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The Dipole Solution
for the Porous Medium Equation

in Several Space Dimensions

JOSEPHUS HULSHOF - JUAN LUIS VAZQUEZ

Dedicated to the memory of P. de Mottoni

0. - Introduction

In this paper we address the existence of special solutions u(x, t) of the
porous medium equation (PME)

posed in Q = {(x, t) : x = (xi) E &#x3E; 0}. We work in any space dimension
N &#x3E; 1 and consider solutions with changing sign. Our main interest is to find
a solution to the initial value problem with data

where 6 is the Dirac delta function in e. This is called a Dipole Solution (the
minus sign is inserted so as to make the solution positive for x &#x3E; 0. Of course,
any rotation in space gives an equivalent Dipole Solution). We prove that such
a solution exists and has the self-similar form

with

Pervenuto alla Redazione il 14 Ottobre 1991.
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These exponents can be obtained from dimensional considerations: we only have
to substitute formula (0.3) into the equation to obtain (m- I)a+2,3 = 1. Enforcing
that the be a conserved quantity implies a = (N + 1 )~3. So
we get (0.4).

The problem can be rephrased as the determination of the profile U(y),
which is a nontrivial and nonnegative solution of the nonlinear elliptic equation

in . with boundary conditions

We will show that U has compact support. If we write y E in the form

(yi, y’) with y’ = (Y2, - - -, YN) we find that U is a function of yl and In

particular, it is symmetric in the variables yj It can also be extended
in an antisymmetric way to the half-space yl  0 to form a solution in the
whole space with changing sign.

For the Heat Equation, ut = Au, the dipole solution can be obtained as
(minus) the derivative with respect to x 1 of the fundamental solution. When
m &#x3E; 1 and the space dimension is one, an explicit Dipole Solution was found
by Barenblatt and Zel’dovich in 1957 [BZ]. One way of obtaining it is as

follows: we can intregrate the PME to obtain another evolution equation of
degenerate parabolic type, wt which admits an explicit solution
of point-source type. Its derivative in x provides us with a Dipole Solution for
the PME.

This method does not work in dimension N greater than one, because
integration in x 1 does not lead to a simple equation. Our results are based on
the study of the equation

which we shall call the dual equation, because it can be obtained from the
PME after applying the operator (-0)w, and setting -Az = u. A study of this
equation in N = 1 was done in [BHV]. See Appendix below for further details.

Finally, let us remark that once the existence of a dipole solution of the
form (0.3) with initial data (0.2) has been established, it is not difficult to see
that there is also a dipole solution of the form (0.3) with initial data given by

where M can be any positive constant. This follows from the fact that when
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U is a solution of (0.5), so is Ua, defined by

Then A and M are related by M = a m± 1. -
A second part of our paper concerns the use of the Dipole solution to

describe the asymptotic behaviour of the solutions of the initial and boundary
problem for the PME

Of course, we can also think of the problem as the PME in the whole of
Q with initial data antisymmetric in namely 

There is a conservation law associated to the solutions u of this problem,
namely the invariance in time of the first moment

This allows us to prove that any solution of problem (P) with nonnegative and
integrable initial data with compact support converges as t - 00 to the Dipole
solution having the same moment.

The plan of the paper is as follows: Sections 1 to 6 are devoted to the
construction and properties of the Dipole solution. After posing the problem and
stating the existence and uniqueness result in Section 1, we prove uniqueness
in Section 2 by a Lyapunov-functional argument involving the first moment.
The construction of the solution is begun in Section 3 by introducing suitable
approximations which form a monotone sequence. The construction is interrupted
in Section 4 to study the radially symmetric and self-similar solutions of the PME
with one sign change and compact support, for which we prove that the exponent
a is anomalous. This extends results obtained in [BHV] in collaboration with
Francisco Bemis. It is very curious that such a result can be used to construct
a supersolution for our problem, and thanks to this the construction of the

Dipole solution is finished in Section 5. Section 6 establishes that its support
is compact in space. Section 7 addresses the asymptotic behaviour as t - 00.
Finally, we gather in the Appendix some facts concerning the dual equation.

Let us finally comment on a related question. Can we have radially
symmetric self-similar solutions having at t = 0 some kind of dipole singularity?
It follows from the phase-plane analysis of radially symmetric solutions of (0.1),
as done for instance in [H], that no such changing sign solutions exist, even
if, in order to avoid the singularity at r = 0, we allow ourselves to take out of
the domain of definition of U a small neighbourhood of the origin.
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1. - The Dipole Solution. Preliminaries and statement of results

Possibly the single most important solution of the Porous Medium Equation
is the so-called point-source solution, which is a nonnegative solution taking as
initial data a Dirac mass,

It is fortunate that this solution has an explicit form, [Ba], [ZK], [P], namely

where ~ = and

while C &#x3E; 0 is an arbitrary constant which can be explicitly determined in terms
of the mass M = f u(x, t) dx. The solution is usually known as the Barenblatt
solution. It is clear from the formula that u 1 has compact support in x for
every t &#x3E; 0. This reflects the basic property of Finite Speed of Propagation, a
consequence of the degenerate character of the equation.

