the equation on (0, oo)

which is satisfied for the function f (r) = (~ 2013 ~ ~ ~ ~. It remains to
note that F, ~F and AF are locally dx-integrable, since f(r)rn-1, f’ (r)rn-1,
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f"(r)rn-1 are locally bounded, but VF is not dx-square-integrable at the origin.
(If n &#x3E; 6, then also F is not dx-square-integrable at the origin). In the case
without "- F" in the equation similar (but even simpler) arguments can be used
to show that F(x) = r- (n-3) has the same properties. 0

REMARK 6. Applying the regularity result in Theorem 1 (ii) above to the
case c = 0 = v we get, in particular, the existence of a density in 
for p E [ 1, n n ~ ), for any invariant measure it of a diffusion ~t driven by
the stochastic differential equation d~t - + B(~t)dt, where the drift B is
assumed to be in JL). This is true for any interpretation of a solution
which implies (1) for invariant measures. Thus, we get an improvement of a
part of a theorem in [3], [4] (see also [2] for the case of a non-constant second
order part). In [3], [4] under the a priori assumption that it is a probability
measure and assuming that B ~ is globally in JL), it was shown that

JL admits a density in H 1 ~ 1 (Il~n ) . (We would like to mention that under these
stronger conditions the latter result can also be deduced from [6]).

We say that a measurable function f on R n is locally uniformly positive if
essinfu f &#x3E; 0 for every ball U c 

THEOREM 7. Let n &#x3E; 2 and let ft be a measure on R n with density p := cp2,
cp E H2’ 1 (IIn), which is locally uniformly positive. Assume that I E LY (R n, p,),loc (R lo

where fl and y &#x3E; n. Then the operator

with domain essentially selfadjoint on 

PROOF. First we note that since A satisfies (1) with B:==~,c:=0,p:=0,
it follows by Theorem 1 (iii), part (b), that p is continuous, hence locally
bounded. Assume that there is a it) such that

Recall that by definition f3 - 0 on the set {p - O} (which is reasonable
since V p = 0 dx-a.e. on {p = OJ). Clearly, [ e Consequently,
by Theorem 1 (iii), Part (a), F e Hlocl (R"). In particular, F is continuous and
locally bounded. Then g = F/ p E H ~1 (II~n ) (~ L lo (II~n ), I e 
Therefore, we can integrate by parts in equality (14) which yields for every
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Then by the product rule

Since equality (15) extends to all ~ in H2~ 1 (I~Bn ) with compact support, we can
apply (15) and use (16) to obtain

Thking w := 1fr g, one gets

Hence, we get

Taking a sequence 1frk e such that 0 ~ 1, = 1
if k, - 0 if Ixl ( &#x3E; k + 1, and supk I = M  oo, we get by
Lebesgue’s dominated convergence theorem that the left hand side of (17) tends
to while the right hand side tends to zero. Thus, g = 0. By a standard
result (see, e.g., [12]) this implies the essential self-adjointness of (L, 
on L 2 (ll~n , ~c ) . 0

COROLLARY 8. The assertion of the previous theorem holds true if is a

measure on M" with density p := cp2, y~ E and I e dx), where
fl := V pi p and y &#x3E; n.

PROOF. Note that p admits a continuous strictly positive modification. In-

deed, if fn := e N, then fn 2013 log p in dx), which easilyn n-m

follows from the fact that log p E dx). The latter in turn follows from
[3, Lemma 6.4]. Consequently by the Poincare inequality, the sequence 
is bounded in for every open ball U C By the compactness of the
embedding C(U), a subsequence of the sequence of the continuous
modifications of converges locally uniformly to log p. Whence p is

continuous and strictly positive. In particular, 0
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REMARK 9. If it = p dx with and ~O the so-called
Markov uniqueness (i.e, the uniqueness of a Markovian semigroup on ~.c)
with generator given by Lf = 0 f + on always holds with
f3 := 0p/p (see [16], [17]). However, in general Markov uniqueness is weaker
than the essential self-adjointness of (L, on (see [7]).
Optimal (local or global) conditions for the essential self-adjointness remain
unknown except for the one-dimensional case investigated in [25] and [7]. In

fact, recently in [7] a complete characterization of the essential self-adjointness
for Dirichlet operators has been given in the case n = 1.
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