Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

ELISABETTA BARLETTA

SORIN DRAGOMIR

New CR invariants and their application to the CR equivalence problem

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^e série, tome 24, nº 1 (1997), p. 193-203

<http://www.numdam.org/item?id=ASNSP_1997_4_24_1_193_0>

© Scuola Normale Superiore, Pisa, 1997, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

New CR Invariants and their Application to the CR Equivalence Problem

ELISABETTA BARLETTA - SORIN DRAGOMIR

1. – Introduction

Let M be a strictly pseudoconvex CR manifold (of hypersurface type) of CR dimension n-1. Let $K(M) = \Omega^{n,0}(M)$ be its canonical bundle and $K^0(M) = K(M) - \{ \text{zero section} \}$. Let $C(M) = K^0(M)/\mathbb{R}_+$. Then C(M)is a principal circle bundle over M and, by work of C.L. Fefferman [4], with each fixed pseudohermitian structure θ on M one may associate a Lorentz metric g on C(M). This is the *Fefferman metric* of (M, θ) . Its properties are closely tied to those of the base CR manifold. For instance, if M is a real hypersurface in \mathbb{C}^n then the null geodesics of the Fefferman metric project on biholomorphic invariant curves (known as the *chains* of M, cf. S.S. Chern & J. Moser [1]). Although not fully understood as yet, the Fefferman metric proved useful in a number of situations, e.g. provided a simpler proof (cf. L.K. Koch [9]) of the striking result of H. Jacobowitz (cf. [6]) that two nearby points of a strictly pseudoconvex CR manifold are joined by a chain. See also C.R. Graham [5], for a characterization of Fefferman metrics among all Lorentz metrics on C(M).

By classical work of S.S. Chern & J. Simons [2], the Pontrjagin forms of a riemannian manifold are conformal invariants. On the other hand, the restricted conformal class of the Fefferman metric is known (cf. J.M. Lee [10]) to be a CR invariant. This led us to investigate whether the result by S.S. Chern & J. Simons may carry over to Lorentz geometry. We find (cf. Theorem 2) that the Pontrjagin forms $P(\Omega^{\ell})$ of the Fefferman metric are CR invariants of M. Also, whenever $P(\Omega^{\ell}) = 0$, the De Rham cohomology class of the corresponding transgression form is a CR invariant, as well. As an application, we show that a necessary condition for M to be globally CR equivalent to a sphere S^{2n-1} is that $P_1(\Omega^2) = 0$ (i.e. the first Pontrjagin form of (C(M), g) must vanish) and the corresponding transgression form gives an integral cohomology class (cf. Theorem 3).

Pervenuto alla Redazione il 26 marzo 1996.

2. – The Fefferman metric

Let $(M, T_{1,0}(M))$ be an orientable CR manifold (of hypersurface type) of CR dimension n-1, where $T_{1,0}(M) \subset T(M) \otimes \mathbb{C}$ denotes its CR structure. Its Levi distribution $H(M) = Re\{T_{1,0}(M) \oplus T_{0,1}(M)\}$ carries the complex structure $J: H(M) \to H(M)$ given by $J(Z + \overline{Z}) = i(\overline{Z} - \overline{Z})$ for any $\overline{Z} \in T_{1,0}(M)$. Here $T_{0,1}(M) = \overline{T_{1,0}(M)}$. Overbars denote complex conjugation and $i = \sqrt{-1}$. The annihilator $E \subset T^*(M)$ of H(M) is a trivial line bundle, hence it admits global nowhere vanishing cross sections $\theta \in \Gamma^{\infty}(E)$, each of which is referred to as a *pseudohermitian structure*. The Levi form L_{θ} is given by $L_{\theta}(Z, \overline{W}) =$ $-i(d\theta)(Z, \overline{W})$ for any $Z, W \in T_{1,0}(M)$. Two pseudohermitian structures $\theta, \hat{\theta}$ are related by $\hat{\theta} = e^{2u}\theta$ for some C^{∞} function $u: M \to \mathbb{R}$ and the corresponding Levi forms satisfy $L_{\hat{\alpha}} = e^{2u}L_{\theta}$. This accounts for the (already highly exploited, cf. e.g. D. Jerison & J.M. Lee [7], and references therein) analogy between CR and conformal geometry. If L_{θ} is nondegenerate for some choice of θ (and thus for all) then $(M, T_{1,0}(M))$ is a nondegenerate CR manifold. Any nondegenerate CR manifold, on which a pseudohermitian structure θ has been fixed, admits a unique linear connection ∇ (the Tanaka-Webster connection) parallelizing both the Levi form and the complex structure (in the Levi distribution). Cf. also [3] for an axiomatic description of the Tanaka-Webster connection.