The Barenblatt solution plays an important role in the theory of solutions
of the Cauchy Problem for the PME with integrable and nonnegative initial data.
in particular, the large-time behaviour of any solution in this class is always
a Barenblatt profile. In this respect, it plays the same role the fundamental
solution plays for the heat equation.

Let us consider now solutions with changing sign. In the case of the heat
equation the asymptotic behaviour is still given by the fundamental solution as
long as the initial mass M = f UO(x) dx is not zero. However, when M = 0 we
have a completely new situation, described by the next term in the asymptotic
development. The second term is given by a multiple of the so-called dipole
solution, which is obtained simply (after a convenient rotation) as the derivative
with respect to x 1 of the fundamental solution. It thus reads

Further terms of the asymptotic development can be obtained by repeated
differentiation of the fundamental solution. All these solutions have exponential
decay in x.

It is natural to ask whether a similar situation holds for the Porous Medium

Equation. To begin with, if we consider solutions with initial data uo E 
and mass f uo(x) dx &#x3E; 0, then the asymptotic behaviour is still given by the
Barenblatt solution. Moreover, if the data have compact support then the solution
becomes even nonnegative in a finite time, [KV]. The main concern is hence
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to investigate whether there exist solutions which can represent the behaviour
of general solutions with zero mass.

This situation has been investigated recently in one space dimension. The
analogue to the sequence of derivatives of the fundamental solutions is here

represented by a sequence of self-similar solutions of the form

where U has compact support. In order to satisfy the equation, the exponents
a and ~3 must be related by

Introducing as parameter k = of//3 we may write (1.6) as

In the heat equation case m = 1 so that ~3 = 1/2 and a = k/2. The sequence of
solutions we are considering corresponds to all the positive integer values of k,
k= 1,2,3,....

In analogy to the requirement of exponential decay for the heat equation,
we have here the condition of compact support for the profiles U. Such solutions
have been completely classified in [H], where it is shown that there exists a

sequence

going to infinity and such that there exists a compactly supported solution U
if and only if k = kn for some integer n &#x3E; 1. The solution U = Un is unique
up to scaling. Moreover, Un is even (odd) for n odd (even), and has exactly
n - 1 sign changes. The first value of k is again kl = 1 and Ul corresponds to
the Barenblatt solution.

For the second function we have k2 = 2, U2 is explicit, and its

corresponding similarity solution U2 has the first order derivative of the Dirac
measure as trace at t = 0, thus originating the name of dipole solution. This
solution, found in [BZ], happens to be the derivative in space of the fundamental
solution of the equation

which is obtained from the PME by integration
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The dipole solution was shown in [KV] to represent the large-time behaviour
of solutions of the PME in 1-D with zero mass and nonzero first moment

The main goal of this paper is to prove the following N-dimensional result

THEOREM A. There exists a selfsimilar solution u(x, t) = 0

of the PME with compact support in space which takes initial data of dipole
type, namely such that

a and ,Q are given by (0.4), i. e. the parameter k is N + 1. Such a solution is

unique if we demand that U(y) = 0 for YI = 0.

In addition to the existence and uniqueness of 11, we also investigate the
main properties of our solution and its interface.

Our proof partially relies on the knowledge of a particular positive
self-similar solution z*(x, t) of (0.7) in space dimension N’ = N - 1 having
as initial data = and which is bounded but not integrable for t &#x3E; 0.
In fact the parameters in this similarity solution are such that, had the solution
been integrable, its initial data would have been a Dirac mass. It is well known
that the heat equation cannot handle such initial data which are not locally
integrable.

For N’ = 1 this striking difference between the heat equation and (0.7)
is a consequence of what we had proved in [BHV], namely that k3 &#x3E; 3 for
m &#x3E; 1. Thus the third member of the sequence of solutions u~, u3, does not

correspond to initial data S"(x). Consequently Z3 = -U3) does not take 6 as
initial data. For exponent k = 3, we obtain a symmetric solution u* decaying in
x like O(lxl-3), which takes on the initial data and not S"(x) as it happens
in the heat equation. Taking the second primitive of this solution, we obtain
a solution z* of (0.7) with initial data It is because of this anomalous
behaviour for N’ = 1 that we can settle the proof of existence of a dipole
solution in N = 2.

