AnNALI DELLA

Scuola Normale Superiore di Pisa

Classe di Scienze

Vladimir I. Bogachev
Nicolai V. Krylov
Michael Röckner
\section*{Elliptic regularity and essential self-adjointness of Dirichlet operators on \mathbb{R}^{n}}
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4 e série, tome 24, no 3 (1997), p. 451-461
http://www.numdam.org/item?id=ASNSP_1997_4_24_3_451_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Elliptic Regularity and Essential Self-adjointness of Dirichlet Operators on \mathbb{R}^{n}

VLADIMIR I. BOGACHEV - NICOLAI V. KRYLOV
MICHAEL RÖCKNER

One of the classical problems in mathematical physics is the problem of essential self-adjointness for Dirichlet operators

$$
L:=\Delta+\beta \cdot \nabla
$$

with domain $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ (:= all infinitely differentiable functions on \mathbb{R}^{n} with compact support) on $L^{2}\left(\mathbb{R}^{n}, \mu\right)$, where μ is a measure on \mathbb{R}^{n} with density $\rho:=\varphi^{2}$, with $\varphi \in H_{\mathrm{loc}}^{2,1}\left(\mathbb{R}^{n}\right)$ and $\beta:=\nabla \rho / \rho$. (By definition $\beta(x)=0$ if $\rho(x)=0$). The results obtained in [1], [8], [9], [11], [14], [25] have been important steps in the investigation of this problem. One motivation to study this problem is that the operator $-L$ is unitary equivalent to the Schrödinger operator $H:=-\Delta+V, V:=\Delta \varphi / \varphi$, considered on $L^{2}\left(\mathbb{R}^{n}, d x\right)$ (see, e.g., [1], [5]) where $d x$ denotes Lebesgue measure on \mathbb{R}^{n}. The corresponding isomorphism $L^{2}\left(\mathbb{R}^{n}, \mu\right) \rightarrow L^{2}\left(\mathbb{R}^{n}, d x\right)$ is given by $f \mapsto \varphi \cdot f$. Conversely, if $H=-\Delta+V$ is a Schrödinger operator on $L^{2}\left(\mathbb{R}^{n}, d x\right)$ with lower bounded spectrum $\sigma(H)$ whose minimum is an eigenvalue E, then the isomorphism above holds for the potential $V-E$ (and $\varphi:=$ the ground state). Since this unitary equivalence only holds for sufficiently regular φ, Dirichlet operators are also sometimes called generalized Schrödinger operators. We emphasize that under the above isomorphism in general domains change drastically. Hence known results on the essential self-adjointness of H with domain $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ on $L^{2}\left(\mathbb{R}^{n}, d x\right)$ do not apply. On the contrary in many cases the essential self-adjointness of Dirichlet operators implies this property for Schrödinger operators (see e.g. [16, pp. 217, 218]).

There are basically two different types of sufficient conditions known for the essential self-adjointness of Dirichlet operators: global and local. A typical global condition obtained in [14] is: $|\beta| \in L^{4}\left(\mathbb{R}^{n}, \mu\right)$ (provided $\rho>0$ a.e.). The best local condition obtained so far has been found in [25] where ρ has been required to be locally Lipschitzian and strictly positive if $n \geq 2$ (and
with even weaker conditions if $n=1$, cf. Remark 2 below). In particular, this means that β is locally bounded. One of our main results in this paper (cf. Theorem 7 below) says that L is essentially self-adjoint provided that ρ is merely locally bounded and locally uniformly positive (cf. below) and $|\beta| \in$ $L_{\mathrm{loc}}^{\gamma}\left(\mathbb{R}^{n}, \mu\right)$ for some $\gamma>n$ (which as we shall show below, is equivalent to $|\beta| \in L_{\mathrm{loc}}^{\gamma}\left(\mathbb{R}^{n}, d x\right)$; cf. Corollary 8). The proof of Theorem 7 is based on an elliptic regularity result (which is the first main result of this paper) giving $H_{\mathrm{loc}}^{\gamma, 1}$ regularity of distributional solutions of the elliptic equation $L^{*} F=0$, where $L f:=\Delta f+\langle B, \nabla f\rangle+c f$. This result is formulated as Theorem 1 below. As a consequence one gets $H_{\mathrm{loc}}^{\gamma, 1}$-regularity of invariant measures for diffusion processes with drifts satisfying certain mild local integrability conditions (which extends a result from [3], [4]). Finally, we note that for the above mentioned special applications to Schrödinger operators $H=-\Delta+V$, of course, one still needs corresponding information about the ground state φ to ensure that $|\beta|=2|\nabla \varphi / \varphi| \in L_{\mathrm{loc}}^{\gamma}\left(\mathbb{R}^{n} ; \mu\right)$.

Throughout this paper, Ω is a (fixed) open subset of \mathbb{R}^{n}, and for $r \in$ $(-\infty, \infty)$ and $p \geq 1, H_{\text {loc }}^{p, r}(\Omega)$ denotes the class of (generalized) functions u on Ω, such that $(1-\Delta)^{r / 2} \psi u \in L^{p}\left(\mathbb{R}^{n}, d x\right)$ for every $\psi \in C_{0}^{\infty}(\Omega)$. These spaces coincide with the usual Sobolev spaces for integer $r \geq 1$. All properties of these spaces which are needed below can be found, for instance, in [23]. If v is a signed measure, then by definition $\int f d \nu=\int f \chi d|\nu|$, where $\chi:=d \nu / d|\nu|$, and $L^{p}(\Omega, \nu):=L^{p}(\Omega,|\nu|)$. If, in addition, $\nu \ll d x$, then we write v instead of $\frac{d \nu}{d x}$. Furthermore, \langle,$\rangle denotes the Euclidean inner product on \mathbb{R}^{n}$ and $|\cdot|$ the corresponding norm.

