@article{ASNSP_1990_4_17_4_583_0, author = {Choe, Jaigyoung}, title = {The isoperimetric inequality for a minimal surface with radially connected boundary}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {583--593}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 17}, number = {4}, year = {1990}, mrnumber = {1093710}, zbl = {0745.53004}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1990_4_17_4_583_0/} }
TY - JOUR AU - Choe, Jaigyoung TI - The isoperimetric inequality for a minimal surface with radially connected boundary JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1990 SP - 583 EP - 593 VL - 17 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1990_4_17_4_583_0/ LA - en ID - ASNSP_1990_4_17_4_583_0 ER -
%0 Journal Article %A Choe, Jaigyoung %T The isoperimetric inequality for a minimal surface with radially connected boundary %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1990 %P 583-593 %V 17 %N 4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1990_4_17_4_583_0/ %G en %F ASNSP_1990_4_17_4_583_0
Choe, Jaigyoung. The isoperimetric inequality for a minimal surface with radially connected boundary. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 17 (1990) no. 4, pp. 583-593. http://www.numdam.org/item/ASNSP_1990_4_17_4_583_0/
[A] Optimal isoperimetric inequalities, Indiana Univ. Math. J., 35 (1986), 451-547. | Zbl
, Jr.,[C] Zur Theorie der Minimalflächen, Math. Z., 9 (1921), 154-160. | JFM
,[F] The isoperimetric inequality for doubly connected minimal surfaces in RN, J. Analyse Math., 32 (1977), 249-278. | Zbl
,[G] Filling Riemannian manifolds, J. Differential Geom., 18 (1983), 1-147. | Zbl
,[H] On Fenchel's theorem, Amer. Math. Monthly, 78 (1971), 380-381. | Zbl
,[LSY] On the isoperimetric inequality for minimal surfaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 237-244. | Numdam | Zbl
- - ,[OS] Doubly-connected minimal surfaces, Arch. Rational Mech. Anal., 58 (1975), 285-307. | Zbl
- ,[S] A bridge principle for minimal and constant mean curvature submanifolds of RN, Invent. Math., 90 (1987), 505-549. | Zbl
,