In order to deal with the dimensions N &#x3E; 3 we need to generalize the
above one-dimensional results for (1.5) to several space dimensions. Then one
can look for radial and nonradial solutions U. The compactly supported radial
solutions have been also classified in [H]. Basically, the result is the same as
for the even solutions in one space dimension, with a and {3 given in terms of
1~ by (1.7). Then there exists a sequence

such that there exists a compactly supported radial solution U = if and

only if k = kn (N) for some odd n E N, the number of sign changes being
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(n - 1)/2. Up to scaling, Un is unique. Again the first one corresponds as in
the heat equation to kl = N and ul is the explicit Barenblatt solution.

In Section 4 we generalize the results of [BHV] to show that the second
solution u3 corresponds to an anomalous exponent k3 &#x3E; N + 2 if m &#x3E; 1. Now,
for exponent k = N + 2 we obtain a radially symmetric solution decaying in
space as with initial data and not 0~(x) as in the case
of the heat equation. Taking the Newton potential of this solution we obtain a
self-similar solution, of (0.7) with initial data Ix 1- N .

REMARK. We record here the curious fact that the dipole solution in one
dimension belongs to a family of explicit self-similar solutions containing the
dimension N as a parameter. They are given by the formulas

and

While for N = 1 this solution is a dipole solution, it is not for N &#x3E; 1. Thus,
for N = 2 it is the Barenblatt point-source solution. For N &#x3E; 3 it is not even a
solution in any neighbourhood of x = 0, due to the existence of a singularity
in y = 0 which continues for all times t &#x3E; 0.

2. - Uniqueness of the dipole solution. A conservation law

We begin by stating a basic conservation law valid for solutions of the
PME in a half-space.

LEMMA 2.1. For every solution of the PME in Q+ = H x (o, oo) with zero
boundary data and compact support, we have

PROOF. Integrate by parts..

The vector quantity f xu(x, t) dx is called the (first) moment. Note that for
solutions which are symmetric with respect to some coordinate variable xi the
moment has i-th component equal to zero. Therefore, we will only be interested
in the first component of the 

A second observation concerns the requirement of compact support. This
can easily be weakened to the requirement of finite integral j 
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This moment conservation law plays an important role in the proof of
uniqueness and also in the determination of the asymptotic behaviour of general
solutions of the initial and boundary value problem.

The uniqueness of the Dipole Solution is based on the following Lemma.

LEMMA 2.2. Let ul and U2 be two self-similar solutions of the PME of
the form (o. 3), (0.4), taking on boundary data uZ (x, t) = 0 for x 1 = 0, x, E I

and t &#x3E; 0, and having compact support. If the moments have the same first
component, then the solutions coincide.

PROOF. We define u = and u both max and
min being defined pointwise. Clearly,

We also have, due to the self-similar form (0.3), (0.4) of ul and u2:

where c is a positive constant, i.e. it is time-independent.
Assume now that the moments of u and U2 have the same first component,

and do not coincide. Since solutions of the PME eventually cover the whole
space domain H, for large times their supports have to overlap at least in part.
Because of the selfsimilarity this must then hold for all times. Moreover, there
must exist a set Z where both solutions are positive and coincide, otherwise
one should be larger then the other, which contradicts the equality of moments.

Consider now the solutions u3, u4, which start at time t = 1 with value u,
u respectively. Namely

By the maximum principle we have in H x (1, oo)

Moreover, by the Strong Maximum Principle u3 and u4 cannot coincide at any
point of positivity, contrary to what happens to u and u in Z. Consequently,
u3 - and both differences are not identical. Hence, for t &#x3E; 1
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However, since both u3 and u4 are solutions with compact support we have

This contradiction discards the possibility of noncoincidence..

REMARK. As a consequence of the above argument, two different
self-similar solutions of the form (0.3)-(0.4) cannot intersect. It follows that
the dipole solutions Ua defined by (0.9) form a strictly monotone family which
is increasing in A. Their supports are also a monotone family of subsets of H.

3. - Construction of the solution

In this section we establish the existence of the dipole solution as a limit
of solutions obtained from one particular solution by a suitable scaling. We use
the fact that a solution of

yields a solution of PME if we set u = -Oz and vice versa. Let T(x) be
the fundamental solution of Laplace’s equation, i.e. AIF(X) = 6(z). The dipole
solution of PME which we seek corresponds to the solution of (3.1) with initial
data given by

where = 1 }). The notation x, = r cos 4&#x3E;1, X2 =

r sin 4&#x3E;1 cos ~2, ... stands for the generalized polar coordinates.