Theorem 1. Let $n \geq 2$ and let μ, ve (signed) Radon measures on Ω. Let $B=\left(B^{i}\right): \Omega \rightarrow \mathbb{R}^{n}, c: \Omega \rightarrow \mathbb{R}$ be maps such that $|B|, c \in L_{\mathrm{loc}}^{1}(\Omega, \mu)$. Assume that

$$
\begin{equation*}
\int L \varphi(x) \mu(d x)=\int \varphi(x) \nu(d x) \quad \forall \varphi \in C_{0}^{\infty}(\Omega) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
L \varphi(x):=\Delta \varphi(x)+\langle B(x), \nabla \varphi(x)\rangle+c(x) \varphi(x) \tag{2}
\end{equation*}
$$

Then:
(i) $\mu \in H_{\mathrm{loc}}^{p, 1-n(p-1) / p-\varepsilon}(\Omega)$ for any $p \geq 1$ and $\varepsilon>0$. Here $1-n(p-1) / p>0$ if $p \in\left[1, \frac{n}{n-1}\right)$ and, in particular, μ admits a density $F \in L_{\mathrm{loc}}^{p}(\Omega, d x)$ for any $p \in\left[1, \frac{n}{n-1}\right)$.
(ii) If $|B| \in L_{\mathrm{loc}}^{\gamma}(\Omega, \mu), c \in L_{\mathrm{loc}}^{\gamma / 2}(\Omega, \mu)$ and $v \in L_{\mathrm{loc}}^{n /(n-\gamma+2)}(\Omega, d x)$ where $n \geq$ $\gamma>1$, then $F:=\frac{d \mu}{d x} \in H_{\mathrm{loc}}^{p, 1}(\Omega)$ for any $p \in[1, n /(n-\gamma+1))$. In particular, $F \in L_{\mathrm{loc}}^{p}(\Omega, d x)$ for any $p \in[1, n /(n-\gamma)$), where (here and below) $\frac{n}{n-\gamma}:=\infty$, if $\gamma=n$.
(iii) If $\gamma>n$ and either.
(a) $|B| \in L_{\mathrm{loc}}^{\gamma}(\Omega, d x)$ and $c, v \in L_{\mathrm{loc}}^{\gamma n /(n+\gamma)}(\Omega, d x)$,
or
(b) $|B| \in L_{\mathrm{loc}}^{\gamma}(\Omega, \mu), c \in L_{\mathrm{loc}}^{\gamma n /(n+\gamma)}(\Omega, \mu)$, and $v \in L_{\mathrm{loc}}^{\gamma n /(n+\gamma)}(\Omega, d x)$, then μ admits a density $F \in H_{\mathrm{loc}}^{\gamma, 1}(\Omega)$, and, in particular, $F \in C_{\mathrm{loc}}^{1-n / \gamma}(\Omega)$.

Remark 2 (i) There is a similar regularity result for $n=1$ (whose proof is easier and, in fact, quite elementary). Therefore, Theorem 7 and Corollary 8 below also hold in this case. However, our conditions there for $n=1$ are then obviously equivalent to: $\varphi(=\sqrt{\rho}) \in H_{\mathrm{loc}}^{2,1}(\mathbb{R})$ and (the continuous version of) ρ is strictly positive. But under these conditions in the special case $n=1$ both results are already contained in [25]. So, we state and prove our results only for $n \geq 2$.
(ii) Note that since $c \in L_{\mathrm{loc}}^{1}(\Omega, \mu)$ and ν is a Radon measure, the assumptions on c, v in Theorem 1 (ii) are automatically fulfilled, if $\gamma \leq 2$, provided $v \ll d x$.

To prove Theorem 1 we use the following lemma.
Lemma 3. (i) For any $r \in(-\infty, \infty)$ and $p>1$, if $\Delta u \in H_{\mathrm{loc}}^{p, r}(\Omega)$, then $u \in H_{\mathrm{loc}}^{p, r+2}(\Omega)$; also if $u \in H_{\mathrm{loc}}^{p, r}(\Omega)$, then $u_{x^{i}} \in H_{\mathrm{loc}}^{p, r-1}(\Omega), 1 \leq i \leq n$.
(ii) We have $H_{\mathrm{loc}}^{p, 1}(\Omega) \subset L_{\mathrm{loc}}^{n p /(n-p)}(\Omega, d x)$ and $L_{\mathrm{loc}}^{p}(\Omega, d x) \subset H_{\mathrm{loc}}^{n p /(n-p),-1}(\Omega)$ whenever $1<p<n$, and $H_{\mathrm{loc}}^{p, 1}(\Omega) \subset C_{\mathrm{loc}}^{1-n / p}(\Omega)$ if $p>n$, so that in the latter case elements of $H_{\mathrm{loc}}^{p, 1}(\Omega)$ are locally bounded. Also for $q>p>1, L_{\mathrm{loc}}^{p}(\Omega, d x) \subset$ $H_{\mathrm{loc}}^{q, n / q-n / p}(\Omega)$.
(iii) If μ is a Radon measure on Ω, then $\mu \in H_{\mathrm{loc}}^{p,-m}(\Omega)$ whenever $p>1$ and $m>n(1-1 / p)$.