A complex valued p-form ω on M is a (p, 0)-form if $T_{0,1}(M) \rfloor \omega = 0$. Let $\Omega^{p,0}(M)$ be the bundle of all (p, 0)-forms on M. Set $K(M) = \Omega^{n,0}(M)$. There is a natural action of $\mathbb{R}_+ = (0, \infty)$ on $K^0(M) = K(M) - \{0\}$ and the quotient space $C(M) = K^0(M)/\mathbb{R}_+$ is a principle S^1 -bundle over M. Let $\pi : C(M) \to M$ be the projection. A local frame $\{\theta^{\alpha}\}$ of $T_{1,0}(M)^*$ on $U \subseteq M$ induces the trivialization chart:

$$\pi^{-1}(U) \to U \times S^1$$
, $[\omega] \mapsto \left(x, \frac{\lambda}{|\lambda|}\right)$

where $\omega \in K^0(M)$, $\pi([\omega]) = x$ and $\omega = \lambda (\theta \wedge \theta^1 \wedge \cdots \wedge \theta^{n-1})_x$ with $\lambda \in \mathbb{R}$, $\lambda \neq 0$. Define $\gamma : \pi^{-1}(U) \to [0, 2\pi)$ by $\gamma([\omega]) = \arg(\lambda)$. Moreover, consider the (globally defined) 1-form σ on C(M) given by:

$$\sigma = \frac{1}{n+1} \left(d\gamma + \pi^* \left(i \omega_{\alpha}{}^{\alpha} - \frac{i}{2} h^{\alpha \overline{\beta}} dh_{\alpha \overline{\beta}} - \frac{R}{2n} \theta \right) \right) \,.$$

Here $h_{\alpha\overline{\beta}}$, $\omega_{\alpha}{}^{\beta}$ and $R = h^{\alpha\overline{\beta}}R_{\alpha\overline{\beta}}$ are respectively the (local) components of the Levi form, the connection 1-forms (of the Tanaka-Webster connection) and the pseudohermitian scalar curvature (cf. e.g. (2.17) in [12], p. 34).

Let us extend the Hermitian form $\langle Z, W \rangle_{\theta} = L_{\theta}(\overline{Z}, \overline{W})$ to the whole of $T(M) \otimes \mathbb{C}$ by requesting that $\langle Z, \overline{W} \rangle_{\theta} = 0$, $\langle \overline{Z}, \overline{W} \rangle_{\theta} = \overline{\langle Z, W \rangle_{\theta}}$ and $\langle T, V \rangle_{\theta} = 0$ for any $Z, W \in T_{1,0}(M), V \in T(M) \otimes \mathbb{C}$. Then:

(1)
$$g = \pi^* \langle , \rangle_{\theta} + 2(\pi^* \theta) \odot \sigma$$

is a semi-riemannian metric on C(M). Assume from now on that M is strictly pseudoconvex and choose θ so that L_{θ} is positive definite. Then g is a Lorentz metric on C(M), known as the *Fefferman metric* of (M, θ) . By a result of J.M. Lee (cf. [10], p. 418) if $\hat{\theta} = e^{2u\theta}$ is another pseudohermitian structure and \hat{g} the corresponding Fefferman metric, then $\hat{g} = e^{2(u \circ \pi)}g$.

3. – Pontrjagin forms

Let $I^{\ell}(GL(2n))$ be the space of all invariant polynomials of degree ℓ , i.e. symmetric multilinear maps $P : \mathbf{gl}(2n)^{\ell} \to \mathbb{R}$ which are ad(GL(2n))-invariant. Here $\mathbf{gl}(2n)$ is the Lie algebra of $GL(2n) = GL(2n, \mathbb{R})$. Also, if \mathcal{G} is a linear space then $\mathcal{G}^{\ell} = \mathcal{G} \otimes \cdots \otimes \mathcal{G}$ (ℓ terms). Let $Q_{\ell} \in I^{\ell}(GL(2n))$, $1 \leq \ell \leq 2n$, be the natural generators of the ring of invariant polynomials on $\mathbf{gl}(2n)$ (cf. [2], p. 57, for the explicit expressions of the Q_{ℓ}). Let $(M, T_{1,0}(M))$ be a strictly pseudoconvex CR manifold of CR dimension n-1 and θ a pseudohermitian structure on M so that L_{θ} is positive definite. Let g be the Fefferman metric of (M, θ) . Let $F(C(M)) \to C(M)$ be the principal GL(2n)-bundle of all linear frames on C(M) and $\omega \in \Gamma^{\infty}(T^*(F(C(M))) \otimes \mathbf{gl}(2n))$ the connection 1-form (of the Levi-Civita connection) of the Lorentz manifold (C(M), g). Then:

THEOREM 1. The characteristic forms $Q_{2\ell+1}(\Omega^{2\ell+1})$ vanish for any $0 \leq \ell \leq n-1$.

