@article{ASNSP_1994_4_21_4_523_0, author = {Peng, Yue-Jun}, title = {Solutions faibles globales pour un mod\`ele d'\'ecoulements diphasiques}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {523--540}, publisher = {Scuola normale superiore}, volume = {4e s{\'e}rie, 21}, number = {4}, year = {1994}, zbl = {0831.35100}, language = {fr}, url = {http://www.numdam.org/item/ASNSP_1994_4_21_4_523_0/} }
TY - JOUR AU - Peng, Yue-Jun TI - Solutions faibles globales pour un modèle d'écoulements diphasiques JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1994 SP - 523 EP - 540 VL - 21 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1994_4_21_4_523_0/ LA - fr ID - ASNSP_1994_4_21_4_523_0 ER -
%0 Journal Article %A Peng, Yue-Jun %T Solutions faibles globales pour un modèle d'écoulements diphasiques %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1994 %P 523-540 %V 21 %N 4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1994_4_21_4_523_0/ %G fr %F ASNSP_1994_4_21_4_523_0
Peng, Yue-Jun. Solutions faibles globales pour un modèle d'écoulements diphasiques. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 21 (1994) no. 4, pp. 523-540. http://www.numdam.org/item/ASNSP_1994_4_21_4_523_0/
[1] Thèse. Université de Lyon 1, 1991.
,[2] Compacité par compensation pour une classe de systèmes hyperboliques de p lois de conservation (p≽3). Prépublication, n. 59 (1992), ENSL.
- ,[3] Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82, (1983), 27-70. | MR | Zbl
,[4] Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl., Math., 18 (1965), 697-715. | MR | Zbl
,[5] Initial-boundary-value problems for gas dynamics. Arch. Rational Mech. Anal., 64 (1977), 137-168. | MR | Zbl
,[6] JUN, Problème de Riemann généralisé pour une sorte de systèmes des câbles, Mathematica Portugalia 50 (1993), 407-434. | MR | Zbl
- -[7] Boundary value problems for quasilinear hyperbolic systems. Duke University, Mathematics Series V, 1985. | MR | Zbl
- YU WEN-CI,[8] Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad. Ser. A Math. Sci., 44 (1968), 642-646. | MR | Zbl
,[9] Mixte problem for nonlinear conservation laws, J. Differential Equations, 23 (1977), 244-269. | MR | Zbl
- ,[10] Solutions à variations bornées pour certains systèmes hyperboliques de lois de conservation, J. Differential Equations, 68 (1987), 137-168. | MR | Zbl
,[11] Temple's fields and integrability of hyperbolic systems of conservation laws, Prépublication, n. 72 (1992), ENSL.
,[12] Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., 280 (1983), 781-795. | MR | Zbl
,[13] Equivalence of the Euler and Lagrangian Equations of Gas Dynamics for Weak Solutions, J. Differential Equations, 68 (1987), 118-136. | MR | Zbl
,