Elishbetta Barletta
Sorin Dragomir
New $C R$ invariants and their application to the $C R$ equivalence problem
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4 e série, tome 24, $\mathrm{n}^{\circ} 1$ (1997), p. 193-203
http://www.numdam.org/item?id=ASNSP_1997_4_24_1_193_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

New CR Invariants and their Application to the CR Equivalence Problem

ELISABETTA BARLETTA - SORIN DRAGOMIR

1. - Introduction

Let M be a strictly pseudoconvex CR manifold (of hypersurface type) of CR dimension $n-1$. Let $K(M)=\Omega^{n, 0}(M)$ be its canonical bundle and $K^{0}(M)=K(M)-\{$ zero section $\}$. Let $C(M)=K^{0}(M) / \mathbb{R}_{+}$. Then $C(M)$ is a principal circle bundle over M and, by work of C.L. Fefferman [4], with each fixed pseudohermitian structure θ on M one may associate a Lorentz metric g on $C(M)$. This is the Fefferman metric of (M, θ). Its properties are closely tied to those of the base CR manifold. For instance, if M is a real hypersurface in \mathbb{C}^{n} then the null geodesics of the Fefferman metric project on biholomorphic invariant curves (known as the chains of M, cf. S.S. Chern \& J. Moser [1]). Although not fully understood as yet, the Fefferman metric proved useful in a number of situations, e.g. provided a simpler proof (cf. L.K. Koch [9]) of the striking result of H. Jacobowitz (cf. [6]) that two nearby points of a strictly pseudoconvex CR manifold are joined by a chain. See also C.R. Graham [5], for a characterization of Fefferman metrics among all Lorentz metrics on $C(M)$.

By classical work of S.S. Chern \& J. Simons [2], the Pontrjagin forms of a riemannian manifold are conformal invariants. On the other hand, the restricted conformal class of the Fefferman metric is known (cf. J.M. Lee [10]) to be a CR invariant. This led us to investigate whether the result by S.S. Chern \& J. Simons may carry over to Lorentz geometry. We find (cf. Theorem 2) that the Pontrjagin forms $P\left(\Omega^{\ell}\right)$ of the Fefferman metric are CR invariants of M. Also, whenever $P\left(\Omega^{\ell}\right)=0$, the De Rham cohomology class of the corresponding transgression form is a CR invariant, as well. As an application, we show that a necessary condition for M to be globally CR equivalent to a sphere $S^{2 n-1}$ is that $P_{1}\left(\Omega^{2}\right)=0$ (i.e. the first Pontrjagin form of $(C(M), g)$ must vanish) and the corresponding transgression form gives an integral cohomology class (cf. Theorem 3).

2. - The Fefferman metric

Let ($M, T_{1,0}(M)$) be an orientable CR manifold (of hypersurface type) of CR dimension $n-1$, where $T_{1,0}(M) \subset T(M) \otimes \mathbb{C}$ denotes its CR structure. Its Levi distribution $H(M)=\operatorname{Re}\left\{T_{1,0}(M) \oplus T_{0,1}(M)\right\}$ carries the complex structure $J: H(M) \rightarrow H(M)$ given by $J(Z+\bar{Z})=i(Z-\bar{Z})$ for any $Z \in T_{1,0}(M)$. Here $T_{0,1}(M)=\overline{T_{1,0}(M)}$. Overbars denote complex conjugation and $i=\sqrt{-1}$. The annihilator $E \subset T^{*}(M)$ of $H(M)$ is a trivial line bundle, hence it admits global nowhere vanishing cross sections $\theta \in \Gamma^{\infty}(E)$, each of which is referred to as a pseudohermitian structure. The Levi form L_{θ} is given by $L_{\theta}(Z, \bar{W})=$ $-i(d \theta)(Z, \bar{W})$ for any $Z, W \in T_{1,0}(M)$. Two pseudohermitian structures $\theta, \hat{\theta}$ are related by $\hat{\theta}=e^{2 u} \theta$ for some C^{∞} function $u: M \rightarrow \mathbb{R}$ and the corresponding Levi forms satisfy $L_{\hat{\theta}}=e^{2 u} L_{\theta}$. This accounts for the (already highly exploited, cf. e.g. D. Jerison \& J.M. Lee [7], and references therein) analogy between CR and conformal geometry. If L_{θ} is nondegenerate for some choice of θ (and thus for all) then ($M, T_{1,0}(M)$) is a nondegenerate CR manifold. Any nondegenerate CR manifold, on which a pseudohermitian structure θ has been fixed, admits a unique linear connection ∇ (the Tanaka-Webster connection) parallelizing both the Levi form and the complex structure (in the Levi distribution). Cf. also [3] for an axiomatic description of the Tanaka-Webster connection.

A complex valued p-form ω on M is a ($p, 0$)-form if $\left.T_{0,1}(M)\right\rfloor \omega=0$. Let $\Omega^{p, 0}(M)$ be the bundle of all $(p, 0)$-forms on M. Set $K(M)=\Omega^{n, 0}(M)$. There is a natural action of $\mathbb{R}_{+}=(0, \infty)$ on $K^{0}(M)=K(M)-\{0\}$ and the quotient space $C(M)=K^{0}(M) / \mathbb{R}_{+}$is a principle S^{1}-bundle over M. Let $\pi: C(M) \rightarrow M$ be the projection. A local frame $\left\{\theta^{\alpha}\right\}$ of $T_{1,0}(M)^{*}$ on $U \subseteq M$ induces the trivialization chart:

$$
\pi^{-1}(U) \rightarrow U \times S^{1}, \quad[\omega] \mapsto\left(x, \frac{\lambda}{|\lambda|}\right)
$$

where $\omega \in K^{0}(M), \pi([\omega])=x$ and $\omega=\lambda\left(\theta \wedge \theta^{1} \wedge \cdots \wedge \theta^{n-1}\right)_{x}$ with $\lambda \in \mathbb{R}$, $\lambda \neq 0$. Define $\gamma: \pi^{-1}(U) \rightarrow[0,2 \pi)$ by $\gamma([\omega])=\arg (\lambda)$. Moreover, consider the (globally defined) 1 -form σ on $C(M)$ given by:

$$
\sigma=\frac{1}{n+1}\left(d \gamma+\pi^{*}\left(i \omega_{\alpha}^{\alpha}-\frac{i}{2} h^{\alpha \bar{\beta}} d h_{\alpha \bar{\beta}}-\frac{R}{2 n} \theta\right)\right)
$$