Proof. Assertion (i) is well-known. Specifically, its first statement is a well-known elliptic regularity result and the second statement follows from the boundedness of Riesz's transforms. Assertion (ii) is just the Sobolev imbedding theorems (see [23]). Assertion (iii) follows from these imbedding theorems since, for regular sub-domains U of $\Omega, H^{q, m}(U) \subset C(\bar{U})$ if $q m>n$ whence by duality the space $H^{q /(q-1),-m}(U)=\left[H^{q, m}(U)\right]^{*}$ contains all finite measures on U.

Proof of Theorem 1. (i): We have that in the sense of distributions

$$
\begin{equation*}
\Delta \mu=\left(B^{i} \mu\right)_{x^{i}}-c \mu+v \tag{3}
\end{equation*}
$$

on Ω. Here by Lemma 3 (iii), the right-hand side belongs to $H_{\text {loc }}^{p,-m-1}(\Omega)$ if $m>n(1-1 / p)$. By Lemma 3 (i) we conclude $\mu \in H_{\mathrm{loc}}^{p,-m+1}(\Omega)$, which leads to the result after substituting $m=n(1-1 / p)+\varepsilon$.

Before we prove (ii), (iii) we need some preparations. Fix a $p_{1}>1$ and assume that $F:=\frac{d \mu}{d x} \in L_{\mathrm{loc}}^{p_{1}}(\Omega, d x)$. (Such p_{1} exists by (i).) Define

$$
\begin{equation*}
r:=r\left(p_{1}\right):=\frac{\gamma p_{1}}{\gamma-1+p_{1}} \tag{4}
\end{equation*}
$$

and observe that owing to the inequalities $1<\gamma$ and $p_{1}>1$, we have $1<r<$ γ. Next, starting with the formula

$$
|B F|^{r}=\left(|B \| F|^{1 / \gamma}\right)^{r}|F|^{r-r / \gamma}
$$

and using Hölder's inequality (with $s=\frac{\gamma}{r}(>1)$ and $t:=\frac{s}{s-1}=\frac{\gamma}{\gamma-r}$) and the assumptions $|B \| F|^{1 / \gamma} \in L_{\text {loc }}^{\gamma}(\Omega, d x)$ and $F \in L_{\text {loc }}^{p_{1}}(\Omega, d x)$, we get that $B^{i} F \in L_{\mathrm{loc}}^{r}(\Omega, d x)$. By Lemma 3 (i)

$$
\begin{equation*}
B^{i} F \in H_{\mathrm{loc}}^{r, 0}(\Omega), \quad\left(B^{i} F\right)_{x^{i}} \in H_{\mathrm{loc}}^{r,-1}(\Omega) \tag{5}
\end{equation*}
$$

(ii): Set

$$
\begin{equation*}
q:=q\left(p_{1}\right):=\frac{\gamma p_{1}}{\gamma-2+2 p_{1}} \vee 1 \tag{6}
\end{equation*}
$$

and note that $q>1 \Leftrightarrow \gamma>2 \Leftrightarrow q<\frac{\gamma}{2}$, in particular, $q<\gamma$ in any case. Hence repeating the above argument with $c, \gamma / 2, q$ replacing $|B|, \gamma, r$, respectively we obtain that

$$
\begin{equation*}
c F \in L_{\mathrm{loc}}^{q}(\Omega, d x) \tag{7}
\end{equation*}
$$

Fix $p_{1}>1$ such that $F:=\frac{d \mu}{d x} \in L_{\mathrm{loc}}^{p_{1}}(\Omega, d x)$ and let r, q be as in (4), (6), correspondingly. Since $\gamma \leq n$ we have that $q<n$, which by (7) and Lemma 3 (ii) resp. (iii) yields $c F \in H_{\mathrm{loc}}^{n q /(n-q),-1}(\Omega)$ if $q>1$ resp. $c F \in H_{\mathrm{loc}}^{s,-1}(\Omega)$ for any $s \in(1, n /(n-1))$ if $q=1$.

It turns out that if $p_{1}<n /(n-\gamma)$, then

$$
\begin{equation*}
c F \in H_{\mathrm{loc}}^{r,-1}(\Omega) \tag{8}
\end{equation*}
$$

Indeed, if $q>1$, then (8) follows from the fact that if $p_{1} \in(1, n /(n-\gamma))$ the inequality $r \leq n q /(n-q)$ holds. If $q=1$, then $\gamma \leq 2$ and (8) follows from the fact that $r<n /(n-\gamma+1) \leq n /(n-1)$ for $p_{1}<n /(n-\gamma)$.