Here $\Omega = D\omega$ is the curvature 2-form of ω . Also, for any $P \in I^{\ell}(GL(2n))$ we set $P(\Omega^{\ell}) = P \circ \Omega^{\ell}$ where $\Omega^{\ell} = \Omega \land \cdots \land \Omega$ (ℓ terms). Let us prove Theorem 1. To this end, let $\mathcal{L}(C(M)) \to C(M)$ be the principal O(2n - 1, 1)bundle of all Lorentz frames, i.e. $u = (c, \{X_i\}) \in \mathcal{L}(C(M))$ if $g_c(X_i, X_j) = \epsilon_i \delta_{ij}$ where $\epsilon_{\alpha} = 1, 1 \le \alpha \le 2n - 1$ and $\epsilon_{2n} = -1, c \in C(M)$. Here O(2n - 1, 1)is the Lorentz group. Let $\mathbf{0}(2n - 1, 1)$ be its Lie algebra. By hypothesis:

$$\omega_u(T_u(\mathcal{L}(C(M)))) \subseteq \mathbf{0}(2n-1,1)$$

i.e. $\epsilon \omega_u(X) + \omega_u(X)^i \epsilon = 0$ for any $X \in T_u(\mathcal{L}(C(M)))$, $u \in \mathcal{L}(C(M))$. Here $\epsilon = diag(\epsilon_1, \dots, \epsilon_{2n})$. Let $\{E_j^i\}$ be the canonical basis of gl(2n) and set $\omega = \omega_i^i \otimes E_i^j$, $\Omega = \Omega_i^i \otimes E_i^j$. We claim that:

(2)
$$\epsilon^i \Omega^i_j + \epsilon^j \Omega^j_i = 0$$

at all points of $\mathcal{L}(C(M))$, as a form F(C(M)). Here $\epsilon^i = \epsilon_i$. As Ω is horizontal, it suffices to check (2) on horizontal vectors (hence tangent to $\mathcal{L}(C(M))$). We have:

$$\epsilon^{i}\Omega_{j}^{i} = \epsilon^{i}(d\omega_{j}^{i} + \omega_{k}^{i} \wedge \omega_{j}^{k})$$

= $d(-\epsilon^{j}\omega_{i}^{j}) + \sum_{k}(-\epsilon^{k}\omega_{i}^{k}) \wedge \omega_{j}^{k} = -\epsilon^{j}\Omega_{i}^{j}$

on $T_u(\mathcal{L}(C(M)))$ for any $u \in \mathcal{L}(C(M))$, etc. Next, note that for any $A \in \mathbf{0}(2n-1,1)$ one has i) $\operatorname{tr}(A) = 0$, ii) $\operatorname{tr}(AB) = 0$, for any $B \in \mathcal{M}_{2n}(\mathbb{R})$ satisfying $B = \epsilon B^t \epsilon$, and iii) $\operatorname{tr}(A^{2\ell+1}) = 0$. Then:

$$\operatorname{tr}(A_1 \cdots A_{2\ell+1}) = 0$$

for any $A_1, \dots, A_{2\ell+1} \in \mathbf{0}(2n-1, 1)$ (the proof is by induction over ℓ). Since $Q_{2\ell+1}(\Omega^{2\ell+1})$ is invariant, we need only show that it vanishes at the points of $\mathcal{L}(C(M))$. But at these points the range of $\Omega^{2\ell+1}$ lies (by (2)-(3)) in the kernel of $Q_{2\ell+1}$. Our Theorem 1 is proved.

Let $P \in I^{\ell}(GL(2n))$. The transgression form $TP(\omega)$ is given by:

$$TP(\omega) = \ell \int_0^1 P(\omega \wedge \Omega_t^{\ell-1}) dt$$

where $\Omega_t = t\Omega + (1/2)t(t-1)[\omega, \omega], 0 \le t \le 1$. By Chern-Weil theory (cf. e.g. [8], vol. II, p. 297) one has $P(\Omega^{\ell}) = dTP(\omega)$. By Theorem 1, the transgression forms $TQ_{2\ell+1}(\omega)$ are closed, hence we get the cohomology classes $[TQ_{2\ell+1}(\omega)] \in H^{4\ell+1}(F(C(M)), \mathbb{R})$. Note that:

(4)
$$[T Q_{2\ell+1}(\omega)] \in \ker(j^*)$$

where $j^* : H^{4\ell+1}(F(C(M)), \mathbb{R}) \to H^{4\ell+1}(\mathcal{L}(C(M)), \mathbb{R})$ is induced by $j : \mathcal{L}(C(M)) \subset F(C(M))$. Indeed $TQ_{2\ell+1}(\omega)$ may be written as:

$$T Q_{2\ell+1}(\omega) = \sum_{i=0}^{2\ell} B_i Q_{2\ell+1}(\omega \wedge [\omega, \omega]^i \wedge \Omega^{2\ell-i})$$

for some constants $B_i > 0$. As $j^*\omega$ is o(2n - 1, 1)-valued, the same argument as in the proof of Theorem 1 shows that $j^*TQ_{2\ell+1}(\omega) = 0$, q.e.d. One has to work with $j^*\omega$ (rather than ω at a point of $\mathcal{L}(C(M))$) because ω (unlike its curvature form) is not horizontal.