Here $h_{\alpha \bar{\beta}}, \omega_{\alpha}{ }^{\beta}$ and $R=h^{\alpha \bar{\beta}} R_{\alpha \bar{\beta}}$ are respectively the (local) components of the Levi form, the connection 1 -forms (of the Tanaka-Webster connection) and the pseudohermitian scalar curvature (cf. e.g. (2.17) in [12], p. 34).

Let us extend the Hermitian form $\langle Z, W\rangle_{\theta}=L_{\theta}(Z, \bar{W})$ to the whole of $T(M) \otimes \mathbb{C}$ by requesting that $\langle Z, \bar{W}\rangle_{\theta}=0,\langle\bar{Z}, \bar{W}\rangle_{\theta}=\overline{\langle Z, W\rangle_{\theta}}$ and $\langle T, V\rangle_{\theta}=0$ for any $Z, W \in T_{1,0}(M), V \in T(M) \otimes \mathbb{C}$. Then:

$$
\begin{equation*}
g=\pi^{*}\langle,\rangle_{\theta}+2\left(\pi^{*} \theta\right) \odot \sigma \tag{1}
\end{equation*}
$$

is a semi-riemannian metric on $C(M)$. Assume from now on that M is strictly pseudoconvex and choose θ so that L_{θ} is positive definite. Then g is a Lorentz metric on $C(M)$, known as the Fefferman metric of (M, θ). By a result of J.M. Lee (cf. [10], p. 418) if $\hat{\theta}=e^{2 u} \theta$ is another pseudohermitian structure and \hat{g} the corresponding Fefferman metric, then $\hat{g}=e^{2(u \circ \pi)} g$.

3. - Pontrjagin forms

Let $I^{\ell}(G L(2 n))$ be the space of all invariant polynomials of degree ℓ, i.e. symmetric multilinear maps $P: \operatorname{gl}(2 n)^{\ell} \rightarrow \mathbb{R}$ which are $\operatorname{ad}(G L(2 n))$-invariant. Here $\mathbf{g l}(2 n)$ is the Lie algebra of $G L(2 n)=G L(2 n, \mathbb{R})$. Also, if \mathcal{G} is a linear space then $\mathcal{G}^{\ell}=\mathcal{G} \otimes \cdots \otimes \mathcal{G}$ (ℓ terms). Let $Q_{\ell} \in I^{\ell}(G L(2 n)), 1 \leq \ell \leq 2 n$, be the natural generators of the ring of invariant polynomials on $\mathbf{g l}(2 n)$ (cf. [2], p. 57, for the explicit expressions of the Q_{ℓ}). Let ($M, T_{1,0}(M)$) be a strictly pseudoconvex CR manifold of CR dimension $n-1$ and θ a pseudohermitian structure on M so that L_{θ} is positive definite. Let g be the Fefferman metric of (M, θ). Let $F(C(M)) \rightarrow C(M)$ be the principal $G L(2 n)$-bundle of all linear frames on $C(M)$ and $\omega \in \Gamma^{\infty}\left(T^{*}(F(C(M))) \otimes \operatorname{gl}(2 n)\right)$ the connection 1-form (of the Levi-Civita connection) of the Lorentz manifold ($C(M), g$). Then:

Theorem 1. The characteristic forms $Q_{2 \ell+1}\left(\Omega^{2 \ell+1}\right)$ vanish for any $0 \leq \ell \leq$ $n-1$.

Here $\Omega=D \omega$ is the curvature 2-form of ω. Also, for any $P \in I^{\ell}(G L(2 n))$ we set $P\left(\Omega^{\ell}\right)=P \circ \Omega^{\ell}$ where $\Omega^{\ell}=\Omega \wedge \cdots \wedge \Omega$ (ℓ terms). Let us prove Theorem 1. To this end, let $\mathcal{L}(C(M)) \rightarrow C(M)$ be the principal $O(2 n-1,1)-$ bundle of all Lorentz frames, i.e. $u=\left(c,\left\{X_{i}\right\}\right) \in \mathcal{L}(C(M))$ if $g_{c}\left(X_{i}, X_{j}\right)=\epsilon_{i} \delta_{i j}$ where $\epsilon_{\alpha}=1,1 \leq \alpha \leq 2 n-1$ and $\epsilon_{2 n}=-1, c \in C(M)$. Here $O(2 n-1,1)$ is the Lorentz group. Let $\mathbf{o}(2 n-1,1)$ be its Lie algebra. By hypothesis:

$$
\omega_{u}\left(T_{u}(\mathcal{L}(C(M)))\right) \subseteq \mathbf{o}(2 n-1,1)
$$