Finally by Lemma 3 (ii) we have $v \in H_{\mathrm{loc}}^{n /(n-\gamma+1),-1}(\Omega)$ if $\gamma>2$ and $v \in H_{\mathrm{loc}}^{s,-1}(\Omega)$ for any $s \in(1, n /(n-1))$ if $\gamma \leq 2$. In the same way as above, $\nu \in H_{\mathrm{loc}}^{r,-1}(\Omega)$ whenever $1<p_{1}<n /(n-\gamma)$. This along with (5) and (8) shows that the right-hand side of (3) is now in $H_{\mathrm{loc}}^{r,-1}(\Omega)$. By Lemma 3 (i) we have

$$
\begin{equation*}
\mu \in H_{\mathrm{loc}}^{r, 1}(\Omega) \tag{9}
\end{equation*}
$$

and by Lemma 3 (ii) $F \in L_{\text {loc }}^{p_{2}}(\Omega, d x)$, where

$$
p_{2}:=\frac{n r}{n-r}=\frac{n \gamma p_{1}}{n \gamma-n+(n-\gamma) p_{1}}=: f\left(p_{1}\right)
$$

Thus we get

$$
p_{1} \in\left(1, \frac{n}{n-\gamma}\right) \text { and } F \in L_{\mathrm{loc}}^{p_{1}}(\Omega, d x) \Longrightarrow F \in L_{\mathrm{loc}}^{f\left(p_{1}\right)}(\Omega, d x) .
$$

One can easily check that $p_{2}=f\left(p_{1}\right)>p_{1}$ if $p_{1}<n /(n-\gamma)$, and that the only positive solution of the equation $q=f(q)$ is $q=n /(n-\gamma)$. Therefore, by taking p_{1} from ($1, n /(n-1)$), which is possible by (i), and by defining $p_{k+1}=f\left(p_{k}\right)$ we get an increasing sequence of $p_{k} \uparrow n /(n-\gamma)$, which implies that $F \in L_{\mathrm{loc}}^{p}(\Omega, d x)$ for any $p<n /(n-\gamma)$.

But as $p_{k} \nearrow n /(n-\gamma), r\left(p_{k}\right)$ (defined according to (4)) increasingly converges to

$$
\frac{\gamma n /(n-\gamma)}{\gamma-1+n /(n-\gamma)}=\frac{n}{n-\gamma+1} .
$$

By (9) this proves (ii).
(iii): First we consider case (b) in which $|B| \in L_{\mathrm{loc}}^{\gamma}(\Omega, \mu), c \in L_{\mathrm{loc}}^{n \gamma /(n+\gamma)}$ $(\Omega, \mu), \nu \in L_{\text {loc }}^{n \gamma /(n+\gamma)}(\Omega, d x)$. By the last assertion in (ii) we have $F \in$ $L_{\text {loc }}^{p_{1}}(\Omega, d x)$ for any (finite) $p_{1}>1$. Let $r:=r\left(p_{1}\right)$ be defined as in (4). Then $1<r<\gamma$ and (5) holds. Set

$$
\begin{equation*}
q:=q\left(p_{1}\right):=\frac{\frac{n \gamma}{n+\gamma} p_{1}}{\frac{n \gamma}{n+\gamma}-1+p_{1}} \tag{10}
\end{equation*}
$$

$2 \leq n<\gamma$, implies $\frac{n \gamma}{n+\gamma}>1$. Therefore, (since $p_{1}>1$) it follows that $1<q<$ $\frac{n \gamma}{n+\gamma}$. Hence repeating the arguments that led to (5) with $c, \frac{n \gamma}{n+\gamma}, q$ replacing $|B|$, γ, r respectively we obtain $c F \in L_{\mathrm{loc}}^{q}(\Omega, d x)$, thus $c F \in H^{n q /(n-q),-1}(\Omega)$ by Lemma 3 (ii). Observe that when $p_{1} \rightarrow \infty$, we have $r \uparrow \gamma, q \uparrow n \gamma /(n+\gamma)$, and $n q /(n-q) \uparrow \gamma$. Therefore, combining this with our assumption that $v \in L_{\text {loc }}^{n \gamma /(n+\gamma)}(\Omega, d x)$ which by Lemma 3 (ii) is contained in $H_{\mathrm{loc}}^{\gamma,-1}(\Omega)$, by taking p_{1} large enough, we see that the right-hand side in (3) is in $H_{\mathrm{loc}}^{\gamma-\varepsilon,-1}(\Omega)$ for any $\varepsilon \in(0, \gamma-1)$. By Lemma 3 (ii) we conclude $F \in H_{\mathrm{loc}}^{\gamma-\varepsilon, 1}(\Omega)$ and since $\gamma>n$, the function F is locally bounded. Now we see that above we can take $p_{1}=\infty$ and therefore the right-hand side of (3) is in $H_{\mathrm{loc}}^{\gamma,-1}(\Omega)$, which by Lemma 3 (i) gives us the desired result.

In the remaining case (a) we take $p_{1}>\gamma /(\gamma-1)$ and assume that $F \in$ $L_{\mathrm{loc}}^{p_{1}}(\Omega, d x)$. Then instead of (4) and (10) we define

$$
\begin{equation*}
r:=r\left(p_{1}\right):=\frac{\gamma p_{1}}{\gamma+p_{1}}, \quad q:=q\left(p_{1}\right):=\frac{\frac{n \gamma}{n+\gamma} p_{1}}{\frac{n \gamma}{n+\gamma}+p_{1}} \vee 1 \tag{11}
\end{equation*}
$$

