@article{ASNSP_1991_4_18_1_39_0, author = {Cicognani, Massimo}, title = {The geometric optics for a class of hyperbolic second order operators with {H\"older} continuous coefficients with respect to time}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {39--66}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 18}, number = {1}, year = {1991}, mrnumber = {1118220}, zbl = {0761.35055}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1991_4_18_1_39_0/} }
TY - JOUR AU - Cicognani, Massimo TI - The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1991 SP - 39 EP - 66 VL - 18 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1991_4_18_1_39_0/ LA - en ID - ASNSP_1991_4_18_1_39_0 ER -
%0 Journal Article %A Cicognani, Massimo %T The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1991 %P 39-66 %V 18 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1991_4_18_1_39_0/ %G en %F ASNSP_1991_4_18_1_39_0
Cicognani, Massimo. The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 18 (1991) no. 1, pp. 39-66. http://www.numdam.org/item/ASNSP_1991_4_18_1_39_0/
[1] Parametrix of infinite order on Gevrey spaces to the Cauchy problem for hyperbolic operators with one multiple characteristic, Ricerche Mat., suppl. (1987), 127-147. | MR | Zbl
- ,[2] Fourier integral operators of infinite order on Gevrey spaces applications to the Cauchy problem for certain hyperbolic operators, J. Math. Kyoto 30 (1990), 149-192. | MR | Zbl
- ,[3] The propagation of Gevrey singularities for some hyperbolic operators with coefficients Hölder continuous with respect to time, Res. Notes in Math., Pitman Series 183, 38-58. | MR | Zbl
,[4] Sur les équations hyperboliques avec des coefficients qui ne dependent que du temp, Ann. Scuola Norm. Sup. Pisa, 6 (1979), 511-559. | Numdam | MR | Zbl
- - ,[5] Well-posedness in the Gevrey classes for a non-strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa, 10 (1983), 291-312. | Numdam | MR | Zbl
- - ,[6] Opérateurs pseudo-différentiels et classes de Gevrey, Comm. Partial Differential Equations 8 (1983), 1277-1289. | MR | Zbl
- - ,[7] Opérateurs hypoelliptiques dans des éspaces de Gevrey, Bull. Soc. Sc. Math. R.S. Roumanil 27 (1983), 317-333. | MR | Zbl
,[8] Gevrey well-posedness for a class of weakly hyperbolic equation, J. Math. Kyoto Univ., 24(4), (1984), 763-778. | MR | Zbl
,[9] Fundamental solution of Cauchy problem for hyperbolic systems and Gevrey classes, Tsukuba OJ. Math. 1 (1977), 163-193. | MR | Zbl
,[10] Ultradistributions III-Vector valued ultradistributions and the theory of Kernels, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), 653-718. | MR | Zbl
,[11] Pseudo Differential Operators, M.I.T. press, 1981. | Zbl
,[12] Propagation de la regularité au sense de Gevrey par les opérateurs différentiels à multiplicité constante, J. Vaillant, Séminaire équations aux dériveés partielles hyperboliques et holomorphes, Hermann Paris, 1984, 106-133. | MR | Zbl
,[13] Fundamental solution for a hyperbolic equation with involutive characteristics of variable multiplicity, Comm. Partial Differential Equations, 4(6), (1979), 609-643. | MR | Zbl
,[14] Sur les équations hyperboliques à coefficients qui sont hölderiens en t et de la classe de Gevrey en x, Bull. Sci. Mat., 107 (1983), 113-138. | MR | Zbl
,[15] Parametrix du problème de Cauchy pour une classe de systèmes hyperboliques a caractéristiques involutives de multiplicité variable, Comm. Partial Differential Equations, 5(1), (1980), 1-22. | MR | Zbl
,[16] Le problème de Cauchy a caractéristiques multiples dans la class de Gevrey; coefficients hölderiens en t, to appear.
- ,[17] Fourier Integral Operators in Gevrey Class on Rn and the Fundamental Solution for a Hyperbolic Operator, Publ. RIMS, Kyoto Univ. 20 (1984), 491-542. | MR | Zbl
,[18] Multi-products of Fourier integral operators and the fundamental solution for a hyperbolic system with involutive characteristics, Osaka J. Math. 21(1), (1984), 169-224. | MR | Zbl
,[19] Propagation of wave front sets of solutions of the Cauchy problem for hyperbolic equations in Gevrey classes, Osaka J. Math., 23(4), (1986), 765-814. | MR | Zbl
- ,[20] Pseudo-differential operators of infinite order and Gevrey classes, Ann. Univ. Ferrara, Sez. VII, 31 (1985), 197-219. | MR | Zbl