If g_0 is a riemannian metric on C(M) with connection 1-form ω_0 and $O(C(M)) \to C(M)$ is the principal O(2n)-bundle of orthonormal (with respect to g_0) frames on C(M), then orthonormalization of frames gives a deformation retract $F(C(M)) \to O(C(M))$ and hence (cf. Proposition 4.3 in [2], p. 58) the corresponding transgression forms $TQ_{2\ell+1}(\omega_0)$ are exact. As to the Lorentz case, in general (4) need not imply exactness of $TQ_{2\ell+1}(\omega)$. For instance \mathbb{R}_1^2 is a Lorentz manifold for which the homomorphism $j^* : H^1(F(\mathbb{R}_1^2), \mathbb{R}) \to H^1(\mathcal{L}(\mathbb{R}_1^2), \mathbb{R})$ (induced by $j : \mathcal{L}(\mathbb{R}_1^2) \subset F(\mathbb{R}_1^2)$) has a nontrivial kernel. Here $\mathbb{R}_{\nu}^N = (\mathbb{R}^N, \langle , \rangle_{N-\nu,\nu})$ and $\langle , \rangle_{N-\nu,\nu} = \sum_{i=1}^{N-\nu} x_i y_i - \sum_{i=N-\nu+1}^{N} x_i y_i$. Indeed, as both $F(\mathbb{R}_1^2)$ and $\mathcal{L}(\mathbb{R}_1^2)$ are trivial bundles j^* may be identified with the homomorphism $j^* : H^1(GL(2), \mathbb{R}) \to H^1(O(1, 1), \mathbb{R})$ (induced by $j : O(1, 1) \subset GL(2)$). The Lorentz group O(1, 1) has four components, each diffeomorphic to \mathbb{R} . Hence $H^1(O(1, 1)) = 0$. Moreover $O(2) \subset GL(2)$ is a homotopy equivalence, hence $\ker(j^*) = H^1(GL(2), \mathbb{R}) = H^1(O(2), \mathbb{R}) = \mathbb{R} \oplus \mathbb{R}$ (as O(2) has two components, each diffeomorphic to S^1).

At this point, we may state the following:

THEOREM 2. Let M be a strictly pseudoconvex CR manifold of CR dimension n-1 and $P \in I^{\ell}(GL(2n))$. Then $P(\Omega^{\ell})$ is a CR invariant of M. Moreover, if $P(\Omega^{\ell}) = 0$, then the cohomology class $[TP(\omega)] \in H^{2\ell-1}(F(C(M)), \mathbb{R})$ is a CR invariant of M. In particular $[TQ_{2\ell+1}(\omega)] \in H^{4\ell+1}(F(C(M)), \mathbb{R})$ is a CR invariant.

4. – Applications

Let *M* be a strictly pseudoconvex CR manifold. Assume that *M* is realizable as a real hypersurface in \mathbb{C}^n . If $\varphi : M \to \mathbb{C}^n$ is the given immersion, then $\eta = \varphi^* dz^1 \wedge \cdots \wedge dz^n$ is a nowhere zero global (n, 0)-form on *M*, hence C(M)is a trivial bundle. By work of C.L. Fefferman [4], there is a smooth defining function ψ of *M* satisfying the complex Monge-Ampère equation:

$$J(\psi) \equiv \det \begin{pmatrix} \psi & \partial \psi / \partial \overline{z}^k \\ \partial \psi / \partial z^j & \partial^2 \psi / \partial z^j \partial \overline{z}^k \end{pmatrix} = 1$$

to second order along M, so that F^*h is the Fefferman metric of $(M, \hat{\theta})$, $\hat{\theta} = \frac{i}{2}\varphi^*(\overline{\partial} - \partial)\psi$, where h is the Lorentz metric given by:

$$h = -\frac{i}{n+1} j^* \{ (\partial - \overline{\partial}) \psi \} \odot d\gamma + j^* \left\{ \frac{\partial^2 \psi}{\partial z^j \partial \overline{z}^k} dz^j \odot d\overline{z}^k \right\}$$

and $F: C(M) \approx M \times S^1$ the diffeomorphism induced by η . Also γ is a local coordinate on S^1 and $j: M \times S^1 \subset \mathbb{C}^{n+1}$. Let θ be any pseudohermitian structure on M (so that L_{θ} is positive definite). Then $\hat{\theta} = e^{2u\theta} \theta$ for some smooth function u on M, and an inspection of (1) shows that F^*h and g are conformally equivalent Lorentz metrics. On the other hand $h = j^*G$ where G is the semi-riemannian metric on $\mathbb{C}^n \times \mathbb{C}_*$ given by:

$$G = |\zeta|^{2/(n+1)} \left\{ \frac{\psi}{(n+1)^2} |\zeta|^{-2} d\zeta \odot d\overline{\zeta} + \frac{\partial^2 \psi}{\partial z^j \partial \overline{z}^k} dz^j \odot d\overline{z}^k + \frac{1}{n+1} \left((\partial \psi) \odot \frac{d\overline{\zeta}}{\overline{\zeta}} + \frac{d\zeta}{\zeta} \odot (\overline{\partial} \psi) \right) \right\}$$