and observe that owing to $p_{1}>\gamma /(\gamma-1)$ we have $r>1$, which (because $p_{1}^{-1}+\gamma^{-1}=r^{-1}$) allows us to apply Hölder's inequality starting with $|B F|^{r}=$ $|B|^{r}|F|^{r}$ to conclude that (5) holds. Since $c \in L_{\text {loc }}^{1}(\Omega, \mu)$, resp. $\frac{n \gamma}{n+\gamma}>1$ and $\left(\frac{n \gamma}{n+\gamma}\right)^{-1}+p_{1}^{-1}=q^{-1}$, we also have that $c F \in L_{\mathrm{loc}}^{q}(\Omega, d x)$. Obviously, $q<n$. As in part (ii) this yields that $c F \in H_{\mathrm{loc}}^{n q /(n-q),-1}(\Omega)$ if $q>1$ and $c F \in H_{\text {loc }}^{s,-1}(\Omega)$ for any $s \in(1, n /(n-1))$ if $q=1$. We claim that (8) holds (with $r=r\left(p_{1}\right)$ as in (11) for all $p_{1}>\gamma /(\gamma-1), p_{1} \neq n \gamma /(n \gamma-n-\gamma)$.

Indeed, if $q>1$, then $n q /(n-q)=r$. If $q=1$, then $p_{1} \leq n \gamma /(n \gamma-n-\gamma)$. But since $p_{1} \neq n \gamma /(n \gamma-n-\gamma)$, we have $p_{1}<n \gamma /(n \gamma-n-\gamma)$, which is equivalent to the inequality $r<n /(n-1)$.

Thus, since $v \in L_{\mathrm{loc}}^{n \gamma /(n+\gamma)}(\Omega, d x) \subset H_{\mathrm{loc}}^{\gamma,-1}(\Omega) \subset H_{\mathrm{loc}}^{r,-1}(\Omega)$ (because $r<$ γ), it follows by Lemma 2 (i) that:

$$
\begin{equation*}
\binom{p_{1}>\frac{\gamma}{\gamma-1} \text { and } p_{1} \neq \frac{n \gamma}{n \gamma-n-\gamma}}{\text { and } F \in L_{\mathrm{loc}}^{p_{1}}(\Omega, d x)} \Longrightarrow F \in H_{\mathrm{loc}}^{r, 1}(\Omega) \tag{12}
\end{equation*}
$$

Provided $r<n$ the latter in turn by Lemma 3 (ii) implies that $F \in L_{\mathrm{loc}}^{p_{2}}(\Omega, d x)$. Summarizing we have thus shown:

$$
\left(\begin{array}{ll}
p_{1}>\frac{\gamma}{\gamma-1} & \text { and } p_{1} \neq \frac{n \gamma}{n \gamma-n-\gamma} \tag{13}\\
\text { and } r:=\frac{\gamma p_{1}}{\gamma+p_{1}}<n & \text { and } F \in L_{\mathrm{loc}}^{p_{1}}(\Omega, d x)
\end{array}\right) \Longrightarrow F \in L_{\mathrm{loc}}^{p_{2}}(\Omega, d x)
$$

where

$$
p_{2}:=\frac{n r}{n-r}=\frac{n \gamma p_{1}}{n \gamma-(\gamma-n) p_{1}}>\frac{n \gamma}{n \gamma-(\gamma-n)} p_{1} .
$$

Also notice that $\gamma /(\gamma-1)<n /(n-1)<\frac{n \gamma}{\gamma n-n-\gamma}$ so that by (i) we can take a p_{1} to start with. Then starting with p_{1} close enough to $n /(n-1)$, by iterating (13) we always increase p by a certain factor >1. While doing so we can obviously choose the first p so that the iterated p 's will be never equal to $n \gamma /(n \gamma-n-\gamma)$ and the corresponding r 's will not coincide with n. Then after several steps we shall come to the situation where $r>n$, and then we conclude from (12) that F is locally bounded (one cannot keep iterating (13) infinitely having the restriction $r<n$). As in case (b) one can now easily complete the proof.

Remark 4 (i) For sufficiently regular F with no zeros operators of the type considered above become special cases of operators $L=\sum_{i, j} \partial_{i}\left(a_{i j} \partial_{j}\right)+q$. Additional information (including further references) about the essential selfadjointness of such operators, however, considered on $L^{2}\left(R^{n}, d x\right)$ can be found in [8], [15].
(ii) In a forthcoming paper the parabolic case will be studied. It is, however, immediate from Theorem 1 that if $t \mapsto \mu_{t}$ is differentiable such that $\frac{\partial}{\partial t} \mu_{t}$ is a