i.e. $\epsilon \omega_{u}(X)+\omega_{u}(X)^{t} \epsilon=0$ for any $X \in T_{u}(\mathcal{L}(C(M))), u \in \mathcal{L}(C(M))$. Here $\epsilon=\operatorname{diag}\left(\epsilon_{1}, \cdots, \epsilon_{2 n}\right)$. Let $\left\{E_{j}^{i}\right\}$ be the canonical basis of $\operatorname{gl}(2 n)$ and set $\omega=\omega_{j}^{i} \otimes E_{i}^{j}, \Omega=\Omega_{j}^{i} \otimes E_{i}^{j}$. We claim that:

$$
\begin{equation*}
\epsilon^{i} \Omega_{j}^{i}+\epsilon^{j} \Omega_{i}^{j}=0 \tag{2}
\end{equation*}
$$

at all points of $\mathcal{L}(C(M))$, as a form $F\left(C(M)\right.$. Here $\epsilon^{i}=\epsilon_{i}$. As Ω is horizontal, it suffices to check (2) on horizontal vectors (hence tangent to $\mathcal{L}(C(M))$). We have:

$$
\begin{aligned}
\epsilon^{i} \Omega_{j}^{i} & =\epsilon^{i}\left(d \omega_{j}^{i}+\omega_{k}^{i} \wedge \omega_{j}^{k}\right) \\
& =d\left(-\epsilon^{j} \omega_{i}^{j}\right)+\sum_{k}\left(-\epsilon^{k} \omega_{i}^{k}\right) \wedge \omega_{j}^{k}=-\epsilon^{j} \Omega_{i}^{j}
\end{aligned}
$$

on $T_{u}(\mathcal{L}(C(M)))$ for any $u \in \mathcal{L}(C(M))$, etc. Next, note that for any $A \in$ $\mathbf{o}(2 n-1,1)$ one has i) $\operatorname{tr}(A)=0$, ii) $\operatorname{tr}(A B)=0$, for any $B \in \mathcal{M}_{2 n}(\mathbb{R})$ satisfying $B=\epsilon B^{t} \epsilon$, and iii) $\operatorname{tr}\left(A^{2 \ell+1}\right)=0$. Then:

$$
\begin{equation*}
\operatorname{tr}\left(A_{1} \cdots A_{2 \ell+1}\right)=0 \tag{3}
\end{equation*}
$$

for any $A_{1}, \cdots, A_{2 \ell+1} \in \mathbf{o}(2 n-1,1)$ (the proof is by induction over ℓ). Since $Q_{2 \ell+1}\left(\Omega^{2 \ell+1}\right)$ is invariant, we need only show that it vanishes at the points of $\mathcal{L}(C(M))$. But at these points the range of $\Omega^{2 \ell+1}$ lies (by (2)-(3)) in the kernel of $Q_{2 \ell+1}$. Our Theorem 1 is proved.

Let $P \in I^{\ell}(G L(2 n))$. The transgression form $T P(\omega)$ is given by:

$$
T P(\omega)=\ell \int_{0}^{1} P\left(\omega \wedge \Omega_{t}^{\ell-1}\right) d t
$$

where $\Omega_{t}=t \Omega+(1 / 2) t(t-1)[\omega, \omega], 0 \leq t \leq 1$. By Chern-Weil theory (cf. e.g. [8], vol. II, p. 297) one has $P\left(\Omega^{\ell}\right)=d T P(\omega)$. By Theorem 1, the transgression forms $T Q_{2 \ell+1}(\omega)$ are closed, hence we get the cohomology classes $\left[T Q_{2 \ell+1}(\omega)\right] \in H^{4 \ell+1}(F(C(M)), \mathbb{R})$. Note that:

$$
\begin{equation*}
\left[T Q_{2 \ell+1}(\omega)\right] \in \operatorname{ker}\left(j^{*}\right) \tag{4}
\end{equation*}
$$

where $j^{*}: H^{4 \ell+1}(F(C(M)), \mathbb{R}) \rightarrow H^{4 \ell+1}(\mathcal{L}(C(M)), \mathbb{R})$ is induced by $j:$ $\mathcal{L}(C(M)) \subset F(C(M))$. Indeed $T Q_{2 \ell+1}(\omega)$ may be written as:

$$
T Q_{2 \ell+1}(\omega)=\sum_{i=0}^{2 \ell} B_{i} Q_{2 \ell+1}\left(\omega \wedge[\omega, \omega]^{i} \wedge \Omega^{2 \ell-i}\right)
$$

for some constants $B_{i}>0$. As $j^{*} \omega$ is $\mathbf{o}(2 n-1,1)$-valued, the same argument as in the proof of Theorem 1 shows that $j^{*} T Q_{2 \ell+1}(\omega)=0$, q.e.d. One has to work with $j^{*} \omega$ (rather than ω at a point of $\mathcal{L}(C(M)$)) because ω (unlike its curvature form) is not horizontal.

