@article{ASNSP_1995_4_22_1_109_0, author = {Bressan, Alberto}, title = {A locally contractive metric for systems of conservation laws}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {109--135}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 22}, number = {1}, year = {1995}, mrnumber = {1315352}, zbl = {0867.35060}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1995_4_22_1_109_0/} }
TY - JOUR AU - Bressan, Alberto TI - A locally contractive metric for systems of conservation laws JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1995 SP - 109 EP - 135 VL - 22 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1995_4_22_1_109_0/ LA - en ID - ASNSP_1995_4_22_1_109_0 ER -
%0 Journal Article %A Bressan, Alberto %T A locally contractive metric for systems of conservation laws %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1995 %P 109-135 %V 22 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1995_4_22_1_109_0/ %G en %F ASNSP_1995_4_22_1_109_0
Bressan, Alberto. A locally contractive metric for systems of conservation laws. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 22 (1995) no. 1, pp. 109-135. http://www.numdam.org/item/ASNSP_1995_4_22_1_109_0/
[1] Contractive metrics for nonlinear hyperbolic systems. Indiana Univ. Math. J. 37 (1988), 409-421. | MR | Zbl
,[2] A contractive metric for systems of conservation laws with coinciding shock and rarefaction waves. J. Differential Equations 106 (1993), 332-366. | MR | Zbl
,[3] A variational calculus for discontinuous solutions of systems of conservation laws. Preprint S.I.S.S.A., 1993.
- ,[4] Existence and continuous dependence for discontinuous O.D.E's. Boll. Un. Mat. Ital. 4-B (1990), 295-311. | MR | Zbl
- ,[5] The semigroup generated by 2 X 2 conservation laws. Arch. Rational Mech. Anal., submitted. | Zbl
- ,[6] Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28 (1979), 137-188. | MR | Zbl
,[7] Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965), 697-715. | MR | Zbl
,[8] Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10 (1957), 537-566. | MR | Zbl
,[9] Uniqueness of weak solutions of the Cauchy problem for general 2 × 2 conservation laws. J. Differential Equations 20 (1976), 369-388. | MR | Zbl
,[10] Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 328 (1985). | MR | Zbl
,[11] On correctness classes for nonlinear hyperbolic systems. Soviet Math. Dokl. 16 (1975), 1505-1509. | MR | Zbl
,[12] Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation. Amer. Math. Soc. Transl. Ser. 2, 33 (1963), 285-290. | Zbl
,[13] A semigroup for Lagrangian 1D isentropic flow. In "Transport theory, invariant imbedding and integral equations", G. Webb ed., M. Dekker, New York, 1989. | MR | Zbl
,[14] Continuous Glimm functionals and uniqueness of solutions of the Riemann problem. Indiana Univ. Math. J. 34 (1985), 533-589. | MR | Zbl
,[15] Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983. | MR | Zbl
,[16] Nonlinear stability of viscous shock waves. Arch. Rational Mech. Anal. 122 (1993), 53-103. | MR | Zbl
- ,[17] No L1-contractive metrics for systems of conservation laws. Trans. Amer. Math. Soc. 288 (1985), 471-480. | MR | Zbl
,