Step 1. Approximate problems. We truncate the singularity at r = 0 as

follows. We consider the sequence of functions

for a certain function determined by
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so that We want to take

Clearly in that case

for all r &#x3E; 0. Because of the jump in 1/J~ we have

which means that for any smooth test function

In order to avoid working with measures, we smooth down the function yi given
in (3.5) into a Coo function by making a perturbation in a small neighbourhood
of the value r = 1 in such a way that 0 and the z~ form a monotone

increasing sequence of functions.

Step 2. Approximate solutions. We now solve equation (3.1 ) with initial
data (3.3). In order to do that, we set

and solve the PME for un. See Appendix. We thus obtain unique classical
solutions zn(x, t) by taking the Newtonian potential of the -un.

Since the initial data are antisymmetric in x 1 and symmmetric in xi for
i = 2, ... , N, we conclude that the same property holds for the solutions ~(’, t)
at any time t &#x3E; 0. In particular, we will have = 0 for x = 0.

The Maximum Principle holds for equation (3.1) posed in the half-space
H = { x 1 &#x3E; 0 }, therefore &#x3E; 0 for x 1 &#x3E; 0. We also see that the sequence
zn is increasing in Q+ = H x (0, oo).

Moreover, since uon = -Azon &#x3E; 0 in H and uon = 0 on the boundary x = 0
we have t) &#x3E; 0 for every x E H and every t &#x3E; 0. This means that

Therefore, the functions satisfy
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We see that the bound does not depend on n.

Step 3. The limit. Self-similarity. In view of these properties we may
conclude that the sequence zn converges to a limit which we denote by z, so

and 0  z(x, t)  zo(x) in Q. A number of properties are also easily deduced
from the construction. Thus, z(x, t) takes on the boundary values z(x, t) = 0 for
x 1 = 0. Also z(x, t) is symmetric in the variables xi, i = 2,..., N and

at least in distribution sense. We shall see later that this inequality is true

everywhere and zt is a continuous function.
A basic property of z is selfsimilarity. In order to establish this property

we use a similarity-invariance argument, based on the existence of a scaling
group which transforms solutions into solutions. In our case we define the
transformation

with {3 = ((N + l)m + (I - N))-1. The exponents are chosen in such a way that
not only T z is a solution of (3.1) whenever u is, but also the initial data zo(x)
are invariant in the transformation. Regarding the approximating sequence 
we have

By uniqueness of bounded solutions of equation (3.1 ) it follows that

and passing to the limit n -~ oo we get

which holds for every (x, t) and every A &#x3E; 0. Fixing x and t and letting A = lit
we get

Step 4. The limit is nontrivial. The dipole solution we are looking for will
be
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Of course, u will inherit from z the self-similar form (0.3)

with a = (N + 1),3 and /3 given by (0.4). But before we proceed, we have to
make sure that z(x, t) does not coincide with zo(x), since in this case we would
obtain u(x, t) - 0 in Q+ = H x (0, oo), the trivial solution.

We can exclude this by showing that the function Z(x) is bounded. We
shall establish this crucial estimate as a consequence of the results of the next
Section. To end the construction we also have to show that z is a solution of

(3.1 ) and u is a solution of the PME.

4. - On radially-symmetric self-similar solutions of the PME

We have explained above that, when trying to obtain radial selfsimilar
solutions with compact support for the PME, we find a sequence of parameters
kn - oo for which such solutions exist, [H]. Moreover, it is proved in [BHV]
that in one space dimension the sequence begins (as in the corresponding
sequence for the heat equation) with kl - 1, 1~2 = 2, but the third value is
anomalous if and in particular k3 &#x3E; 3, when m &#x3E; 1. Indeed, it tends to
4 as m - oo.

Here we extend this result to several space dimensions. Thus, we will
show

THEOREM 4.1. The value k = k3(N), for which we find a compactly
supported radial solution of the PME of the form (1.5)-(1.7) with one sign
change, satisfies for m &#x3E; 1 the inequality

PROOF. (i) We follow the lines of the proof in [BHV] for k3 &#x3E; 3 in
dimension one. Thus, we write k = k3(N), U = U3, and normalize U by
U(o) = 1. We also use as independent variable r = ,81/2Iyl since the extra factor
,81/2 simplifies the formulas (4.3)-(4.5) below.