Radon measure, then for fixed t the densities F_{t} of μ_{t} w.r.t. $d x$ exist and all respective assertions in Theorem 1 hold for F_{t}.
(iii) Note that the only property of the operator $L_{0}:=\Delta$ used above was the one mentioned in Lemma 3 (i), i.e., that $u \in H_{\mathrm{loc}}^{p, r+2}(\Omega)$ provided $L_{0} u \in H_{\text {loc }}^{p, r}(\Omega)$. It is known (see, e.g., [21, p. 270]) that this holds for arbitrary non-degenerate second order elliptic operators with smooth coefficients. Therefore, Theorem 1 remains valid if we replace Δ by any non-degenerate second order elliptic operator L_{0} with smooth coefficients. Moreover, as a thorough inspection of the proof of Theorem 4.2.4 in [22] shows, one can relax the assumption about the smoothness of the coefficients of L_{0} here even more. Note, in particular, that Theorem 1 extends to elliptic second order operators on smooth Riemannian manifolds with non-degenerate smooth second order parts.
(iv) It should be noted that the elliptic equations discussed here cannot be reduced to those considered e.g. in [10], [13], [18], [24]. There are two major differences. The first is that the solutions considered there by definition are supposed to be in $H_{\mathrm{loc}}^{\gamma, 1}\left(\mathbb{R}^{n}\right)$. Secondly, our integrability conditions for B are w.r.t. a measure μ which is a solution of our equation. For this reason, B need not be locally Lebesgue integrable; e.g. if μ is given by the density $x^{2} \exp \left(-x^{2}\right)$ on \mathbb{R}^{1}, then it solves our elliptic equation with $B(x)=\beta(x)=-2 x+2 / x$. Of course, Theorem 1 (iii) shows that under sufficient integrability conditions our solutions become solutions also in the sense of the above mentioned references. However, in general we get a wider class of solutions. Note also that in our setting due to the weak assumptions on B the elliptic regularity does not imply that solutions belong to the second Sobolev class $H_{\mathrm{loc}}^{\gamma, 2}$ (e.g. any $\mu=\rho d x$ with $\rho \in H_{\mathrm{loc}}^{1,1}$ satisfies (1) with $B:=\nabla \rho / \rho, c:=0, v:=0$).

The next example shows that assertion (iii) of Theorem 1 fails if $n+\varepsilon$ is replaced by $n-\varepsilon$. (Then F does not even need to be in $H_{\text {loc }}^{2,1}(\Omega)$.)

Example 5. Let $n>3$ and

$$
L^{*} F(x)=\Delta F(x)+\alpha\left(x^{i}|x|^{-2} F\right)_{x^{i}}(x)-F(x)
$$

where $\alpha=n-3$. Then the function $F(x)=\left(e^{r}-e^{-r}\right) r^{-(n-2)}, r=|x|$, is locally $d x$-integrable and $L^{*} F=0$ in the sense of distributions, but F is not in $H_{\text {loc }}^{2,1}\left(\mathbb{R}^{n}\right)$. Here $B(x)=-\alpha x\|x\|^{-2}=\nabla\left(|x|^{-\alpha}\right) /|x|^{-\alpha}$ and $|B| \in L_{\text {loc }}^{n-\varepsilon}\left(\mathbb{R}^{n}, d x\right)$ for all $\varepsilon>0$. In a similar way, if there is no " $-F$ " in the equation above, then the function $F(x)=r^{-(n-3)}$ has the same properties.

Proof. Observe that $F_{x^{i}}, F_{x^{i} x^{j}}$ are locally $d x$-integrable. Therefore, the equation $L^{*} F=0$ follows easily from the equation on $(0, \infty)$

$$
f^{\prime \prime}+\frac{(n-1+\alpha)}{r} f^{\prime}+\alpha \frac{n-2}{r^{2}} f-f=0
$$

which is satisfied for the function $f(r)=\left(e^{r}-e^{-r}\right) r^{-(n-2)}$. It remains to note that $F, \nabla F$ and ΔF are locally $d x$-integrable, since $f(r) r^{n-1}, f^{\prime}(r) r^{n-1}$,
$f^{\prime \prime}(r) r^{n-1}$ are locally bounded, but ∇F is not $d x$-square-integrable at the origin. (If $n \geq 6$, then also F is not $d x$-square-integrable at the origin). In the case without " $-F$ " in the equation similar (but even simpler) arguments can be used to show that $F(x)=r^{-(n-3)}$ has the same properties.

Remark 6. Applying the regularity result in Theorem 1 (ii) above to the case $c=0=v$ we get, in particular, the existence of a density in $H_{\mathrm{loc}}^{p, 1}\left(\mathbb{R}^{n}\right)$, for $p \in\left[1, \frac{n}{n-\varepsilon}\right.$), for any invariant measure μ of a diffusion ξ_{t} driven by the stochastic differential equation $d \xi_{t}=d w_{t}+B\left(\xi_{t}\right) d t$, where the drift B is assumed to be in $L_{\mathrm{loc}}^{1+\varepsilon}\left(\mathbb{R}^{n}, \mu\right)$. This is true for any interpretation of a solution which implies (1) for invariant measures. Thus, we get an improvement of a part of a theorem in [3], [4] (see also [2] for the case of a non-constant second order part). In [3], [4] under the a priori assumption that μ is a probability measure and assuming that $|B|$ is globally in $L^{2}\left(\mathbb{R}^{n}, \mu\right)$, it was shown that μ admits a density in $H^{1,1}\left(\mathbb{R}^{n}\right)$. (We would like to mention that under these stronger conditions the latter result can also be deduced from [6]).

We say that a measurable function f on \mathbb{R}^{n} is locally uniformly positive if $\operatorname{essinf}_{U} f>0$ for every ball $U \subset \mathbb{R}^{n}$.