If g_{0} is a riemannian metric on $C(M)$ with connection 1 -form ω_{0} and $O(C(M)) \rightarrow C(M)$ is the principal $O(2 n)$-bundle of orthonormal (with respect to g_{0}) frames on $C(M)$, then orthonormalization of frames gives a deformation retract $F(C(M)) \rightarrow O(C(M))$ and hence (cf. Proposition 4.3 in [2], p. 58) the corresponding transgression forms $T Q_{2 \ell+1}\left(\omega_{0}\right)$ are exact. As to the Lorentz case, in general (4) need not imply exactness of $T Q_{2 \ell+1}(\omega)$. For instance \mathbb{R}_{1}^{2} is a Lorentz manifold for which the homomorphism $j^{*}: H^{1}\left(F\left(\mathbb{R}_{1}^{2}\right), \mathbb{R}\right) \rightarrow$ $H^{1}\left(\mathcal{L}\left(\mathbb{R}_{1}^{2}\right), \mathbb{R}\right.$) (induced by $j: \mathcal{L}\left(\mathbb{R}_{1}^{2}\right) \subset F\left(\mathbb{R}_{1}^{2}\right)$) has a nontrivial kernel. Here $\mathbb{R}_{v}^{N}=\left(\mathbb{R}^{N},\langle,\rangle_{N-v, \nu}\right)$ and $\langle,\rangle_{N-v, \nu}=\sum_{i=1}^{N-v} x_{i} y_{i}-\sum_{i=N-v+1}^{N} x_{i} y_{i}$. Indeed, as both $F\left(\mathbb{R}_{1}^{2}\right)$ and $\mathcal{L}\left(\mathbb{R}_{1}^{2}\right)$ are trivial bundles j^{*} may be identified with the homomorphism $j^{*}: H^{1}(G L(2), \mathbb{R}) \rightarrow H^{1}(O(1,1), \mathbb{R})$ (induced by $j: O(1,1) \subset$ $G L(2))$. The Lorentz group $O(1,1)$ has four components, each diffeomorphic to \mathbb{R}. Hence $H^{1}(O(1,1))=0$. Moreover $O(2) \subset G L(2)$ is a homotopy equivalence, hence $\operatorname{ker}\left(j^{*}\right)=H^{1}(G L(2), \mathbb{R})=H^{1}(O(2), \mathbb{R})=\mathbb{R} \oplus \mathbb{R}$ (as $O(2)$ has two components, each diffeomorphic to S^{1}).

At this point, we may state the following:

Theorem 2. Let M be a strictly pseudoconvex $C R$ manifold of $C R$ dimension $n-1$ and $P \in I^{\ell}(G L(2 n))$. Then $P\left(\Omega^{\ell}\right)$ is a CR invariant of M. Moreover, if $P\left(\Omega^{\ell}\right)=0$, then the cohomology class $[T P(\omega)] \in H^{2 \ell-1}(F(C(M)), \mathbb{R})$ is a $C R$ invariant of M. In particular $\left[T Q_{2 \ell+1}(\omega)\right] \in H^{4 \ell+1}(F(C(M)), \mathbb{R})$ is $a C R$ invariant.

4. - Applications

Let M be a strictly pseudoconvex CR manifold. Assume that M is realizable as a real hypersurface in \mathbb{C}^{n}. If $\varphi: M \rightarrow \mathbb{C}^{n}$ is the given immersion, then $\eta=\varphi^{*} d z^{1} \wedge \cdots \wedge d z^{n}$ is a nowhere zero global ($n, 0$)-form on M, hence $C(M)$ is a trivial bundle. By work of C.L. Fefferman [4], there is a smooth defining function ψ of M satisfying the complex Monge-Ampère equation:

$$
J(\psi) \equiv \operatorname{det}\left(\begin{array}{cc}
\psi & \partial \psi / \partial \bar{z}^{k} \\
\partial \psi / \partial z^{j} & \partial^{2} \psi / \partial z^{j} \partial \bar{z}^{k}
\end{array}\right)=1
$$

to second order along M, so that $F^{*} h$ is the Fefferman metric of $(M, \hat{\theta})$, $\hat{\theta}=\frac{i}{2} \varphi^{*}(\bar{\partial}-\partial) \psi$, where h is the Lorentz metric given by:

$$
h=-\frac{i}{n+1} j^{*}\{(\partial-\bar{\partial}) \psi\} \odot d \gamma+j^{*}\left\{\frac{\partial^{2} \psi}{\partial z^{j} \partial \bar{z}^{k}} d z^{j} \odot d \bar{z}^{k}\right\}
$$

and $F: C(M) \approx M \times S^{1}$ the diffeomorphism induced by η. Also γ is a local coordinate on S^{1} and $j: M \times S^{1} \subset \mathbb{C}^{n+1}$. Let θ be any pseudohermitian structure on M (so that L_{θ} is positive definite). Then $\hat{\theta}=e^{2 u} \theta$ for some smooth function u on M, and an inspection of (1) shows that $F^{*} h$ and g are conformally equivalent Lorentz metrics. On the other hand $h=j^{*} G$ where G is the semi-riemannian metric on $\mathbb{C}^{n} \times \mathbb{C}_{*}$ given by:

$$
\begin{aligned}
G= & |\zeta|^{2 /(n+1)}\left\{\frac{\psi}{(n+1)^{2}}|\zeta|^{-2} d \zeta \odot d \bar{\zeta}+\frac{\partial^{2} \psi}{\partial z^{j} \partial \bar{z}^{k}} d z^{j} \odot d \bar{z}^{k}\right. \\
& \left.+\frac{1}{n+1}\left((\partial \psi) \odot \frac{d \bar{\zeta}}{\zeta}+\frac{d \zeta}{\zeta} \odot(\bar{\partial} \psi)\right)\right\}
\end{aligned}
$$

where $(z, \zeta)=\left(z^{1}, \cdots, z^{n}, \zeta\right)$ are complex coordinates. Summing up, if M is realizable then $(C(M), g)$ admits a global conformal immersion in ($\left.\mathbb{C}^{n} \times \mathbb{C}_{*}, G\right)$, hence (in view of Theorem 5.14 in [2], p. 64) it is reasonable to expect that some of the CR invariants furnished by Theorem 2 are obstructions towards the global embeddability of a given, abstract, CR manifold M. While we leave this as an open problem, we address the following simpler situation. Assume M to be equivalent to $S^{2 n-1}$. Then $C(M)$ is diffeomorphic to the Hopf manifold $H^{n}=S^{2 n-1} \times S^{1}$. On the other hand, note that $I_{n+1}=\left\{\zeta \in \mathbb{C}: \zeta^{n+1}=1\right\}$ acts freely on $\mathbb{C}^{n} \times \mathbb{C}_{*}$ as a properly discontinuous group of complex analytic
transformations. Hence the quotient space $V_{n+1}=\left(\mathbb{C}^{n} \times \mathbb{C}_{*}\right) / I_{n+1}$ is a complex $(n+1)$-dimensional manifold. Consider the biholomorphism $p: V_{n+1} \rightarrow \mathbb{C}^{n} \times \mathbb{C}_{*}$ given by $p([z, \zeta])=\left(z / \zeta, \zeta^{n+1}\right)$ for any $[z, \zeta] \in V_{n+1}$ and set $\phi_{0}=p^{-1} \circ j \circ F$. Next:

$$
\begin{equation*}
G_{0}=\sum_{j=1}^{n} d z^{j} \odot d \bar{z}^{j}-d \zeta \odot d \bar{\zeta} \tag{5}
\end{equation*}
$$

is I_{n+1}-invariant, hence gives rise to a globally defined semi-riemannian metric of index 2 on V_{n+1}. Note that $\left(V_{n+1}, G_{0}\right)$ is locally isometric to $\mathbb{R}_{2}^{2 n+2}$.

Lemma 1. $\phi_{0}:(C(M), g) \rightarrow\left(V_{n+1}, G_{0}\right)$ is a conformal immersion.
Indeed, let $\psi(z)=|z|^{2}-1$. A calculation then shows that $G_{0}=p^{*} G$. Finally, it may be seen that $F:(C(M), g) \rightarrow\left(H^{n}, h\right)$ is a conformal diffeomorphism.

Let $P_{i} \in I^{2 i}(G L(2 n))$ be given by:

$$
\operatorname{det}\left(\lambda I_{2 n}-\frac{1}{2 \pi} A\right)=\sum_{i=0}^{n} P_{i}(A \otimes \cdots \otimes A) \lambda^{2 n-2 i}+Q\left(\lambda^{2 n-o d d}\right)
$$

i.e. the invariant polynomials obtained by ignoring the powers $\lambda^{2 n-o d d}$. We obtain the following:

Theorem 3. Let M be a strictly pseudoconvex $C R$ manifold of $C R$ dimension $n-1$ and θ a pseudohermitian structure on M so that L_{θ} is positive definite. Let g be the Fefferman metric of (M, θ). Let ω be the connection 1 -form of g and Ω its curvature 2 -form. If M is $C R$ equivalent to $S^{2 n-1}$ then $P_{1}\left(\Omega^{2}\right)=0$ and $\left[T P_{1}(\omega)\right] \in H^{3}(F(C(M)), \mathbb{Z})$, provided $n \geq 3$.

To prove Theorem 3, we study the geometry of the second fundamental form of the immersion $\phi=p^{-1} \circ j: H^{n} \rightarrow\left(\mathbb{C}^{n} \times \mathbb{C}_{*}, G\right)$. Set $C_{n}=$ $\sqrt{n+1} / \sqrt{2(n+1)}$. The tangent vector fields ξ_{a} given by:

$$
\begin{aligned}
& \xi_{1}=C_{n}\left(z^{j} \frac{\partial}{\partial z^{j}}+\bar{z}^{j} \frac{\partial}{\partial \bar{z}^{j}}+\zeta \frac{\partial}{\partial \zeta}+\bar{\zeta} \frac{\partial}{\partial \bar{\zeta}}\right) \\
& \zeta_{2}=C_{n}\left(z^{j} \frac{\partial}{\partial z^{j}}+\bar{z}^{j} \frac{\partial}{\partial \bar{z}^{j}}-(n+2)\left(\zeta \frac{\partial}{\partial \zeta}+\bar{\zeta} \frac{\partial}{\partial \bar{\zeta}}\right)\right)
\end{aligned}
$$

are such that $G\left(\xi_{1}, \xi_{2}\right)=0, G\left(\xi_{1}, \xi_{1}\right)=1$ and $G\left(\xi_{2}, \xi_{2}\right)=-1$, and form a frame of the normal bundle of ϕ. Since p is a biholomorphism (with the inverse $\left.p^{-1}(z, \zeta)=\left[z \zeta^{1 /(n+1)}, \zeta^{1 /(n+1)}\right]\right)$ we have:

$$
\begin{aligned}
p_{*} \frac{\partial}{\partial z^{j}} & =\zeta^{-1 /(n+1)} \frac{\partial}{\partial z^{j}} \\
p_{*} \frac{\partial}{\partial \zeta} & =\zeta^{-1 /(n+1)}\left(-z^{j} \frac{\partial}{\partial z^{j}}+(n+1) \zeta \frac{\partial}{\partial \zeta}\right)
\end{aligned}
$$

By (5) the Christoffel symbols of the Levi-Civita connection ∇^{0} of (V_{n+1}, G_{0}) vanish. The Levi-Civita connection ∇ of $\left(\mathbb{C}^{n} \times \mathbb{C}_{*}, G\right)$ is related to ∇^{0} by:

$$
p_{*}\left(\nabla_{X}^{0} Y\right)=\nabla_{p_{*} X} p_{*} Y
$$

for any $X, Y \in T\left(V_{n+1}\right)$. A calculation shows that:

$$
\begin{gathered}
\nabla_{\frac{\partial}{\partial z^{j}}} \frac{\partial}{\partial z^{k}}=0 ; \quad \nabla_{\frac{\partial}{\partial \zeta}} \frac{\partial}{\partial \zeta}=-\frac{n}{n+1} \frac{1}{\zeta} \frac{\partial}{\partial \zeta} \\
\nabla_{\frac{\partial}{\partial \zeta}} \frac{\partial}{\partial z^{j}}=\frac{1}{n+1} \frac{1}{\zeta} \frac{\partial}{\partial z^{j}}
\end{gathered}
$$