As in [BHV] there exist unique numbers 0  a  A  oo such that U &#x3E; 0
on [0, a), U(a) = 0, U  0 on (a, A), and U = 0 on [A, oo). Let V(r), W(r), and
Z(r) be defined by
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Note that this means that U = -AZ. We have

A first integration yields

In particular, (k - N)W (0) = 0, so that in view of k &#x3E; N, W (0) = 0. Consequently
W is increasing on (0, a) from zero to its maximum value u in r = a and then
decreasing on (a, A) to zero in r = A. Hence Z is positive on [0, A). Furthermore
(k - N)Z’ = V + r2-NW’ = V’ + rU, so that Z’(0) = 0. Dividing (4.4) by rN-1
and integrating again gives

implying Z(0) = 1 /(k - 2). A final integration leads to

which shows that I

(ii) We still have to prove that (4.7) holds. Again we follow the proof for
N = 1 in [BHV]. Because of the properties of W there exist functions 
and V2(W) defined on [o, ~ ] such that

Then, because

which will be larger than zero if we can show that
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Observe that Vi (0) + V2 (0) = 1, and that + = 0. Thus if (4.10) is false,
there must be a value W = W * E (0, u) where Vi + V2 has a negative minimum.
Then there exist unique 0  ri  a  r2  A with W * = W(ri ) = W(r2), so that
at W = W*

and similarly

Adding we obtain, setting and

contradiction. This completes the proof of (4.1 )..

PROPOSITION 4.2. The radial solutions U of (0.5) with k = N + 2 have one
sign change and behave, as I y -&#x3E; oo, as

PROOF. In the analysis of [H] radial solutions of (0.5) have precise power
decay when k does not belong to the special ’eigenvalue’ sequence It
is given by 

~~" ,

Using standard arguments, cf. [GPI-3], this limit can be improved to the form
(4.14)..

The decay in time of the similarity solution corresponding to k = N + 2 is
given, cf. (1.7), by

Taking z(x, t) = (-A)-’ii(x, t) we obtain a radially symmetric similarity
solution of equation (3.1 ), which for any fixed t &#x3E; 0 is strictly positive (or
negative) and which is asymptotically equal to

Furthermore the decay rate for t --&#x3E; oo of i is given by



207

We now take space dimension N - 1 with space variables X’ = (X2, ... , XN) and
consider the corresponding solution, i.e. the selfsimilar and radially symmetric
solution u = ii(x’, t) of the PME with k = N + 1. The decay rate in space is then

while in time we have

This latter rate is exactly what we have in (3.14) for z. We think of z as a
function of (x, t) E e x (0, oo) by putting x = (x I, x). Thus, z is independent of
x 1. We will consider this function in the next section as a comparison function
in the argument to prove the same decay rate as in (4.19) for the zn of Section 3.

5. - End of the existence proof

We interrupted the flow of the existence proof at the end of Section
3 because of the nagging doubt that maybe our constructed solution of the
z-equation gives after all a trivial solution of the PME. We are now in a

position to discard this possibility. As we said, this can be done by proving

LEMMA 5.1. Z(x) is bounded. ,

PROOF. We know that

(use for instance (3.13) with A’ = j and n = 1). Therefore,

Thus, the result is true if we can show that

Thus, in order to show that Z(x) is bounded, we only have to obtain a decay
rate for zl.

Now, the decay rate in space obtained in (4.18) for the i = Z(X2,..., XN, t)
allows us to rescale it in such a way that
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because zo, is bounded by Therefore, we can use i(X2, - - - 5 XN, t) as a
comparison function for the solution z, (x 1, - . * i XN i t) and thus obtain the decay
as needed in (3.14).

By the Maximum Principle, which holds for equation (3.1 ), we conclude
that

for every (x 1, ... , XN) E H and t &#x3E; 0. This ends the proof..

Step 5. Our next task consists in checking that z satisfies equation (3.1 )
in a classical sense and that u is a suitable solution of the PME. Both facts
are immediate consequences of the limit process once we are certain that

convergence takes place in suitable norms. Now, we know that in the domain
Ql = H x (T, oo) the sequence zn(x, t) is bounded uniformly in x, t and n.
The interior estimates derived in the Appendix allow us to prove that in this
situation also the -Ozn form a bounded sequence in the Holder spaces
°Ïoc(8’) for every set S’ compactly contained in H x (0,oo). Hence, we get in
the limit z E 0;’;(8) and u E C(Q+). With suitable antisymmetric extensions,
equation (3.1) is satisfied in a classical sense in the whole space by z when
t &#x3E; 0, while u satisfies the PME in distribution sense.

Step 6. The initial data. There is no doubt that z takes on the initial data
zo(x) continuously away from the origin. This follows from the monotonicity
of the sequence zn and the fact that zt is nonpositive.

The fact that U takes on initial data u(x,O) = 0 for needs some extra
work. Since the solution is self-similar, we have with y = 

We are going to prove in the next section that U has compact support. It is
then immediate that the limit (5.4) is zero for every x ~ 0, and that (1.12) holds.
With this the proof of the existence of the dipole solution will be complete.