Theorem 7. Let $n \geq 2$ and let μ be a measure on \mathbb{R}^{n} with density $\rho:=\varphi^{2}$, $\varphi \in H_{\mathrm{loc}}^{2,1}\left(\mathbb{R}^{n}\right)$, which is locally uniformly positive. Assume that $|\beta| \in L_{\mathrm{loc}}^{\gamma}\left(\mathbb{R}^{n}, \mu\right)$, where $\beta:=\nabla \rho / \rho$ and $\gamma>n$. Then the operator

$$
L \psi=\Delta \psi+\langle\nabla \psi, \beta\rangle
$$

with domain $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is essentially selfadjoint on $L^{2}\left(\mathbb{R}^{n}, \mu\right)$.
Proof. First we note that since μ satisfies (1) with $B:=\beta, c: \equiv 0, v: \equiv 0$, it follows by Theorem 1 (iii), part (b), that ρ is continuous, hence locally bounded. Assume that there is a function $g \in L^{2}\left(\mathbb{R}^{n}, \mu\right)$ such that

$$
\begin{equation*}
\int(L-1) \zeta(x) g(x) \mu(d x)=0 \quad \forall \zeta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \tag{14}
\end{equation*}
$$

Recall that by definition $\beta=0$ on the set $\{\rho=0\}$ (which is reasonable since $\nabla \rho=0 d x$-a.e. on $\{\rho=0\}$). Clearly, $|\beta| \in L_{\text {loc }}^{\gamma}\left(\mathbb{R}^{n}, d x\right)$. Consequently, by Theorem 1 (iii), Part (a), $F \in H_{\mathrm{loc}}^{\gamma, 1}\left(\mathbb{R}^{n}\right)$. In particular, F is continuous and locally bounded. Then $g=F / \rho \in H_{\mathrm{loc}}^{\gamma, 1}\left(\mathbb{R}^{n}\right) \bigcap L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{n}\right), g|\beta| \in L_{\mathrm{loc}}^{\gamma}\left(\mathbb{R}^{n}, d x\right)$. Therefore, we can integrate by parts in equality (14) which yields for every $\zeta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{align*}
0 & =-\int\langle\nabla \zeta, \nabla g\rangle d \mu-\int\langle\nabla \zeta, \beta\rangle g d \mu+\int\langle\nabla \zeta, \beta\rangle g d \mu-\int \zeta g d \mu \tag{15}\\
& =-\int\langle\nabla \zeta, \nabla g\rangle d \mu-\int \zeta g d \mu
\end{align*}
$$

Now let $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\varphi \in H_{\mathrm{loc}}^{2,1}\left(\mathbb{R}^{n}\right)$. Then by the product rule

$$
\begin{equation*}
\langle\nabla \varphi, \nabla(\psi g)\rangle=\langle\nabla(\psi \varphi), \nabla g\rangle-\varphi\langle\nabla \psi, \nabla g\rangle+g\langle\nabla \varphi, \nabla \psi\rangle \tag{16}
\end{equation*}
$$

Since equality (15) extends to all ζ in $H^{2,1}\left(\mathbb{R}^{n}\right)$ with compact support, we can apply (15) to $\zeta:=\psi \varphi$ and use (16) to obtain

$$
\begin{aligned}
& \int\langle\nabla \varphi, \nabla(\psi g)\rangle d \mu+\int \varphi \psi g d \mu \\
& \overline{(16)} \int\langle\nabla(\psi \varphi), \nabla g\rangle d \mu-\int \varphi\langle\nabla \psi, \nabla g\rangle d \mu \\
&+\int g\langle\nabla \varphi, \nabla \psi\rangle d \mu+\int \varphi \psi g d \mu \\
&\left(\overline{\overline{(15)}}-\int \varphi\langle\nabla \psi, \nabla g\rangle+\right. \int g\langle\nabla \varphi, \nabla \psi\rangle d \mu
\end{aligned}
$$

Taking $\varphi:=\psi g$, one gets

$$
\begin{aligned}
\int\langle\nabla(\psi g), & \nabla(\psi g)\rangle d \mu+\int(\psi g)^{2} d \mu \\
& =-\int \psi g\langle\nabla \psi, \nabla g\rangle d \mu+\int g\langle\nabla(\psi g), \nabla \psi\rangle d \mu \\
& =\int g^{2}\langle\nabla \psi, \nabla \psi\rangle d \mu
\end{aligned}
$$

Hence, we get

$$
\begin{equation*}
\int(\psi g)^{2} d \mu \leq \int g^{2}|\nabla \psi|^{2} d \mu \tag{17}
\end{equation*}
$$

Taking a sequence $\psi_{k} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), k \in \mathbb{N}$, such that $0 \leq \psi_{k} \leq 1, \psi_{k}(x)=1$ if $|x| \leq k, \psi_{k}(x)=0$ if $|x| \geq k+1$, and $\sup _{k}\left|\nabla \psi_{k}\right|=M<\infty$, we get by Lebesgue's dominated convergence theorem that the left hand side of (17) tends to $\|g\|_{2}^{2}$, while the right hand side tends to zero. Thus, $g=0$. By a standard result (see, e.g., [12]) this implies the essential self-adjointness of ($L, C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$) on $L^{2}\left(\mathbb{R}^{n}, \mu\right)$.

Corollary 8. The assertion of the previous theorem holds true if μ is a measure on \mathbb{R}^{n} with density $\rho:=\varphi^{2}, \varphi \in H_{\mathrm{loc}}^{2,1}\left(\mathbb{R}^{n}\right)$, and $|\beta| \in L_{\mathrm{loc}}^{\gamma}\left(\mathbb{R}^{n}, d x\right)$, where $\beta:=\nabla \rho / \rho$ and $\gamma>n$.

