@article{ASNSP_1995_4_22_1_55_0, author = {Maslowski, Bohdan}, title = {Stability of semilinear equations with boundary and pointwise noise}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {55--93}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 22}, number = {1}, year = {1995}, mrnumber = {1315350}, zbl = {0830.60056}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1995_4_22_1_55_0/} }
TY - JOUR AU - Maslowski, Bohdan TI - Stability of semilinear equations with boundary and pointwise noise JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1995 SP - 55 EP - 93 VL - 22 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1995_4_22_1_55_0/ LA - en ID - ASNSP_1995_4_22_1_55_0 ER -
%0 Journal Article %A Maslowski, Bohdan %T Stability of semilinear equations with boundary and pointwise noise %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1995 %P 55-93 %V 22 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1995_4_22_1_55_0/ %G en %F ASNSP_1995_4_22_1_55_0
Maslowski, Bohdan. Stability of semilinear equations with boundary and pointwise noise. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 22 (1995) no. 1, pp. 55-93. http://www.numdam.org/item/ASNSP_1995_4_22_1_55_0/
[1] On abstract parabolic fundamental solutions. J. Math. Soc. Japan 39 (1987), 93-116. | MR | Zbl
,[2] Applied Functional Analysis. Springer-Verlag, New York 1976. | MR | Zbl
,[3] Nonlinear stochastic evolution equations in Hilbert space. Report no. 17, Forschungsschwerpunkt Dynamische Systeme, Universität Bremen (1980).
- - ,[4] On general boundary value problem for parabolic equations. J. Math. Kyoto Univ. 4 (1964), 207-243. | MR | Zbl
,[5] Proof of extensions of two conjectures on structural damping for elastic systems. Pacific J. Math. 136 (1989), 15-55. | MR | Zbl
- ,[6] Characterizations of domains of fractional powers of certain operators arising in elastic systems. J. Differential Equations 88 (1990), 279-293. | MR | Zbl
- ,[7] Extending a theorem of A.M. Liapunov to Hilbert space. J. Math. Analysis Appl. 32 (1970), 610-616. | MR | Zbl
,[8] Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge (1992). | MR | Zbl
- ,[9] Evolution equations with white-noise boundary conditions. Stochastics Stochastics Rep. 42 (1993), 167-182. | MR | Zbl
- ,[10] Invariant measures for semilinear stochastic equations. Stochastic Anal. Appl. 10 (1992), 387-408. | MR | Zbl
- - ,[11] Adaptive boundary and point control of linear stochastic distributed parameter systems. SIAM J. on Control and Optim. 32 (1994), 648-672. | MR | Zbl
- - ,[12] Entropy numbers and approximation numbers in function spaces. Proc. London Math. Soc. 58 (1989), 137-152. | MR | Zbl
- ,[13] Direct solution of a Riccati equation arising in a stochatic control problem with control and observations on the boundary. Appl. Math. Optim. 14 (1986), 107-129. | MR | Zbl
,[14] Dirichlet boundary value problem for stochastic parabolic equations: compatibility relations and regularity of solutions. Stochastics Stochastics Rep. 29 (1990), 331-357. | MR | Zbl
,[15] On the semigroup approach to stochastic evolution equations. Stochastic Anal. Appl. 10 (1992), 181-203. | MR | Zbl
,[16] Introduction to the Theory of Linear Non-selfadjoint Operators. Nauka, Moscow (1965), Russian (English translation AMS, Providence, 1969). | Zbl
- ,[17] Stability of semilinear stochastic evolution equations. J. Math. Anal. Appl. 90 (1982), 12-44. | MR | Zbl
,[18] Semilinear stochastic evolution equations: boundedness, stability and invariant measures. Stochastics 12 (1984), 1-39. | MR | Zbl
,[19] Equivalence of Lp stability and exponential stability for a class of nonlinear semigroups. Nonlinear Analysis 8 (1984), 805-815. | MR | Zbl
,[20] A semigroup model for parabolic equations with boundary and pointwise noise. Stochastic Space-Time Models and Limit Theorems, D. Reidel Publishing Company (1985), 81-94. | Zbl
,[21] Stability of parabolic equations with boundary and pointwise noise. In "Stochastic Differential Systems" (Proceedings), Lecture Notes in Control and Information Sciences 69, Springer-Verlag, Berlin 1985, 55-66. | MR | Zbl
,[22] Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations. J. Differential Eq.'s 47 (1983), 246-272. | MR
- ,[23] Unified theory of abstract parabolic boundary value problems: A semigroup approach. Appl. Math. Optim. 6 (1980), 281-333. | MR | Zbl
,[24] Numerical approximations of algebraic Riccati equations modelled by analytic semigroups and applications. Math. Computation 57 (1991), 639-662 and S 13-S37. | MR | Zbl
- ,[25] Nonhomogeneous Boundary Value Problems and Applications I. Springer-Verlag, Berlin (1972). | Zbl
- ,[26] Qualitative behavior of solutions of stochastic reaction-diffusion equations. Stochastic Processes Appl. 37 (1992), 256-289. | MR | Zbl
- ,[27] Wave equation with stochastic boundary values. J. Math. Anal. Appl. 177 (1993), 315-341. | MR | Zbl
- ,[28] Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces. Stochastics Stochastics Rep. 28 (1989), 85-114. | MR | Zbl
,[29] Da Prato-Zabczyk's maximal inequality revisited I. Mathematica Bohemica 118 (1993), 67-106. | MR | Zbl
,[30] New asymptotic results for stochastic partial differential equations. Ph.D. Dissertation, University of Maryland.
,[31] Multidimensional reaction-diffusion equations with white noise boundary perturbations. Annals of Probability, to appear. | MR | Zbl
,[32] A dynamical system in a Hilbert space with a weakly attractive nonstationary point. Mathematica Bohemica 118 (1993), 401-423. | MR | Zbl
,[33] On decomposition of generators. SIAM J. Control Optimiz. 16 (1978), 523-534. | MR | Zbl
,