The properties announced in the introduction are easy to check..

6. - The property of compact support and the coincidence set

It is important to know whether the support of u is compact in space
for every time t &#x3E; 0. Taking (-A)-’ this problem transforms into the broader
question of the coincidence set between z(x, t) and z(x, o). To begin with, we
know that
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In order to continue, we need the following result

LEMMA 6.1. Suppose that a bounded continuous function f (x) with

compact support satisfies f f h dx = 0 for every harmonic function defined in
a neighbourhood of supp( f ). Then the Newtonian potential of f, N( f ), which
satisfies AN(f) = f in the sense of distributions, has the same support as f.

PROOF. For any y V supp f , the fundamental solution is a harmonic
function of x in a neighbourhood of supp f . Thus, by the assumptions of the
Lemma, x) f (x) dx - 0. The other implication is trivial: if

x V suppN( f ), then f (x) = ON( f )(x) = 0.

REMARK. In the application we will restrict h to belong to the set of
harmonic functions defined in a neighbourhood of supp( f ) U B, where B is a
ball. The above argument allows then to conclude that the support of -N( f )
is contained in B U supp( f ).

Let Bn be the ball which contains the support of uo,. We consider
the sets

From the theory for PME it follows that Sn(t) is a compact set, because the

support of uon is compact, hence so is the support of un(’, t). Moreover, the
supports of the functions un(. , t) are expanding since un is a nonnegative solution
of a Dirichlet problem for the PME. Therefore the sets Sn(t) are also expanding
in time.

PROPOSITION 6.2. We have Sn(t) = Gn(t).

PROOF. Let 0  T. We have

for any harmonic function h defined in a neighbourhood of outside of
which un( . , t) vanishes for every 0  t  T. Integration in time gives

for this family of h’s, so that f (x) = un(x, t) - uon(x) satisfies the assumptions
of the Remark to Lemma 6.1. But then we can recover g(x) = zn( . , t) - zon by
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taking -N( f ), for these last two functions have the same Laplacian, and both
go to zero as lxl ---~ oo. Thus, they have to be the same, and we can conclude
from the Remark to Lemma 6.1 that u,, ( - , t) - uon and Zn ( . , t) - zon have the
same support away from Bn..

THEOREM 6.3. The support of u = -A:z-, where z is the limit of the sequence
zn, is compact. Moreover, the support of u( ~ , t) equals the coincidence set of
z(t) and z(0),

PROOF. Since the functions zo (x) and coincide for Ixl &#x3E; 1/n it
follows from (6.1) that G(t) C Gn(t), thus it is compact. In fact, the sequence
of sets Gn(t) shrinks to G(t). By definition, the support of u(t) is contained
in G(t). The equality follows from Lemma 6.1 above since the support of u
shrinks to ~ 0 ~ as t - 0. 0

7. - Properties of the interface

We study in this section the geometry of G(t), the support of u at time
_t &#x3E; 0, and its boundary r(t) (the Free Boundary). G(t) is the closure in
H = ~x E x 1 &#x3E; 01 of the positivity set

To begin with, the self-similarity of 3 immediately implies that

as subsets of H. This reduces the study to time t = 1. We have

PROPERTY 1. G(I) possesses radial symmetry in the variables x’ -

(X2, .. ~ xN),

PROOF. It is immediate form the construction. Indeed, a stronger result
is true: the function u = u(x, x’) is radially symmetric in the variable x’ and

nonincreasing in Ix’l. This monotonicity property can be obtained in different
ways, for instance applying the maximum principle to ux2 in an appropriate
domain..

PROPERTY 2. G(I) is starshaped around the origin.

PROOF. This is a consequence of (7.1) and the following well-known
property of retention of positivity, which holds in particular for nonnegative
solutions of the PME with homogeneous Dirichlet data. The property says that



211

if at any given point x and time t1 &#x3E; 0 the solution is positive, then it will be
positive at x for all later times t2 &#x3E; tl. In other words, the sets IP(t)l form an
expanding family. A simple proof of this can be obtained by comparison from
below with a very small Barenblatt solution (so small that it does not reach the
boundary in the time interval 0  t  

Property 2 is then proved as follows: take a point (x, t) E Q+ where 11 &#x3E; 0

and let = Ax with 0  A  1. By self-similarity the point (x, t) corresponds
to the positivity set of 11 if  t. By the retention property t) &#x3E; 0.

.

PROPERTY 3. The boundary r(1) satisfies the cone condition, both external
and internal, away from x 1 = 0.