where $(z, \zeta) = (z^1, \dots, z^n, \zeta)$ are complex coordinates. Summing up, if M is realizable then (C(M), g) admits a global conformal immersion in $(\mathbb{C}^n \times \mathbb{C}_*, G)$, hence (in view of Theorem 5.14 in [2], p. 64) it is reasonable to expect that some of the CR invariants furnished by Theorem 2 are obstructions towards the global embeddability of a given, abstract, CR manifold M. While we leave this as an open problem, we address the following simpler situation. Assume Mto be equivalent to S^{2n-1} . Then C(M) is diffeomorphic to the Hopf manifold $H^n = S^{2n-1} \times S^1$. On the other hand, note that $I_{n+1} = \{\zeta \in \mathbb{C} : \zeta^{n+1} = 1\}$ acts freely on $\mathbb{C}^n \times \mathbb{C}_*$ as a properly discontinuous group of complex analytic transformations. Hence the quotient space $V_{n+1} = (\mathbb{C}^n \times \mathbb{C}_*)/I_{n+1}$ is a complex (n+1)-dimensional manifold. Consider the biholomorphism $p: V_{n+1} \to \mathbb{C}^n \times \mathbb{C}_*$ given by $p([z, \zeta]) = (z/\zeta, \zeta^{n+1})$ for any $[z, \zeta] \in V_{n+1}$ and set $\phi_0 = p^{-1} \circ j \circ F$. Next:

(5)
$$G_0 = \sum_{j=1}^n dz^j \odot d\overline{z}^j - d\zeta \odot d\overline{\zeta}$$

is I_{n+1} -invariant, hence gives rise to a globally defined semi-riemannian metric of index 2 on V_{n+1} . Note that (V_{n+1}, G_0) is locally isometric to \mathbb{R}_2^{2n+2} .

LEMMA 1. $\phi_0 : (C(M), g) \to (V_{n+1}, G_0)$ is a conformal immersion.

Indeed, let $\psi(z) = |z|^2 - 1$. A calculation then shows that $G_0 = p^*G$. Finally, it may be seen that $F : (C(M), g) \to (H^n, h)$ is a conformal diffeomorphism.

Let $P_i \in I^{2i}(GL(2n))$ be given by:

$$\det\left(\lambda I_{2n}-\frac{1}{2\pi}A\right)=\sum_{i=0}^{n}P_{i}(A\otimes\cdots\otimes A)\lambda^{2n-2i}+Q(\lambda^{2n-odd})$$

i.e. the invariant polynomials obtained by ignoring the powers λ^{2n-odd} . We obtain the following:

THEOREM 3. Let M be a strictly pseudoconvex CR manifold of CR dimension n-1 and θ a pseudohermitian structure on M so that L_{θ} is positive definite. Let g be the Fefferman metric of (M, θ) . Let ω be the connection 1-form of g and Ω its curvature 2-form. If M is CR equivalent to S^{2n-1} then $P_1(\Omega^2) = 0$ and $[TP_1(\omega)] \in H^3(F(C(M)), \mathbb{Z})$, provided $n \geq 3$.

To prove Theorem 3, we study the geometry of the second fundamental form of the immersion $\phi = p^{-1} \circ j : H^n \to (\mathbb{C}^n \times \mathbb{C}_*, G)$. Set $C_n = \sqrt{n+1}/\sqrt{2(n+1)}$. The tangent vector fields ξ_a given by:

$$\xi_{1} = C_{n} \left(z^{j} \frac{\partial}{\partial z^{j}} + \overline{z}^{j} \frac{\partial}{\partial \overline{z}^{j}} + \zeta \frac{\partial}{\partial \zeta} + \overline{\zeta} \frac{\partial}{\partial \overline{\zeta}} \right)$$

$$\xi_{2} = C_{n} \left(z^{j} \frac{\partial}{\partial z^{j}} + \overline{z}^{j} \frac{\partial}{\partial \overline{z}^{j}} - (n+2) \left(\zeta \frac{\partial}{\partial \zeta} + \overline{\zeta} \frac{\partial}{\partial \overline{\zeta}} \right) \right)$$

are such that $G(\xi_1, \xi_2) = 0$, $G(\xi_1, \xi_1) = 1$ and $G(\xi_2, \xi_2) = -1$, and form a frame of the normal bundle of ϕ . Since p is a biholomorphism (with the inverse $p^{-1}(z, \zeta) = [z\zeta^{1/(n+1)}, \zeta^{1/(n+1)}]$) we have:

$$p_* \frac{\partial}{\partial z^j} = \zeta^{-1/(n+1)} \frac{\partial}{\partial z^j}$$
$$p_* \frac{\partial}{\partial \zeta} = \zeta^{-1/(n+1)} \left(-z^j \frac{\partial}{\partial z^j} + (n+1)\zeta \frac{\partial}{\partial \zeta} \right) \,.$$

By (5) the Christoffel symbols of the Levi-Civita connection ∇^0 of (V_{n+1}, G_0) vanish. The Levi-Civita connection ∇ of $(\mathbb{C}^n \times \mathbb{C}_*, G)$ is related to ∇^0 by:

$$p_*\left(\nabla^0_X Y\right) = \nabla_{p_*X} p_*Y$$

for any $X, Y \in T(V_{n+1})$. A calculation shows that:

$$\nabla_{\frac{\partial}{\partial z^{j}}} \frac{\partial}{\partial z^{k}} = 0; \quad \nabla_{\frac{\partial}{\partial \zeta}} \frac{\partial}{\partial \zeta} = -\frac{n}{n+1} \frac{1}{\zeta} \frac{\partial}{\partial \zeta}$$
$$\nabla_{\frac{\partial}{\partial \zeta}} \frac{\partial}{\partial z^{j}} = \frac{1}{n+1} \frac{1}{\zeta} \frac{\partial}{\partial z^{j}}.$$