Tangent vector fields on H^{n} are of the form $X+Y$ with $X=A^{j} \partial / \partial z^{j}+\bar{A}^{j} \partial / \partial \bar{z}^{j}$ and $Y=B \partial / \partial \zeta+\bar{B} \partial / \partial \bar{\zeta}$ satisfying $A^{j} \bar{z}_{j}+\bar{A}^{j} z_{j}=0$, respectively $B \bar{\zeta}+\bar{B} \zeta=0$. Here $z^{j}=z_{j}$. It follows that:

$$
\begin{align*}
& \nabla_{X} \xi_{1}=C_{n} \frac{n+2}{n+1} X, \quad \nabla_{X} \xi_{2}=-\frac{C_{n}}{n+1} X \tag{6}\\
& \nabla_{Y} \xi_{1}=\frac{C_{n}}{n+1}\left\{Y+B \bar{\zeta} z^{j} \frac{\partial}{\partial z^{j}}+\bar{B} \zeta \bar{z}^{j} \frac{\partial}{\partial \bar{z}^{j}}\right\} \tag{7}\\
& \nabla_{Y} \xi_{2}=\frac{C_{n}}{n+1}\left\{-(n+2) Y+B \bar{\zeta} z^{j} \frac{\partial}{\partial z^{j}}+\bar{B} \zeta \bar{z}^{j} \frac{\partial}{\partial \bar{z}^{j}}\right\} . \tag{8}
\end{align*}
$$

Let $A_{a}=A_{\xi_{a}}$ be the Weingarten operator corresponding to the normal section ξ_{a}. We shall need the following:

Lemma 2. The first Pontrjagin form of (H^{n}, h) is:

$$
\frac{1}{4 \pi^{2}} \Psi_{12} \wedge \Psi_{12}
$$

where (with respect to a local coordinate system (x^{i}) on H^{n}):

$$
\Psi_{12}=h\left(\frac{\partial}{\partial x^{i}}, A_{1} A_{2} \frac{\partial}{\partial x^{j}}\right) d x^{i} \wedge d x^{j} .
$$

We shall prove Lemma 2 later on. Recall the Ricci equation (of the given immersion ϕ, cf. e.g. (2.7) in [13], p. 22):

$$
G\left(R(X, Y) \xi, \xi^{\prime}\right)=G\left(R^{\perp}(X, Y) \xi, \xi^{\prime}\right)+h\left(\left[A_{\xi}, A_{\xi^{\prime}}\right] X, Y\right)
$$

where R, R^{\perp} denote respectively the curvature tensor fields of ($\mathbb{C}^{n} \times \mathbb{C}_{*}, G$) and of the normal connection. As a consequence of (6)-(8) ξ_{a} are parallel in the normal bundle, hence the immersion ϕ has a flat normal connection ($R^{\perp}=0$). On the other hand $R=0$ (because (V_{n+1}, G_{0}) is flat) and the Ricci equation
shows that the Weingarten operators A_{a} commute. Then $\Psi_{12}=0$ and our Lemmas 1 and 2 together with Theorem 2 yield $P_{1}\left(\Omega^{2}\right)=0$.

Let $q: H^{3}(F(C(M)), \mathbb{R}) \rightarrow H^{3}(F(C(M)), \mathbb{R} / \mathbb{Z})$ be the natural homomorphism. By Theorem 3.16 in [2], p. 56, since $P_{1}\left(\Omega^{2}\right)=0$, there is a cohomology class $\alpha \in H^{3}(C(M), \mathbb{R} / \mathbb{Z})$ so that $p_{F}^{*} \alpha=q\left(\left[T P_{1}(\omega)\right]\right)$, where p_{F} : $F(C(M)) \rightarrow C(M)$ is the projection. Yet, for the Hopf manifold $H^{3}\left(H^{n}, \mathbb{R} / \mathbb{Z}\right)$ $=0$ provided $n \geq 3$, hence $\left[T P_{1}(\omega)\right] \in \operatorname{ker}(q)$ and then by the exactness of the Bockstein sequence:

$$
\begin{aligned}
\cdots & \rightarrow H^{3}(F(C(M)), \mathbb{Z}) \rightarrow H^{3}(F(C(M)), \mathbb{R}) \rightarrow \\
& \rightarrow H^{3}(F(C(M)), \mathbb{R} / \mathbb{Z}) \rightarrow H^{4}(F(C(M)), \mathbb{R}) \rightarrow \cdots
\end{aligned}
$$

it follows that $\left[T P_{1}(\omega)\right.$] is an integral class.

5. - Proof of Theorem 2

Let $\varphi \in \Gamma^{\infty}\left(T^{*}(F(C(M))) \otimes \mathbb{R}^{2 n}\right)$ be the canonical 1-form and set $\varphi=$ $\varphi^{i} \otimes e_{i}$, where $\left\{e_{i}\right\}$ is the canonical basis in $\mathbb{R}^{2 n}$. Moreover, let $E_{i}=B\left(e_{i}\right)$ be the corresponding standard horizontal vector fields (cf. e.g. [8], vol. I, p. 119). Let $u: M \rightarrow \mathbb{R}$ be a C^{∞} function and let \hat{g} be the Fefferman metric of $\left(M, e^{2 u} \theta\right)$. Let $\hat{\omega}$ be the corresponding connection 1 -form. Then:

$$
\begin{equation*}
\hat{\omega}_{j}^{i}=\omega_{j}^{i}+d(u \circ \rho) \delta_{j}^{i}+E_{j}(u \circ \rho) \varphi^{i}-\epsilon_{i} E_{i}(u \circ \rho) \epsilon_{j} \varphi^{j} \tag{9}
\end{equation*}
$$

at all points of $\mathcal{L}(C(M))$, as forms on $F(C(M))$. Here $\rho=\pi \circ p_{F}$. The proof is to relate the Levi-Civita connections of the conformally equivalent Fefferman metrics g and \hat{g}, followed by a translation of the result in principal bundle terminology. We omit the details. Consider the 1-parameter family of Lorentz metrics $g(s)=e^{2 s(u \circ \pi)} g, 0 \leq s \leq 1$, on $C(M)$. Let $\omega(s)$ be the corresponding connection 1-form and set $\omega^{\prime}=\frac{d}{d s}\{\omega(s)\}_{s=0}$. By (9) (applied to $s(u \circ \rho)$ instead of $u \circ \rho$) we obtain:

$$
\begin{equation*}
\omega_{j}^{i}=d(u \circ \rho) \delta_{j}^{i}+E_{i}(u \circ \rho) \varphi^{i}-\epsilon_{i} E_{i}(u \circ \rho) \epsilon_{j} \varphi^{j} \tag{10}
\end{equation*}
$$

at all points of $\mathcal{L}(C(M))$, as forms on $F(C(M))$. Let $P \in I^{\ell}(G L(2 n))$. We wish to show that $P\left(\Omega^{\ell}\right)$ is invariant under any transformation $\hat{\theta}=e^{2 u} \theta$. Note that a relation of the form:

$$
\begin{equation*}
T P(\hat{\omega})=T P(\omega)+e x a c t \tag{11}
\end{equation*}
$$

yields $P\left(\hat{\Omega}^{\ell}\right)=P\left(\Omega^{\ell}\right)$, hence we only need to prove (11). Since the Q_{ℓ} generate $I(G L(2 n))$ we may assume that P is a monomial in the Q_{ℓ}. Using

Proposition 3.7 in [2], p. 53, an inductive argument shows that it is sufficient to prove (11) for $P=Q_{\ell}$. It is enough to prove that:

$$
\begin{equation*}
\frac{d}{d s}\left\{T Q_{\ell}(\omega(s))\right\}=\text { exact } \tag{12}
\end{equation*}
$$

Since each point on the curve $s \mapsto g(s)$ is the initial point of another such curve, it suffices to prove (12) at $s=0$. By Proposition 3.8 in [2], p. 53, we know that:

$$
\frac{d}{d s}\left\{T Q_{\ell}(\omega(s))\right\}_{s=0}=\ell Q_{\ell}\left(\omega^{\prime} \wedge \Omega^{\ell-1}\right)+\text { exact }
$$

hence it is enough to show that $Q_{\ell}\left(\omega^{\prime} \wedge \Omega^{\ell-1}\right)=$ exact. Using (10) and the identity:

$$
Q_{\ell}\left(\psi \wedge \Omega^{\ell-1}\right)=\sum_{i_{1}, \cdots, i_{\ell}} \psi_{i_{2}}^{i_{1}} \wedge \Omega_{i_{3}}^{i_{2}} \wedge \cdots \wedge \Omega_{i_{1}}^{i_{\ell}}
$$

(cf. (4.2) in [2], p. 57) for any $\mathbf{g l}(2 n)$-valued form ψ on $F(C(M))$, we may conduct the following calculation:

$$
\begin{aligned}
Q_{\ell}\left(\omega^{\prime} \wedge \Omega^{\ell-1}\right)= & \sum \omega_{i_{2}}^{i_{1}} \wedge \Omega_{i_{3}}^{i_{2}} \wedge \cdots \wedge \Omega_{i_{1}}^{i_{\ell}} \\
= & \sum d(u \circ \rho) \wedge \Omega_{i_{3}}^{i_{2}} \wedge \cdots \wedge \Omega_{i_{2}}^{i_{\ell}} \\
& +\sum\left(E_{i_{2}}(u \circ \rho) \varphi^{i_{1}}-\epsilon_{i_{1}} E_{i_{1}}(u \circ \rho) \epsilon_{i_{2}} \varphi^{i_{2}}\right) \wedge \Omega_{i_{3}}^{i_{2}} \wedge \cdots \wedge \Omega_{i_{1}}^{i_{\ell}}
\end{aligned}
$$

Recall the structure equations, cf. e.g. [8], vol. I, p. 121. As g is Lorentz, ω is torsion free. Hence $\varphi^{i_{1}} \wedge \Omega_{i_{1}}^{i_{\ell}}=0$. This and (2) also yield $\epsilon_{i_{2}} \varphi^{i_{2}} \wedge \Omega_{i_{3}}^{i_{2}}=0$. Hence:

$$
Q_{\ell}\left(\omega^{\prime} \wedge \Omega^{\ell-1}\right)=d(u \circ \rho) \wedge Q_{\ell-1}\left(\Omega^{\ell-1}\right)=\text { exact }
$$

(because $d Q_{\ell-1}\left(\Omega^{\ell-1}\right)=0$) at all points of $\mathcal{L}(C(M))$, as a form on $F(C(M))$. This suffices because both $Q_{\ell}\left(\omega^{\prime} \wedge \Omega^{\ell-1}\right)$ and $(u \circ \rho) Q_{\ell-1}\left(\Omega^{\ell-1}\right)$ are invariant forms.