PROOF. Let X = (x 1, ~ ~ ~ , E r(I), x 1 &#x3E; 0. By the symmetry properties,
we can always assume that we are in N = 2 and that x~ &#x3E; 0. There exist points
x G P(l) and points x E G( 1 ) as close as desired to x. By Property 2, for every
A  1, we know that 1) &#x3E; 0, while, for A &#x3E; 1, = 0.

On the other hand, the monotonicity of 3 in IX’ I produces a similar result
when we move from x in any direction v’ perpendicular to the It follows
that the cone generated at x by the directions of the form v = with

c 1 and C2 &#x3E; 0, is external to G(1) while the opposite cone is internal. Indeed,
we can do better by making a symmetry argument around any line X2 = ax +6-
with a &#x3E; 0 and e &#x3E; 0 as small as we like. We conclude at any point x with
X2 &#x3E; 0 the function ;U(x, 1) is monotone in the direction perpendicular to the
radius vector joining x to the origin. As a consequence, we conclude that 11 is
monotone along circles centered at the origin in the (XI, z2)-plane.

Combining these results we conclude that there exist complementary
interior and exterior cones with angle 7r/2 at every point of the interface.

.

As a consequence of these results, we have

PROPERTY 4. The free boundary r(l) is a Lipschitz-continuous surface in
H. It can be defined by the formula

At the tip of the support in the x 1 axis, x = A, we have even more: by
symmetry, the cones are 7r radians wide, so this point has a definite tangent
plane perpendicular to the x:1-axis.

Finally, we address the question of the behaviour of the interface near
xl = 0. It is well-known that, in the PME, the movement of the free boundary is
driven by the pressure gradient, namely speed = with v = (Darcy’s
law). This could suggest that the interface does not move along the hyperplane
x 1 = 0. In fact, this is not so as the following result shows.
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PROPERTY 5. There exists the limit

PROOF. The existence of the limit is a consequence of the monotonicity
implied by the existence of suitable cones. The argument to prove that a is

strictly positive is based on comparison with small Barenblatt solutions located
near the origin and below our solution. Since it can be seen in detail in [LV],
we omit here further details..

8. - Asymptotic behaviour

We take solutions of the PME in a half-space H = {x E xl &#x3E; 0}
with initial data uo &#x3E; 0 and data u = 0 on the lateral boundary I { (x ~ t) : x =
0, t &#x3E; 0}. Under these assumptions we have .

THEOREM 8.1. The solution converges to a Dipole Solution.

Let u be any such solution. We shall show that we can put a dipole
solution under u and use it as a subsolution, and similarly, that we can put a
dipole solution above u and use it as a supersolution. To do so, however, we
need some properties of Vu at xl = 0.

LEMMA 8.2. Let u be a solution of the above problem with nonnegative
bounded initial data uo. For every T &#x3E; 0, there exists a constant A &#x3E; 0 which

depends only on T and on the supremum of uo, such that

PROOF. We use a travelling wave supersolution as a barrier function. Let

Substitution into the PME gives cP’ + (pm)" = 0, which can be integrated to
give

where we take D a positive constant. Choosing P(O) = 0, we obtain a so-

lution P(s) defined for positive s with (Pm)(s)  Ds, which runs from
zero to D/c as s runs through 1~+. Choose b / c = T, and let D be so

large that P(x l + b) &#x3E; u(x, 0). Then by the maximum principle,
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u(x, r) = P(x 1 ) &#x3E; u(x, r), so that u(x, r) S Since the right-hand side
of this last estimate is an exact solution of the PME, it follows again from the
maximum principle that the same estimate holds for all t &#x3E; r..

LEMMA 8.3. Let u be a solution of the above problem nontrivial

nonnegative bounded initial data uo. For every x’ 0 E RN-1, there exists a r &#x3E; 0

which depends only on the initial data and x’, such that for every to &#x3E; r we

have

for (x, t) in a neigbourhood of (0, xo, to) whenever xl &#x3E; 0. The constant C &#x3E; 0

depends on the point (0, xo, to) and on the neighbourhood.
PROOF. Consider any Barenblatt solution centered in H, and with support

contained in ,H at t = 0. It was shown in [LV], that if we solve the problem
in the halfspace with these initial data, when the support of this solution hits
x 1 = 0, the set o~ (t) _ {x’ E (0, x’ ) E suppu(t)) is an expanding ball, with
U(X, t) &#x3E; cxl/m &#x3E; 0 locally for x, &#x3E; 0 and x’ near the center of the ball l1 (t).
Using this kind of solutions as subsolutions, the Lemma follows..

LEMMA 8.4. Let u be the dipole solution as constructed in the previous
sections, and let U be its similarity profile. Then in a certain neighbourhood
of the origin in H we have

PROOF. This follows from Lemma 8.2 and the similarity form of the dipole
solution.