Tangent vector fields on H^n are of the form X+Y with $X = A^j \partial/\partial z^j + \overline{A^j} \partial/\partial \overline{z}^j$ and $Y = B\partial/\partial \zeta + \overline{B}\partial/\partial \overline{\zeta}$ satisfying $A^j \overline{z}_j + \overline{A^j} z_j = 0$, respectively $B\overline{\zeta} + \overline{B}\zeta = 0$. Here $z^j = z_j$. It follows that:

(6)
$$\nabla_X \xi_1 = C_n \frac{n+2}{n+1} X, \quad \nabla_X \xi_2 = -\frac{C_n}{n+1} X$$

(7)
$$\nabla_Y \xi_1 = \frac{C_n}{n+1} \left\{ Y + B\overline{\zeta} z^j \frac{\partial}{\partial z^j} + \overline{B} \zeta \overline{z}^j \frac{\partial}{\partial \overline{z}^j} \right\}$$

(8)
$$\nabla_Y \xi_2 = \frac{C_n}{n+1} \left\{ -(n+2)Y + B\overline{\zeta} z^j \frac{\partial}{\partial z^j} + \overline{B} \zeta \overline{z}^j \frac{\partial}{\partial \overline{z}^j} \right\} \,.$$

Let $A_a = A_{\xi_a}$ be the Weingarten operator corresponding to the normal section ξ_a . We shall need the following:

LEMMA 2. The first Pontrjagin form of (H^n, h) is:

$$\frac{1}{4\pi^2}\Psi_{12}\wedge\Psi_{12}$$

where (with respect to a local coordinate system (x^i) on H^n):

$$\Psi_{12} = h\left(\frac{\partial}{\partial x^i}, A_1 A_2 \frac{\partial}{\partial x^j}\right) dx^i \wedge dx^j.$$

We shall prove Lemma 2 later on. Recall the Ricci equation (of the given immersion ϕ , cf. e.g. (2.7) in [13], p. 22):

$$G(R(X, Y)\xi, \xi') = G(R^{\perp}(X, Y)\xi, \xi') + h([A_{\xi}, A_{\xi'}]X, Y)$$

where R, R^{\perp} denote respectively the curvature tensor fields of $(\mathbb{C}^n \times \mathbb{C}_*, G)$ and of the normal connection. As a consequence of (6)-(8) ξ_a are parallel in the normal bundle, hence the immersion ϕ has a flat normal connection $(R^{\perp} = 0)$. On the other hand R = 0 (because (V_{n+1}, G_0) is flat) and the Ricci equation shows that the Weingarten operators A_a commute. Then $\Psi_{12} = 0$ and our Lemmas 1 and 2 together with Theorem 2 yield $P_1(\Omega^2) = 0$.

Let $q: H^3(F(C(M)), \mathbb{R}) \to H^3(F(C(M)), \mathbb{R}/\mathbb{Z})$ be the natural homomorphism. By Theorem 3.16 in [2], p. 56, since $P_1(\Omega^2) = 0$, there is a cohomology class $\alpha \in H^3(C(M), \mathbb{R}/\mathbb{Z})$ so that $p_F^*\alpha = q([TP_1(\omega)])$, where $p_F: F(C(M)) \to C(M)$ is the projection. Yet, for the Hopf manifold $H^3(H^n, \mathbb{R}/\mathbb{Z}) = 0$ provided $n \ge 3$, hence $[TP_1(\omega)] \in \ker(q)$ and then by the exactness of the Bockstein sequence:

$$\cdots \to H^{3}(F(C(M)), \mathbb{Z}) \to H^{3}(F(C(M)), \mathbb{R}) \to \\ \to H^{3}(F(C(M)), \mathbb{R}/\mathbb{Z}) \to H^{4}(F(C(M)), \mathbb{R}) \to \cdots$$

it follows that $[TP_1(\omega)]$ is an integral class.