Proof. Note that ρ admits a continuous strictly positive modification. Indeed, if $f_{n}:=\log \left(\rho+\frac{1}{n}\right), n \in \mathbb{N}$, then $f_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \log \rho$ in $L_{\text {loc }}^{1}\left(\mathbb{R}^{n}, d x\right)$, which easily follows from the fact that $\log \rho \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}, d x\right)$. The latter in turn follows from [3, Lemma 6.4]. Consequently by the Poincaré inequality, the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is bounded in $H^{\gamma, 1}(U)$ for every open ball $U \subset \mathbb{R}^{n}$. By the compactness of the embedding $H^{\gamma, 1}(U) \rightarrow C(U)$, a subsequence of the sequence of the continuous modifications of $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges locally uniformly to $\log \rho$. Whence ρ is continuous and strictly positive. In particular, $|\nabla \rho / \rho| \in L_{\mathrm{loc}}^{\gamma}\left(\mathbb{R}^{n}, \mu\right)$.

Remark 9. If $\mu=\rho d x$ with $\rho=\varphi^{2}$ and $\varphi \in H_{\mathrm{loc}}^{2,1}\left(\mathbb{R}^{n}\right)$, the so-called Markov uniqueness (i.e, the uniqueness of a Markovian semigroup on $L^{2}\left(\mathbb{R}^{n}, \mu\right)$ with generator given by $L f=\Delta f+\langle\nabla f, \beta\rangle$ on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$) always holds with $\beta:=\nabla \rho / \rho$ (see [16], [17]). However, in general Markov uniqueness is weaker than the essential self-adjointness of $\left(L, C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right)$ on $L^{2}\left(\mathbb{R}^{n}, \mu\right)$. (see [7]). Optimal (local or global) conditions for the essential self-adjointness remain unknown except for the one-dimensional case investigated in [25] and [7]. In fact, recently in [7] a complete characterization of the essential self-adjointness for Dirichlet operators has been given in the case $n=1$.

Acknowledgement. Financial support of the Sonderforschungsbereich 343 (Bielefeld), EC-Science Project SC1*CT92-0784, the International Science Foundation (Grant No. M38000), and the Russian Foundation of Fundamental Research (Grant No. '94-01-01556) is gratefully acknowledged.

REFERENCES

[1] S. Albeverio - R. Hoegh-Krohn - L. Streit, Energy forms, Hamiltonians and distorted Brownian paths, J. Math. Phys. 18 (1977), 907-917.
[2] V. I. Bogachev - N. V. Krylov - M. Röckner, Regularity of invariant measures: the case of non-constant diffusion part, J. Funct. Anal. 138 (1996), 223-242.
[3] V. I. Bogachev - M. Röckner, Hypoellipticity and invariant measures of infinite dimensional diffusions, C. R. Acad. Sci. Paris Sér.1-Math. 318 (1994), 553-558.
[4] V. I. Bogachev - M. Röckner, Regularity of invariant measures on finite and infinite dimensional spaces and applications, J. Funct. Anal. 133 (1995), 168-223.
[5] R. Carmona, Regularity properties of Schrödinger and Dirichlet operators, J. Funct. Anal. 33 (1979), 259-296.
[6] P. Cattiaux - C. Léonard, Minimization of the Kullback information of diffusion processes, Ann. Inst. H. Poincaré 30 (1994), 83-132.
[7] A. Eberle, Doctor-degree Thesis, Bielefeld University (1996).
[8] J. Frehse, Essential self-adjointness of singular elliptic operators, Bol. Soc. Brasil. Mat. 8 (1977), 87-107.
[9] M. Fukushima, On a stochastic calculus related to Dirichlet forms and distorted Brownian motion, Phys. Rep. 77 (1981), 255-262.
[10] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1977.
[11] J. G. Hooton, Dirichlet forms associated with hypercontractive semigroups, Trans. Amer. Math. Soc. 253 (1979), 237-256.
[12] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin - Heidelberg New York, 1976.
[13] O. A. Ladyz'enskaya - N. M. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968.
[14] V. A. Liskevich - Yu. A. Semenov, Dirichlet operators: a priori estimates and the uniqueness problem, J. Funct. Anal. 109 (1992), 199-213.
[15] V. Maz'Ja, Sobolev spaces, Springer, Berlin, 1985.
[16] M. RÖckner - T. S. Zhang, Uniqueness of generalized Schrödinger operators and applications, J. Funct. Anal. 105 (1992), 187-231.
[17] M. Röckner - T. S. Zhang, Uniqueness of generalized Schrödinger operators, II, J. Funct. Anal. 119 (1994), 455-467.
[18] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Université de Montréal, 1966.
[19] W. Stannat, First order perturbations of Dirichlet operators: hexistence and uniqueness, J. Funct. Anal. 141 (1996), 216-248.
[20] E. Stein, Singular integrals and the differentiability properties of functions, Princeton University Press, Princeton, N. J., 1970.
[21] M. Taylor, Pseudodifferential operators, Princeton University Press, Princeton N. J., 1981.
[22] H. Triebel, Theory of functions, Birkhäuser, Basel-Boston, 1983.
[23] H. Triebel, Theory of function spaces II, Birkhäuser Verlag, Basel-Boston-Berlin 1992.
[24] N.S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1973), 265-308.
[25] N. Wielens, The essential self-adjointness of generalized Schrödinger operators, J. Funct. Anal. 61 (1985), 98-115.

Department of Mechanics and Mathematics
Moscow State University
119899 Moscow
Russia
School of Mathematics
University of Minnesota
Minneapolis, MN 55455
USA
Fakultät für Mathematik Universität Bielefeld D-33501 Bielefeld
Germany