LEMMA 8.5. Every compactly supported solution lies for t large between
two appropriately scaled dipole solutions. Writing

where Ua is defined by (0.9), and a and (3 are given by (0.4), there exist positive
constants and a2 (t) such that, if t is large enough,

PROOF. The previous lemmas allow us to put any solution u(x, t) between
two appropriately scaled dipole solutions for some fixed positive t = to. By the
maximum principle this remains true for all t &#x3E; to..

To complete the proof of Theorem 8.1, we use a standard Lyapunov
functional argument. Let u be the dipole solution whose first moment has the
same first component as the solution u under consideration. Define
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LEMMA 8.6. J is strictly decreasing in time.

PROOF. This follows from the same argument as in the uniqueness proof
for the dipole solution in Section 2. ·

Next we scale the solution by

where cx and ~3 are given by (0.4). Observe that

By standard a priori estimates we can pass to the limit along a subsequence
Aj ~ oo. Denote the limit of by u.

LEMMA 8.7. We have c, for some c &#x3E; 0.

PROOF.

LEMMA 8.8. c = O.

PROOF. By Lemma 8.7, c, so it is not strictly decreasing.
Hence Lemma 8.6 implies that u - ~. *

This completes the proof of Theorem 8.1.

APPENDIX

Some results about the theory of the Dual Equation

We collect here some results on the theory of the dual equation (0.7).
We begin by results which are obtained by taking the Newtonian potential of
solutions of the PME, as explained above.

Let X be the set of twice continuously differentiable functions f in H
such that f (x) = 0 on x 1 = 0}, f (x) -~ 0 as x ( -&#x3E; oo, and Af has
compact support (we use the notations H, Q, Q+ and 1, as defined in the

Introduction). For those functions as initial data we have a classical solution of
the Z equation.

LEMMA A.I. Let zo belong to X. Then there exists a unique function
z(x, t) E 0([0,00) : X) which satisfies equation (0.7) in Q+ and such that Az(., t)
has compact support for every t &#x3E; 0.
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PROOF. Solve the PME with initial data uo(x) = -Azo. It is known
that under such circumstances the solution u(x, t) is Holder continuous with
a modulus that depends only on the sup norm of the initial data if we are

away from t = 0. Take then the Newtonian potential of the solution. Uniqueness
follows from the next lemma. ·

LEMMA A.2. The Maximum Principle applies to the above solutions.

Moreover, we have a semigroup of contractions in X with respect to the sup
norm.

PROOF. This property is straightforward to check, our solutions being
classical. If z, and Z2 are solutions, there can be no point where the function
(zl (x, t) - z2(x, t))eat, a &#x3E; 0, can have an interior maximum..

In fact, this is the basic property used to obtain a theory of generalized
solutions for equation (0.7) with merely continuous initial data. One way is to
approximate zo with smooth initial data in X, solve and then pass to the limit
in the sequence solutions which will be a converging sequence in the sup norm.
The construction of a solution in the framework of semigroup theory is done in
[BH], [Ha] and [Ko] for instance. See [C] for general reference to generation
of nonlinear semigroups with accretive operators.

LEMMA A.3. If zo  0 we have

PROOF. This estimate, as explained in [BC], can be obtained for quite
general evolution equations if (i) they are homogeneous (i.e. have power-type
scaling), and (ii) they satisfy the Maximum Principle. The proof consists in

noting that if z is a solution of (0.7), then the function

is also a solution of (0.7). Moreover, for A &#x3E; 1 it has larger initial data.
Therefore

This gives z + (m -  0, i.e. (A.1 ).

In our analysis above we have only considered solutions with nonpositive
Laplacian.

LEMMA A.4. If  0 then  0 and zt S 0. (Similarly, resp.
0 implies &#x3E; 0 and zt &#x3E; 0).

PROOF. It follows from the Maximum Principle for the PME. -

Lemmas A.3 and A.4 imply a control for Az in sup-norm.
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COROLLARY A.5. If Azo(x) :5 0 we have Az(x, t) bounded in Sr = H x (r, oo)
for every T &#x3E; 0.

We also have gradient bounds

LEMMA A.6. We get a local estimate for Vz in L2 in terms of local
bounds for zo in 

PROOF. Write the equation in the form G(zt) = Az, with G defined by
G(s) _ ~ Is/11m sign(s). Take a cutoff function ~. Multiplying the equation by z~2
and integrating by parts in H, we get

Use now (A.1 ) to obtain, after some manipulations,

LEMMA A.7. Let 0. There exist local Ca bounds in S, for u = -Az
in terms of any LP-norm of uo = -Azo.

PROOF. This is standard PME theory. Proofs can be found in [CF], [DB]
or [S].
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