5. – Proof of Theorem 2

Let $\varphi \in \Gamma^{\infty}(T^*(F(C(M))) \otimes \mathbb{R}^{2n})$ be the canonical 1-form and set $\varphi = \varphi^i \otimes e_i$, where $\{e_i\}$ is the canonical basis in \mathbb{R}^{2n} . Moreover, let $E_i = B(e_i)$ be the corresponding standard horizontal vector fields (cf. e.g. [8], vol. I, p. 119). Let $u : M \to \mathbb{R}$ be a C^{∞} function and let \hat{g} be the Fefferman metric of $(M, e^{2u}\theta)$. Let $\hat{\omega}$ be the corresponding connection 1-form. Then:

(9)
$$\hat{\omega}_j^i = \omega_j^i + d(u \circ \rho)\delta_j^i + E_j(u \circ \rho)\varphi^i - \epsilon_i E_i(u \circ \rho)\epsilon_j\varphi^j$$

at all points of $\mathcal{L}(C(M))$, as forms on F(C(M)). Here $\rho = \pi \circ p_F$. The proof is to relate the Levi-Civita connections of the conformally equivalent Fefferman metrics g and \hat{g} , followed by a translation of the result in principal bundle terminology. We omit the details. Consider the 1-parameter family of Lorentz metrics $g(s) = e^{2s(u \circ \pi)}g$, $0 \le s \le 1$, on C(M). Let $\omega(s)$ be the corresponding connection 1-form and set $\omega' = \frac{d}{ds} \{\omega(s)\}_{s=0}$. By (9) (applied to $s(u \circ \rho)$ instead of $u \circ \rho$) we obtain:

(10)
$$\omega_{i}^{\prime i} = d(u \circ \rho)\delta_{i}^{i} + E_{i}(u \circ \rho)\varphi^{i} - \epsilon_{i}E_{i}(u \circ \rho)\epsilon_{j}\varphi^{j}$$

at all points of $\mathcal{L}(C(M))$, as forms on F(C(M)). Let $P \in I^{\ell}(GL(2n))$. We wish to show that $P(\Omega^{\ell})$ is invariant under any transformation $\hat{\theta} = e^{2u}\theta$. Note that a relation of the form:

(11)
$$T P(\hat{\omega}) = T P(\omega) + exact$$

yields $P(\hat{\Omega}^{\ell}) = P(\Omega^{\ell})$, hence we only need to prove (11). Since the Q_{ℓ} generate I(GL(2n)) we may assume that P is a monomial in the Q_{ℓ} . Using

Proposition 3.7 in [2], p. 53, an inductive argument shows that it is sufficient to prove (11) for $P = Q_{\ell}$. It is enough to prove that:

(12)
$$\frac{d}{ds}\{TQ_{\ell}(\omega(s))\} = exact.$$

Since each point on the curve $s \mapsto g(s)$ is the initial point of another such curve, it suffices to prove (12) at s = 0. By Proposition 3.8 in [2], p. 53, we know that:

$$\frac{d}{ds} \{TQ_{\ell}(\omega(s))\}_{s=0} = \ell Q_{\ell}(\omega' \wedge \Omega^{\ell-1}) + exact$$

hence it is enough to show that $Q_{\ell}(\omega' \wedge \Omega^{\ell-1}) = exact$. Using (10) and the identity:

$$Q_{\ell}(\psi \wedge \Omega^{\ell-1}) = \sum_{i_1, \cdots, i_{\ell}} \psi_{i_2}^{i_1} \wedge \Omega_{i_3}^{i_2} \wedge \cdots \wedge \Omega_{i_1}^{i_{\ell}}$$

(cf. (4.2) in [2], p. 57) for any gl(2n)-valued form ψ on F(C(M)), we may conduct the following calculation:

$$Q_{\ell}(\omega' \wedge \Omega^{\ell-1}) = \sum \omega_{i_{2}}^{i_{1}} \wedge \Omega_{i_{3}}^{i_{2}} \wedge \cdots \wedge \Omega_{i_{1}}^{i_{\ell}}$$

= $\sum d(u \circ \rho) \wedge \Omega_{i_{3}}^{i_{2}} \wedge \cdots \wedge \Omega_{i_{2}}^{i_{\ell}}$
+ $\sum \left(E_{i_{2}}(u \circ \rho)\varphi^{i_{1}} - \epsilon_{i_{1}}E_{i_{1}}(u \circ \rho)\epsilon_{i_{2}}\varphi^{i_{2}} \right) \wedge \Omega_{i_{3}}^{i_{2}} \wedge \cdots \wedge \Omega_{i_{1}}^{i_{\ell}}$

Recall the structure equations, cf. e.g. [8], vol. I, p. 121. As g is Lorentz, ω is torsion free. Hence $\varphi^{i_1} \wedge \Omega_{i_1}^{i_\ell} = 0$. This and (2) also yield $\epsilon_{i_2} \varphi^{i_2} \wedge \Omega_{i_3}^{i_2} = 0$. Hence:

$$Q_{\ell}(\omega' \wedge \Omega^{\ell-1}) = d(u \circ \rho) \wedge Q_{\ell-1}(\Omega^{\ell-1}) = exact$$

(because $dQ_{\ell-1}(\Omega^{\ell-1}) = 0$) at all points of $\mathcal{L}(C(M))$, as a form on F(C(M)). This suffices because both $Q_{\ell}(\omega' \wedge \Omega^{\ell-1})$ and $(u \circ \rho)Q_{\ell-1}(\Omega^{\ell-1})$ are invariant forms.

