Effective diophantine approximation on 𝔾 m
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 20 (1993) no. 1, pp. 61-89.
@article{ASNSP_1993_4_20_1_61_0,
     author = {Bombieri, Enrico},
     title = {Effective diophantine approximation on $\mathbb {G}_m$},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {61--89},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 20},
     number = {1},
     year = {1993},
     mrnumber = {1215999},
     zbl = {0774.11034},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1993_4_20_1_61_0/}
}
TY  - JOUR
AU  - Bombieri, Enrico
TI  - Effective diophantine approximation on $\mathbb {G}_m$
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1993
SP  - 61
EP  - 89
VL  - 20
IS  - 1
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1993_4_20_1_61_0/
LA  - en
ID  - ASNSP_1993_4_20_1_61_0
ER  - 
%0 Journal Article
%A Bombieri, Enrico
%T Effective diophantine approximation on $\mathbb {G}_m$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1993
%P 61-89
%V 20
%N 1
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_1993_4_20_1_61_0/
%G en
%F ASNSP_1993_4_20_1_61_0
Bombieri, Enrico. Effective diophantine approximation on $\mathbb {G}_m$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 20 (1993) no. 1, pp. 61-89. http://www.numdam.org/item/ASNSP_1993_4_20_1_61_0/

[Ba] A. Baker, Transcendental Number Theory, Cambridge Univ. Press, Cambridge 1975. | MR | Zbl

[Ba2] A. Baker, Rational approximations to certain algebraic numbers, Quart. J. Math. Oxford, 15 (1964), 375-383. | MR | Zbl

[Ba3] A. Baker, Recent advances in transcendence theory, Proceedings of the International Conference in Number Theory, Moscow 14-18 September 1971, Moscow 1973, 67-69. | MR | Zbl

[Ba-W] A. Baker - G. Wüstholz, Logarithmic Forms and Group Varieties, submitted for publication.

[Bo] E. Bombieri, On the Thue-Siegel theorem, Acta Math., 148 (1982), 255-296. | MR | Zbl

[Bo2] E. Bombieri, Lectures on the Thue Principle, Analytic Number Theory and Diophantine Problems, Progr. Math. 70, A.C. Adolphson, J.B. Conrey, A. Ghosh, R.I. Yager ed., Birkhäuser 1987, 15-52. | MR | Zbl

[Bo-M] E. Bombieri - J. Mueller, On effective measures of irrationality for √a/b and related numbers, J. Reine Angew. Math., 342 (1983), 173-196. | Zbl

[Bo-V] E. Bombieri - J. Vaaler, On Siegel's Lemma, Invent. Math., 73 (1983), 11-32. Addendum, ibidem, 75 (1984), 177. | MR | Zbl

[C] G.V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math., 117 (1983), 325-382. | MR | Zbl

[Do] E. Dobrowolski, On the maximum modulus of conjugates of an algebraic integer, Bull. Acad. Polon. Sci., 26 (1978), 291-292. | MR | Zbl

[Dy] F. Dyson, The approximation to algebraic numbers by rationals, Acta Math., 79 (1947), 225-240. | MR | Zbl

[F] N.I. Feldman, An effective refinement in the exponent in Liouville's theorem (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 985-1002. | MR | Zbl

[G] A.O. Gelfond, Transcendental and algebraic numbers. English translation by L.F. Boron, Dover Publications Inc., New York 1960. | MR | Zbl

[G-P] K. Györy - Z.Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, Studies in Pure Mathematics (to the memory of Paul Turán), Akadémiai Kiadó, Budapest and Birkhäuser Verlag, Basel 1983, 245-257. | MR | Zbl

[H] S. Hyyrö, Über rationale Näherungswerte algebraischer Zahlen, Ann. Acad. Sci. Fenn. Ser. A I Math., 376 (1965), 1-15. | MR | Zbl

[M] K. Mahler, Zur Approximation algebraischer Zahlen (I). Über den grössten Primteiler binärer Formen, Math. Ann., 107 (1933), 691-730. | JFM | MR | Zbl

[S] C.L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuß. Akad. Wissen. Phys.-Math. Kl. (1929) 1, 1-70.Also Gesammelte Abhandlungen, Springer-Verlag, Berlin-Heidelberg -New York 1966, Bd. I, 209-274. | JFM

[S2] C.L. Siegel, The integer solutions of the equation y2 = ax n + bxn-1 + ... + k, J. London Math. Soc., 1 (1926), 66-68. | JFM

[S3] C.L. Siegel, Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen, Math.- Phys. Kl. (1969), 9, 71-86. | MR | Zbl

[St] H.M. Stark, Further advances in the theory of linear forms in logarithms, Diophantine Approximation and Its Applications, Charles F. Osgood ed., Academic Press, New York and London 1973, 255-293. | MR | Zbl

[S-V] T. Struppeck - J.D. Vaaler, Inequalities for heights of algebraic subspaces and the Thue-Siegel Principle, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, B.C. Berndt, H.G. Diamond, H. Halberstam, A. Hildebrand ed., Progr. Math. 85, Birkhäuser Boston, Boston 1990, 493-528. | MR | Zbl

[T] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math., 135 (1909), 284-305. | JFM

[T2] A. Thue, Berechnung aller Lösungen gewisser Gleichungen von der Form axr - byr = f, Videnskabs-Selskabets Skrifter, I. Math.-Naturv. Kl., 4, 9S, Christiania 1918. | JFM

[V] C. Viola, On Dyson's Lemma, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4) 12 (1985), 105-135. | Numdam | MR | Zbl