6. - Proof of Lemma 2

Recall (cf. e.g. [8], vol. II, p. 313) that:

$$
P_{\ell}\left(\Omega^{2 \ell}\right)=c_{\ell} \sum \delta_{i_{1} \cdots i_{2 \ell}}^{j_{1} \cdots j_{2 \ell}} \Omega_{j_{1}}^{i_{1}} \wedge \cdots \wedge \Omega_{j_{2 \ell}}^{i_{2 \ell}}
$$

where $c_{\ell}=1 /\left((2 \pi)^{2 \ell}(2 \ell)!\right)$ and the summation runs over all ordered subsets $\left(i_{1}, \cdots, i_{2 \ell}\right)$ of $\{1, \cdots, 2 n\}$ and all permutations $\left(j_{1}, \cdots, j_{2 \ell}\right)$ of $\left(i_{1}, \cdots, i_{2 \ell}\right)$ and
$\delta_{i_{1} \cdots i_{2 \ell}}^{j_{1} \cdots j_{2 \ell}}$ is the sign of the permutation. We need the Gauss equation (cf. e.g. (2.4) in [13], p. 21):

$$
R_{k i j}^{\ell}=B_{j k}^{a} A_{a i}^{\ell}-B_{i k}^{a} A_{a j}^{\ell}
$$

where $R_{k i j}^{\ell}, B_{j k}^{a}$ are respectively the curvature tensor field of $\left(H^{n}, h\right)$ and the second fundamental form of ϕ (with respect to a local coordinate system (U, x^{i}) on H^{n}). Also $A_{a} \partial_{i}=A_{a i}^{j} \partial_{j}$ where ∂_{i} is short for $\partial / \partial x^{i}$. The Gauss equation and the identity:

$$
R(X, Y) Z=u\left(2 \Omega\left(X^{*}, Y^{*}\right)_{u}\left(u^{-1} Z\right)\right)
$$

(cf. [8], vol. I, p. 133) for any $X, Y, Z \in T_{x}\left(H^{n}\right)$ and some $u \in F\left(H^{n}\right)_{x}$, furnish:

$$
2 \Omega_{s}^{r}=Y_{p}^{r} X_{s}^{k}\left(B_{j k}^{a} A_{a i}^{p}-B_{i k}^{a} A_{a j}^{p}\right) d x^{i} \wedge d x^{j}
$$

(where $X_{j}^{i}: p_{F}^{-1}(U) \rightarrow \mathbb{R}$ are fibre coordinates on $F\left(H^{n}\right)$ and $\left.\left(Y_{j}^{i}\right)=\left(X_{j}^{i}\right)^{-1}\right)$. Using:

$$
B_{j k}^{a}=A_{a j}^{r} h_{r k}
$$

a calculation leads to:

$$
\begin{aligned}
2 P_{1}\left(\Omega^{2}\right)= & -c_{1}\left(B_{j_{1} k_{1}}^{a_{1}} A_{a_{1} p_{1}}^{k_{2}} B_{j_{2} k_{2}}^{a_{2}} A_{a_{2} p_{2}}^{k_{1}}\right. \\
& \left.-B_{p_{1} k_{1}}^{a_{1}} A_{a_{1} j_{1}}^{k_{2}} B_{j_{2} k_{2}}^{a_{2}} A_{a_{2} p_{2}}^{k_{1}}\right) d x^{p_{1}} \wedge d x^{j_{1}} \wedge d x^{p_{2}} \wedge d x^{j_{2}}
\end{aligned}
$$

hence:

$$
P_{1}\left(\Omega^{2}\right)=c_{1} \sum_{a, b} \Psi_{a b} \wedge \Psi_{a b}
$$

where $\Psi_{a b}$ is the 2-form on $F\left(H^{n}\right)$ given by:

$$
\Psi_{a b}=h\left(A_{a} \partial_{i}, A_{b} \partial_{j}\right) d x^{i} \wedge d x^{j}
$$

Finally, note that $\Psi_{11}=\Psi_{22}=0$ and $\Psi_{21}=-\Psi_{12}$ and Lemma 2 is proved. Note that the proof works for any codimension two submanifold of a flat riemannian manifold.

REFERENCES

[1] S. S. ChERN - J. MOSER, Real hypersurfaces in complex manifolds, Acta Math. 133(1974), 219-271.
[2] S. S. Chern - J. Simons, Characteristic forms and geometric invariants, Annals of Math. 99 (1974), 48-69.
[3] S. Dragomir, On pseudohermitian immersions between strictly pseudoconvex CR manifolds, Amer. J. Math. 117 (1995), 169-202.
[4] C. L. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. 103 (1976), 395-416.
[5] C. R. Graham, On Sparling's characterization of Fefferman metrics, Amer. J. Math. 109 (1987), 853-874.
[6] H. Jacobowitz, Chains in CR geometry, J. Differential Geome. 21 (1985), 163-191.
[7] D. Jerison - J. M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), 167-197.
[8] S. Kobayashi - K. Nomizu, Foundations of differential geometry, Interscience Publishers, New York, vol. I, 1963, vol. II, 1969.
[9] L. K. Косн, Chains on CR manifolds and Lorentz geometry, Trans. Amer. Math. Soc. 307 (1988), 827-841.
[10] J. M. Lee, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc. 296 (1986), 411-429.
[11] N. TANAKA, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book Store Co. Ltd., Kyoto, 1975.
[12] S. M. Webster, Pseudohermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25-41.
[13] K. Yano - M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Progress in Math., vol. 30, Ed. by J. Coates \& S. Helgason, Birkhäuser, Boston-Basel-Stuttgart, 1983.

Università della Basilicata Dipartimento di Matematica Via N. Sauro 85
85100 Potenza, Italia.
Politecnico di Milano
Dipartimento di Matematica Piazza Leonardo da Vinci 32 20133 Milano, Italia.