6. – Proof of Lemma 2

Recall (cf. e.g. [8], vol. II, p. 313) that:

$$P_{\ell}(\Omega^{2\ell}) = c_{\ell} \sum \delta_{i_1 \cdots i_{2\ell}}^{j_1 \cdots j_{2\ell}} \Omega_{j_1}^{i_1} \wedge \cdots \wedge \Omega_{j_{2\ell}}^{i_{2\ell}}$$

where $c_{\ell} = 1/((2\pi)^{2\ell}(2\ell)!)$ and the summation runs over all ordered subsets $(i_1, \dots, i_{2\ell})$ of $\{1, \dots, 2n\}$ and all permutations $(j_1, \dots, j_{2\ell})$ of $(i_1, \dots, i_{2\ell})$ and

 $\delta_{i_1\cdots i_{2\ell}}^{j_1\cdots j_{2\ell}}$ is the sign of the permutation. We need the Gauss equation (cf. e.g. (2.4) in [13], p. 21):

$$R^{\ell}_{kij} = B^a_{jk} A^{\ell}_{ai} - B^a_{ik} A^{\ell}_{aj}$$

where R_{kij}^{ℓ} , B_{jk}^{a} are respectively the curvature tensor field of (H^{n}, h) and the second fundamental form of ϕ (with respect to a local coordinate system (U, x^{i}) on H^{n}). Also $A_{a}\partial_{i} = A_{ai}^{j}\partial_{j}$ where ∂_{i} is short for $\partial/\partial x^{i}$. The Gauss equation and the identity:

$$R(X, Y)Z = u\left(2\Omega(X^*, Y^*)_u(u^{-1}Z)\right)$$

(cf. [8], vol. I, p. 133) for any $X, Y, Z \in T_x(H^n)$ and some $u \in F(H^n)_x$, furnish:

$$2\Omega_s^r = Y_p^r X_s^k \left(B_{jk}^a A_{ai}^p - B_{ik}^a A_{aj}^p \right) dx^i \wedge dx^j$$

(where $X_j^i : p_F^{-1}(U) \to \mathbb{R}$ are fibre coordinates on $F(H^n)$ and $(Y_j^i) = (X_j^i)^{-1}$). Using:

$$B^a_{jk} = A^r_{aj} h_{rk}$$

a calculation leads to:

$$2P_{1}(\Omega^{2}) = -c_{1} \left(B_{j_{1}k_{1}}^{a_{1}} A_{a_{1}p_{1}}^{k_{2}} B_{j_{2}k_{2}}^{a_{2}} A_{a_{2}p_{2}}^{k_{1}} - B_{p_{1}k_{1}}^{a_{1}} A_{a_{1}j_{1}}^{k_{2}} B_{j_{2}k_{2}}^{a_{2}} A_{a_{2}p_{2}}^{k_{1}} \right) dx^{p_{1}} \wedge dx^{j_{1}} \wedge dx^{p_{2}} \wedge dx^{j_{2}}$$

hence:

$$P_1(\Omega^2) = c_1 \sum_{a,b} \Psi_{ab} \wedge \Psi_{ab}$$

where Ψ_{ab} is the 2-form on $F(H^n)$ given by:

$$\Psi_{ab} = h(A_a \partial_i, A_b \partial_j) dx^i \wedge dx^j$$

Finally, note that $\Psi_{11} = \Psi_{22} = 0$ and $\Psi_{21} = -\Psi_{12}$ and Lemma 2 is proved. Note that the proof works for any codimension two submanifold of a flat riemannian manifold.

REFERENCES

- [1] S. S. CHERN J. MOSER, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271.
- S. S. CHERN J. SIMONS, Characteristic forms and geometric invariants, Annals of Math. 99 (1974), 48-69.
- [3] S. DRAGOMIR, On pseudohermitian immersions between strictly pseudoconvex CR manifolds, Amer. J. Math. 117 (1995), 169-202.

- [4] C. L. FEFFERMAN, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. 103 (1976), 395-416.
- [5] C. R. GRAHAM, On Sparling's characterization of Fefferman metrics, Amer. J. Math. 109 (1987), 853-874.
- [6] H. JACOBOWITZ, Chains in CR geometry, J. Differential Geome. 21 (1985), 163-191.
- [7] D. JERISON J. M. LEE, The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), 167-197.
- [8] S. KOBAYASHI K. NOMIZU, Foundations of differential geometry, Interscience Publishers, New York, vol. I, 1963, vol. II, 1969.
- [9] L. K. KOCH, Chains on CR manifolds and Lorentz geometry, Trans. Amer. Math. Soc. 307 (1988), 827-841.
- [10] J. M. LEE, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc. 296 (1986), 411-429.
- [11] N. TANAKA, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book Store Co. Ltd., Kyoto, 1975.
- S. M. WEBSTER, Pseudohermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25-41.
- [13] K. YANO M. KON, CR submanifolds of Kaehlerian and Sasakian manifolds, Progress in Math., vol. 30, Ed. by J. Coates & S. Helgason, Birkhäuser, Boston-Basel-Stuttgart, 1983.

Università della Basilicata Dipartimento di Matematica Via N. Sauro 85 85100 Potenza, Italia.

Politecnico di Milano Dipartimento di Matematica Piazza Leonardo da Vinci 32 20133 Milano, Italia.