@article{ASNSP_1995_4_22_1_137_0, author = {Hansen, W. and Nadirashvili, N.}, title = {On {Veech's} conjecture for harmonic functions}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {137--153}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 22}, number = {1}, year = {1995}, mrnumber = {1315353}, zbl = {0846.31003}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1995_4_22_1_137_0/} }
TY - JOUR AU - Hansen, W. AU - Nadirashvili, N. TI - On Veech's conjecture for harmonic functions JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1995 SP - 137 EP - 153 VL - 22 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1995_4_22_1_137_0/ LA - en ID - ASNSP_1995_4_22_1_137_0 ER -
%0 Journal Article %A Hansen, W. %A Nadirashvili, N. %T On Veech's conjecture for harmonic functions %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1995 %P 137-153 %V 22 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1995_4_22_1_137_0/ %G en %F ASNSP_1995_4_22_1_137_0
Hansen, W.; Nadirashvili, N. On Veech's conjecture for harmonic functions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 22 (1995) no. 1, pp. 137-153. http://www.numdam.org/item/ASNSP_1995_4_22_1_137_0/
[Ba1] Restricted mean values and harmonic functions. Trans. Amer. Math. Soc. 167 (1972), 451-463. | MR | Zbl
,[Ba2] Harmonic functions and mass cancellation. Trans. Amer. Math. Soc. 245 (1978), 375-384. | MR | Zbl
,[CV] Martin compactification for discrete potential theory. Potential Analysis, (to appear). | Zbl
- ,[DM] Probabilités et potentiel, Théorie discrète du potentiel. Hermann, Paris, 1983. | MR
- ,[HN1] A converse to the mean value theorem for harmonic functions. Acta Math. 171 (1993), 139-163. | MR | Zbl
- ,[HN2] Mean values and harmonic functions. Math. Ann. 297 (1993), 157-170. | MR | Zbl
- ,[HN3] Littlewood's one circle problem. J. London Math. Soc. (2), (to appear). | MR | Zbl
- ,[HN4] Liouville's theorem and the restricted mean value property. J. Math. Pures Appl., (to appear). | Zbl
- ,[HN5] On the restricted mean value property for measurable functions. In: "Classical and Modern Potential Theory and Applications", NATO ASI series (K. GowriSankaran et al. eds.), 267-271. Kluwer 1994. | MR | Zbl
- ,[Hu] On the 'one circle' problem for harmonic functions. J. London Math. Soc. (2) 29 (1954), 491-497. | MR | Zbl
,[NV] Mean value property and harmonic functions. In: "Classical and Modem Potential Theory and Applications ", NATO ASI series (K. GowriSankaran, M. Goldstein eds.), 359-398. | MR | Zbl
- ,[Re] Markov chains. North Holland Math. Library 11, 1975. | MR | Zbl
,[Ve1] A converse to Gauss' theorem. Bull. Amer. Math. Soc. 78 (1971), 444-446. | MR | Zbl
,[Ve2] A zero-one law for a class of random walks and a converse to Gauss' mean value theorem. Ann. of Math. (2) 97 (1973), 189-216. | MR | Zbl
,[Ve3] A converse to the mean value theorem for harmonic functions. Amer. J. Math. 97 (1975), 1007-1027. | MR | Zbl
,