@article{ASNSP_1996_4_23_1_119_0, author = {P\"oschel, J\"urgen}, title = {A {KAM-theorem} for some nonlinear partial differential equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {119--148}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 23}, number = {1}, year = {1996}, mrnumber = {1401420}, zbl = {0870.34060}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1996_4_23_1_119_0/} }
TY - JOUR AU - Pöschel, Jürgen TI - A KAM-theorem for some nonlinear partial differential equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1996 SP - 119 EP - 148 VL - 23 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1996_4_23_1_119_0/ LA - en ID - ASNSP_1996_4_23_1_119_0 ER -
%0 Journal Article %A Pöschel, Jürgen %T A KAM-theorem for some nonlinear partial differential equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1996 %P 119-148 %V 23 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1996_4_23_1_119_0/ %G en %F ASNSP_1996_4_23_1_119_0
Pöschel, Jürgen. A KAM-theorem for some nonlinear partial differential equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 23 (1996) no. 1, pp. 119-148. http://www.numdam.org/item/ASNSP_1996_4_23_1_119_0/
[1] The nonlinear Klein-Gordon equation on an interval as a perturbed sine-Gordon equation, Comment. Math. Helv. 70 (1995), 63-112. | MR | Zbl
- ,[2] Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15 (1988), 115-147. | Numdam | MR | Zbl
,[3] Perturbation theory of conditionally periodic solutions of infinite dimensional Hamiltonian systems and its application to the Korteweg-de Vries equation, Mat. Sb. 136 (1988); English transl. in Math. USSR-Sb. 64 (1989), 397-413. | MR | Zbl
,[4] Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics 1556, Springer, Berlin, 1993. | MR | Zbl
,[5] Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math. (to appear). | MR | Zbl
- ,[6] Developement of singularities of solutions of nonlinear hyperbolic partial differential equation, J. Math. Phys. 5 (1964), 611-613. | MR | Zbl
,[7] On elliptic lower dimensional tori in Hamiltonian systems, Math. Z. 202 (1989), 559-608. | MR | Zbl
,[8] Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv. (to appear). | MR | Zbl
,[9] On an inequality for trigonometric polynomials in several variables, Analysis, et cetera (P.H. Rabinowitz and E. Zehnder, eds.), Academic Press, Boston, pp. 545-562. | MR | Zbl
,[10] Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127 (1990), 479-528. | MR | Zbl
,